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Abstract. Consider the paths m¢(41),...,m(ix) from the root to the leaves 1y, ..., ix
in a random binary tree ¢ with n intemal nodes, where all such trees are assumed
equally likely and the leaves are enumerated from left to right. We investigate, for
fixed 4y ,..., 1 and n, the average size of m(41) U - --Ume(1x) resp. of m(§1)N---N
me(1x) (the latter corresponding to the average depth of the smallest subtree containing
11,...,3). By a rotation argument, both problems are reduced to the case k = 1, for
which a solution is known. Furthermore, formulas for the probability distributions of
the depth of leaf 1, the distance between leaf § and j and the length of m¢(5) Nm(j) are
derived.

1. Introduction and definitions

Since A. MEIR’s and J.W. MOON’s work on the average number of nodes at a
fixed level in a binary tree ([7]), several other results on the shape of a random bi-
nary tree of size n have been found: P. FLAJOLET and A. ODLYZKO established
the average height of the whole tree ([1]); F. RUSKEY ([8]) and P. KIRSCHEN-
HOFER ([4]) investigated the average depth of the leaf with number 1, where the
leaves are enumerated from left to right; H. PRODINGER ([6]) determined the
average value of the so called register pathlength of the binary tree; etc.

The problem examined in this paper is a generalization of RUSKEY’s and
KIRSCHENHOFER's, considering k leaves instead of only one. This general-
ization has some relevance for Computer Science: The case of successive leaves
is crucial for the investigation of stack oscillations (cf. [3]) and can possibly be
useful for the complexity analysis of parsers; the case of arbitrary leaves allows
of an analytical treatment of a software reliability model for the so called linearly
domained programs (see [2]).

Let B, be the family of extended binary trees with # internal nodes and n+ 1
leaves, and lett € B,. The leaves of ¢ can be enumerated from left to right with
the numbers 0, ...,n In the sequel, each leaf will be identified with its number
int.

If 3(0 < 1 < n) is aleaf of ¢, then let my(4) denote the path from the root 1o 1.
The length of this path, i.e. the number of its internal nodes, shall be denoted by
h¢(1); this is simply the depth of leaf ¢ in t.
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Further, if 1y,...,4 are leaves of t € By(0 < 41,...,% < ml1 < k <
n+ 1), then the union 7;(4;) U - - - U m(¢;) and the intersection m (1) N---N
7¢(1;) —defined in an obvious way—are (not necessarily binary) subtrees of ¢, the
intersection being a path again. We consider the numbers

u(41, ..., 1) =number of internal nodes of ¢, contained in m;(41) U - - - U me(1),
s¢(%1,...,1;) =number of internal nodes of ¢, contained in m; (1) N --- N m(ix).

Example 1.1: Lett be the following tree € Byo:

Then (setting i) = 1,4, = 2,13 =7)

he(1) =3, h(2)=5, h(7) =5,
ue(1,2,7) =8, 3(1,2,7)=2.

Remark 1: Inthecase k=1,
ut(1) = 5(3) = he(4) (0<iLn). (1.1)

Remark 2: If4; < --- < 14, i.e. each leaf i, lies on the left side of leaf 1,4 (s =
1,...,k—1),itis evident that m(;) N -- - N me(4;) = m(41) N m(3;), and so

st(ils“':ik) = Sg(i],ik). (1°2)

Obviously, s¢(41,...,1x) — 1 is the depth of the root of the smallest binary
subtree containing the leaves 1;,...,4;. Following the terminology in [5], this
root can be called the “i; -th (i — 4; + 1)-turn” of £.

The aim of the present paper is to determine the average values of the numbers
u(d1,...,5k) resp. s¢(d1,...,ix), where 1;,...,1; are fixed, the binary tree ¢ is
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taken randomly from B, and all binary trees in B3, are assumed to be equally
likely. This leads to the following definitions:
For0 <t1,...,5s<n1<k<n+1,let

1

h(iim) = — Y h(in), (13)

C teB
Wity eee ) = - 3 ity ), (14)

teB,
s(z’l,...,ik;n)=LEs‘(i1,...,ik). 1.5)

Cn teB,

Therein,
1 /2

ca = card B, = —— (:) (1.6)

denotes the n-th Catalan number.
It will be shown that for¢; < - -- < 14,

k

. . 1 . .

u(i1,...,5:n0) = ) [“an h(lge1 =3 —1;m) — k + l]
(io =—1,ik1 =n+ 1),

s(iy,...,5:m) = %[h(il;n)+h(ik;n) —h(G—i1—1;n)+1] .

2. Cases k=1 and k=2, and the average distance between leaf { and leaf ;

Let us start with the case k = 1. Because of (1.1), in this case the solution of our
problem is given by KIRSCHENHOFER'’s formula ([4]) on the average depth of
leaf 1:

n\2/2n+2\"!
u(i;'n)=s(i;n)=h(i;n)=4(ml)(2n+l)(m2)"(.) ( i ) —1.
1 2i+1
2.1)
For n, 1, n— ¢ — 0o, KIRSCHENHOFER found

i\ 12 i\1/2

h(i;m) =8 (-) (1 - —) —1+0 (max(z"l/z,(n—i)"l/z)) . 22)
™ n

At the end of Section 3, a possible derivation of (2.1) will be indicated.

Assume now k = 2. We define the distance p,(4, j) between two different
leaves 1, j in ¢ as the number of internal nodes on the unique path 17 connecting i
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with j int. If i = j, we set py(1,7) = 0. (Note that this definition of distance is
slightly different from the usual one counting the number of edges between 1 and
7; in our notation, the latter number is p¢(4,7) + 1 for i # j.)

The average distance between 1 and j is then defined by

ol 7im = — 3 i, ). @3)
Cn teB,

It should be mentioned that both p,(-,-) and p(-,-;n) fulfil the properties of
a metric on {0,...,n}. These metrics can even be extended to metrics on Zy ,
the residual ring modulo (n+ 2).

For i # j, obviously

wi,) = (b + i) + i) = 1, @4

1
81(4,7) = 5 (he(d) + he(7) — (3, 7) + 1), 2.5)

and analogous formulas hold for the average values u(4, j; n) resp. s(4,7;n). So
still p(4, 7; ) needs to be determined.

For this purpose, we use the well known respresentation of a binary tree as a
“planted tree”. Let B, be the family of all plane trees { with » internal nodes,
each of degree 3, and n + 2 leaves, enumerated in counter-clockwise direction
with 0, ..., n+ 1. Then from each tree t € B,, a corresponding tree { € BB, can
be constructed by adding an edge and a leaf to the root in upward direction and
assigning to the leaf the number n+ 1. Conversely, iff € B,, remove the leaf with
number n+ 1 and the incident edge, and mark the other node that was incident
with the removed edge as the root of the remaining tree; this yields again ¢. For
example: 4

N
/ >\3 N
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Proposition 2.1. Let

a(i,j,d;n) = card{t € By|m(i,)) = d},
Bli,d;m) = card{t € B, | he(i) = d}
(0<4,/<m0<Ld<un>0) .

Thenford > 1

1—Jj|-1,d:m), 1#7,
atidin = { fI AT RED 7
0, 1=].
Proof: Because of the above correspondence betweent € B, and t € B, it
suffices to show that

- t— . - l,d; , . -,
&, j,dsn) = { A== Ldim, i 7
0, 1=,

where o
&(i, j,d;m) = card {f € By | py(3, ) = d},
Bi,d:m) = card {f € B, | hi(i) = d}.

pi(4,7) is defined analogously as p(4, ), and h;(3) = p(n+ 1,1).

Consider the function ¢, : B, — B,(r € Z) which effects an |r|step cyclic
renumeration of the leaves of a given tree in the direction indicated by the sign of
7;i.e. leafiin¢ gets the numberi—» ( mod (n+2)) in ¢,(%). Since ¢! exists
(it is equal to ¢_,), ¢, is a permutation of the elements of B,.

Now let 4, j with 0 < i € j < nbe fixed. Then ¢;,, effects a renumeration
of the leaves of ¢ in such a way, that the path connecting leaf i with leaf ; in the
original tree ¢ corresponds to the path connecting leaf n+ 1 with leaf j — 41— 1 in
the renumerated tree ¢;41 ().

In particular,

pi(i,7) = Py lnt Lj—i= D =hy (G —i-1).
So we get

a(i,j,dim) =card {t € B, | hy,,,(j —i—1) = d}
=card {f € B, | h(j —i—1) =d} = B(li — j| - 1,d; m).

If, conversely, j < 1, the assertion follows from the symmetry of & in 4 and j. The
case i = j is trivial. |
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Corollary. For0 < 1,7 < n,

[ Wli=l =L, i#],
p(w,n)—{o' iz,

Proof: Leti # j. Then

1
pli,jim =+ S dati, j,dim) = — S dB(li— 71— 1,di m) = h(Ji— 7]~ L ).
Cn d>1 Cn &Sl

With the aid of the last Corollary and (2.4) resp. (2.5), the solution for the case

k = 2 can now be stated:

Proposition 2.2.

1
u(i,jin) = 5 [h(5m) + h(jin) + h(fi = j| = i) — 1],

i, jim = g UACism) + hGjsm) — h(li= ] = Tim) + 1

(0L, j<mi#))

where h(1; n) is given by (2.1).

Proposition 2.3. For i — 00,7 — oo,n — oo,% — z,{; - y0 < z,¥<

1,z # y), the following asymptotic relations hold:

h(i;m) = Vah(z) — 1+ 0(n"1/?),
u(i,jsm) = Vau(z,y) — 1+ 0(a"12),
s(i,7;m) = Vn3(z,y) — 1+ 0(n~12),

with

h(z) = 87~ 12\/z(1 - 2),

1 — - _
u(z,y) = E[h(x) + h(y) + h(|z —y]],

%(z,9) = 5 (=) + () = Kl — D).

Proof: Use of (2.2) and of Proposition 2.2.
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3. The probability distribution of the distance between leaf i and leaf ;

It should be noted that Proposition 2.1 not only makes it possible to establish the
average distance between the two leaves i and 7, but beyond that yields the whole
probability distribution of the distances p;({, 7) (t € By):

P{pi,j) =d|te By} = %aci,f.d:n) - éﬂ(li—jl —ldn (G #7)

with ¢, as is (1.6). So it seems worthwhile to compute the numbers (i, d; n).

Proposition 3.1,
a) The generating function of the numbers (i, d; n) is given by

G(z,v,8) = 3 33" Bi, & m)2"vhu' = [1 — zv (up(zu) + y(2))17",
n>0 d<n i<n 3.1

where

y(z) = Ec,.z — “1’43 (3.2)

is the generating function of the Catalan numbers.
b) The numbers f(i,d;n) (i < n,d < m,n > 0) satisly the following recur-
sions:

G dim = Y (,‘f)ﬁ(o,k;i)ﬁ(o,d—k;n—i) (33)

Osgété:y-z
0,d—Lin—1—j), d>1,
ﬂ(o’d;n)={z:}=0 C]ﬁ( ) n .7) d?o (3'4)

Proof: Lets = 0, and d be fixed. Then 8(i,d; n) is the number of binary trees
with n internal nodes, whose first leaf from the left has depth d.

If we remove the path m,(0), we geta forest of d binary trees with n— d internal
nodes i u; total. The generating function of the numbers of such forests is given by
2%(2)4, so

> Blo,dimz" = (2y(2)). (3.5)

n>d
Expansion of the right side yields

B0, dim) = > o ...ck, (3.6)

ky+tkg=n~d

and from this (3.4) can be derived.
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Now let ¢ > 0. The path m;(7) with d internal nodes divides the tree ¢ into two
parts:

it

0 1 n
Let
d; = number of the internal nodes v on (i), where the right successor of v be-
longs to m:(4) (“nodes of first kind”),
d, =number of the internal nodes v on (1) , where the left successor of v belongs
to m(4) (“nodes of second kind”).

Then d; + dz = d, and there are (for fixed d; ) exactly ( f,) possibilities to select
dy nodes of first kind from the d nodes of (7).

If the nodes of first resp. second kind are counted to the subtree £;resp. {2 on
the left resp. on the right side of (1), thent; and ¢, are complete binary trees
with { resp. with n — 1 internal nodes (leaves 0,...,14 resp. i,...,n; the leaf i
belongs to both ¢; and ;).

Int,m(%) is the path connecting the root with the rightmost leaf, so there are
B(i,d1;4) = B(0,d,; ) possibilities to choose ;.

In £, m(4) is the path connecting the root with the leftmost leaf, so there are
B(0, dy; n— 4) possibilities to choose ?2.

In total, we have as many possibilities for constructing a tree ¢ with k(1) = d
as indicated in (3.3) (k= d;,d— k= d3).

It remains to prove that (3.1) holds. For fixedd > 0,

SN BG,dim 2t

n>d i<n

IDIEDY (2)3(0,d];il)zi'ﬂ(O,dz;iz)Zi’u"‘

n>d f1+iz2=n di+dy=d
di<i

d2<iz
=) (j) [E ﬁ(o,dx;il)(zu)"*] [Zﬁ(o,dz;iz)z‘=]
divda=d NV Lizd i22dz
=X (;1 )(zuy(zu))d'(zy(z))“z = [zuy(zu) + 29()1°.
d|+dz=d
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From that, (3.1) follows by multiplication by v% and summation overd > 0. 1
Formula (3.3) was already given by Ruskey in [8]; our derivation slightly sim-

plifies his proof.

Remark: The partial derivative -‘%G(z,v, t) |u=1 Of (3.1) yields the generating

function H(z,u) = Y50 Ticn( ten, he($)) 2" u’ of the sums of depths of leaf

i in treest € B,. A short computation and the use of y(2) = 1+ 2(y(2))? leads

again to Kirschenhofer’s formula in [4],

' 37

w(2) - uy(z.u)]2 _ 9(2) — uy(zw)
l1—-u 1—-u

H(z,u) = [

from which his result (2.1) is obtained by expansion of H(z,u).

4. The general case

Now the restriction to one or two paths shall be removed; we consider the k paths
to the leaves 1y, ..., i and assume {; < --- < 4; without loss of generality.

Proposition4.1. Lett € B,,and 0 < ) < --- < 4 < n. Then

ut(‘l,---.'Ic)=E[ht(il)"'lh(*l,12)"'9:(12.'3)'*“'""'ﬁt(’k-lJIc)'*'ht('k)—k*'l]-

Proof: Surround the subtree m;(4;) U - - - U (1) in counter-clockwise direction,
beginning and ending with the root vg, as it is shown in the following illustration
for the case of Example 1.1:

This closed walk consists Of the paths Vo1, 1192, 1233, -+ - » 3k_13» 1V0 -

Their respective lengths (numbers of internal nodes) are h¢(41), pt(1,12), pe(32,
13), «vvy Pt(ik-1,%k), he(4). Each internal node of m:(d;) U --- U m(d4;) is
contained in exactly two of the above paths, with the exception of the nodes
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ve(k = 1,...,k — 1), where v, is the deepest node of 7, (1) N m(ic+1); these
k — 1 nodes are contained in exactly three of the above paths.
So

2u(iy, ..., t8) + (k= 1) = he(d1) + pe(d1,12) + -+ pe(d_1, ) + he(dp) .

|
Now we can state the general result:
Proposition4.2. For0 < i1 < ---<#4<n (1<k<n+1,n>0)
1 [&
u(it,n i m) = 5 | D hlsa —ie— LW —k+ 1], 4D

x=0

8(i1,..., 0k m) = %[h(il;") +h(igsm) —h(ig—i1—Lm)+1], (4.2)

where 1o = —1,14z+1 = n+ 1, and h(%;n) is given by (2.1).

Proof: (4.1) is an immediate consequence of Proposition 4.1 and the Corollary to
Proposition 2.1, using additionally the symmetry A(ig; n) = h(n— ig; n).
(4.2) follows from (1.2) and Proposition 2.2. ‘ 1

Again, the asymptotic behaviour can be derived:
Proposition 4.3. For k fixed,n — 00,4} — 00,...,4 =00, L — zy,..., % —

o, and 0 < 3 < --- < 3 < 1, the following asymptotic approximations hold:

u(d,..., k1) ~Vnu(z1,..., 58,
s(11,...,%:m) N\/T—IE(Il,...,zk),

with
1 Cam
BWT1,...,Tk) = Egh(znﬂ - z,), @.3)
1 — _ _
5(z1,...,2p) = 'Z—[h(zl)+h(zk)—h(zk—zl)], @44
where zo = 0, %41 = 1, and h(zx) is given by (2.6). ]

From (4.3), it can easily be verified that for fixed k and n(nlarge), u(%1,...,%: )
takes its maximum in the case of equidistant leaves.
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5. The probability distribution of s;(4, /)

It may be of interest to know not only the average value s(i, j; n) of the numbers
(4, 7) (given by Proposition 2.2), but also their distribution, i.e. the probabilities

P{si(i,f)=s|t€ Bu}=écard {t € Ba | (4, /) =3} (0<i<j<m1<s<n)

(with ¢, as in (1.6)). Consider the numbers ~(i,7,s;m) = card {t € B, |
st(1,7) = s}

For each t € B, and fixed 1, j(0 < i < j < m), let p(t) be the number of the
leftmost leaf of the smallest binary subtree ¢’ of ¢ containing the leaves 1 and j,
and let m(t) be the number of internal nodes in the subtree ¢" obtained from ¢ by
contracting ¢’ to a single leaf.

Then by classification of all trees t € B, with 5¢(¢,j) = s with regard to
p = p(t) and m = m(%), it can be seen that

i n—j+p

VG esm =Y Y, 8(i—pj—pin—mB(ps—Lim). (5.1
p=0 m=p
Therein,
j-1
8(i,7sm) = ) CkCa1-k (5.2)

k=1

is the number of trees t € B, where leaf 1 lies in the left principal subtree and leaf
7 lies in the right principal subtree of ¢, and B(i, d; n) is defined as in Proposi-
tion 2.1. Thus, (3, 7, s; n) can be computed numerically by means of (5.1), (5.2)
and Proposition 3.1.

At least in the case s = 1, the asymptotic behaviour of (1, j,s;n) fori —
00,] — 00,1 - 00, —»z,’--—-»y(O < 1 < y < 1) can be specified. Clearly,

73,7, m) = 8(4,55m).

By Stirling approximation,

Ck = a1 24 k312 (1 +0 (%)) ..

Inserted in (5.2), this yields
n—1

j-1 .
8(i,jsm) = -4——2[k(n— 1- k)12 (1 +0( —)) (53)

k=1
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With g.(w) = [w(n— 1 — w)]~3/2, we have

J-1 j
S onh) = [ an(w)du+ lguls) = (D, (5.4)
k=i s

considering the fact that g, is symmetric around "‘T’ ,decreasing for0 < w < %5+
and increasing for %5 < w < n— 1.
The integral in (5.4) can be solved:

i jf(n—1)
/’ gn(w)dw = —1—/ [u(l —u)]1732du

(n=12 Jijn-1 (5.5)
_ 2 7 1
N PR {“’ (n— 1 ) "“’(n—l)}
with
p(u) = (2u - (1 —w)]™'72, (5.6)

and the expression {...} in (5.5) tends to the constant p(y) — (zx) > 0 for
n — o0, So the integral is of order n~2.

The error term |g,(7) — ga(i)] in (5.4) is equal to |g,(&a)|(/ — 4) for some
fn € [1)]]; with ¢ = min(z) 1- !/)y

[ C
for sufficiently large n, hence
1 -
|93 < lgn( 5 em)| = O(n~*)and

9a(j) — ga()] = O(n~3).
Therefore,

w5 () () (o(D) e

As a consequence, the probability §(nz, ny; n) /c, that the leaves nz and ny
lie in different principal subtrees tends to zero like n~'/% as n — 0.

6. Conclusion
The intention of this paper is a methodological one in so far as it was pointed out
that diverse problems involving path lengths in random binary trees can be solved
by two means:

a) the rotation principle of the proof of Proposition 2.1,

b) the knowledge of the generating function (3.1) of the path length distribution.

Since the used rotation argument can be generalized to arbitrary simply gener-

ated families of trees (including t-ary trees and ordered trees), the same approach
could turn out to be helpful in this more general context. This will possibly open
a more direct access to the problem of average hyperoscillations of trees (cf. [3]
and [5]) and to similar combinatorial problems arising in Computer Science.
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