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Abstract. In this paper we gi\;e a partial answer to a query of Lindner conceming the
quasigroups arising from 2-perfect 6-cycle systems.

1. Introduction

The problem of finding Steiner triple systems on n points can be regarded as
the problem of partitioning the complete graph on = vertices into edge-disjoint
3-cycles. An obvious generalisation of this is the problem of partitioning the com-
plete graph into edge-disjoint cycles of length k. It is possible to use the resulting
design to define a groupoid (as can be done for Steiner triple systems) but this
is not necessarily a quasigroup. It is never possible to obtain a quasigroup when
k = 4, but for larger k a quasigroup can be defined provided a certain additional
condition is satisfied {2, 3, 5). Systems satisfying this extra condition are known
to exist for £ = 5,6,7 and certain other odd values of k [3]. In the cases 5 and
7 the resulting quasigroups form a variety, but it is not known whether this is true
in the case of k = 6. The quasigroups arising in the case of k = 6 satisfy certain
conditions, one of which is:

(zoy=yoz) =2 (z=y).

This is the only condition which is not a law and, in [S}, Lindner asks if it can
be replaced by a finite set of laws. In this paper we show that in the case of the
2-perfect 6-cycle system of order 13 of Lindner, Phelps, and Rodger [4], this quasi-
identity can indeed be replaced by a law. We also note that the variety generated
by the quasigroup arising from this 6-cycle system has a finite basis for its laws
(as indeed do those arising from various other 2-perfect 6-cycle systems).
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2. Definitions and Preliminaries

Definition 2.1. A 6-cycle system of order n is a decomposition of the complete
graph, K, into a collection of edge-disjoint 6-cycles.

We use (v1,v2,vs,v4,vs,vs) torepresent the 6-cycle containing edges vy vz,
V2v3,...,U5V6,Vs V1.

Definition 2.2. A 6-cycle system is said to be 2-perfect if the set of 3-cycles formed
by taking edges between vertices which are distance two apart in the 6-cycles is
also an edge-disjoint decomposition of K.

So if (vi,v2,vs,v4,vs5,v6) is a 6-Cycle of the system then (v;,vs,vs) and
(v2,v4,v6) are in the set of 3-cycles formed by taking edges between points dis-
tance two apart in the 6-cycles. If this distance-2 graph is indeed a partition of the
edges of K, then it is a Steiner triple system of order n (Lindner [5]).

It is known that necessary and sufficient conditions for the existence of a 2-
perfect 6-cycle system of order nare thatn = 1 or9 mod 12and n > 9, [5].
Hence the smallest possible order of such a system is 13. The existence of a 2-
perfect 6-cycle system of order 13 is shown by example in [4]. Here we concen-
trate on this particular 2-perfect 6-cycle system which we shall denote by Cs.

Being 2-perfect is a necessary and sufficient condition on a 6-cycle system in
order that a quasigroup may be defined from it in the following manner [5]. Define
the binary operation o on the vertex set V of K, by:

i) (MveV)(vov=yv);

(ii) (Vu,v€V,u #v)(vou=zanduov = w) ifandonlyif (u,v,w,s,t,z2)

is a 6-cycle of the system, for some s and ¢.
Such a quasigroup satisfies the laws:
i) (Ve V)(zoz=12);

(i) (Vz,y € V)((zoy)oy=1);

(iii) (Vz,y € V)((zoy) o(yol[zoyl) = zo(yox)); and the quasi-identity
(iv) (Vz,y € V)((zoy=yoz) = (z=y)) (antisymmetry).
Moreover, any quasigroup satisfying these conditions yields a 2-perfect 6-cycle
system (Lindner [5]). We shall refer to the laws (i), (ii), and (iii) as the standard
laws.

We also need a few definitions from the theory of universal algebra.
Definition 2.3. An algebra is simple if it has no proper non-trivial homomorphic
image, (equivalently, no non-trivial congruences).

Definition 2.4. A variety of algebras is said to be congruence permutable if all
algebras in the variety have permutable congruences.

Definition 2.5. An algebra is said to be para-primal if it is finite, generates a
congruence permutable variety and is such that each of its non-trivial subalgebras
is simple.

The quasigroup arising from the system Cj3 will be denoted by Cu.
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3. The simplicity of Cis

In this section we prove the simplicity of the quasigroup Cis using the technique
described below. This technique depends on the facts that if one has a proper ho-
momorphic image of any algebra, then there must be two distinct elements in the
original algebra whose homomorphic images are equal, and that any homomor-
phic image must obey the laws that hold in the original quasigroup (although not
necessarily, of course, the antisymmetry condition). So let us consider a 6-cycle
in Cys.

Lemma 3.1. Ifany two of the elements in the set {z,y,zoy,yo(zoy),zo(yo
x),y oz}, other than the pairs {z,yo(zoy)},{y,z0(yoz)} and{zoy,yoz}
(that is, the diametrically opposite pairs), are equaled, then all elements in the set
become equal.

Proof: The result follows from the fact that z o z = z is a standard law.

(1) fz=ythenzoy=zo0zx=1z,y0(z0y)=z0(20x) =202 =3,6€lC.

(2) Ifz=zoy,thenz oz = z oy, SO, since we have a quasigroup, z = y, and
we are back in case (1).

(3) If z = y oz, then, as above, we have £ = y.

(4) fz=z0(yox),thenzoz=xz0(yox)soz=yozand weare back in
case (3).

Since any adjacent vertices can play the roles of x and y, this covers all possible
cases. |

The significance of the above result is two-fold:

(1) Ifitcan be shown that equating any arbitrary pair of diametrically opposite
vertices causes the whole quasigroup to collapse, then it has no proper non-
trivial homomorphic images.

(2) If, in the course of our calculation, we have equality of two elements in a
hexagon which are not diametrically opposite, then we know immediately
that the whole hexagon collapses.

In the example given in [4] of a 2-perfect 6-cycle system of order 13, K3
has vertex set Zy3 and the collection of 6-cycles is defined as follows: Ci3 =
{(0,5,2,8,7,9) +1i | 0 < i < 12} where (v;,vz,v3,v4,vs,06) + § =
{(v1 +1,v2 +1,...,v6 + 1) with each component reduced modulo 13.

Consider this system. From the way in which the cycles are generated, it is
clear that it is sufficient to check the three pairs {0, 8}, {5,7} and {2,9} from
the first cycle, (0,5,2,8,7,9), to determine whether or not it is simple.

{0,8}: These points are not diametrically opposite in the cycles

(8,0,10,3,2,4) and  (6,11,8,1,0,2)
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so these both collapse, forcing the collapse of the first cycle as well. We
now have equality of all elements except 12, but any cycle containing 12,
such as (3,8, 5, 11,10, 12), will collapse as well.

{5,7}: These points are not diametrically opposite in the cycles

(11,3,0,6,5,7) and (5,10,7,0,12,1)

so these both collapse, forcing the collapse of the first cycle as well. We now
have equality of all elements except 4, but any cycle containing 4, such as
(2,7,4,10,9,11), will collapse as well.

{2,9}: These points are not diametrically opposite in the cycles

(2,7,4,10,9,11) and  (7,12,9,2,1,3)

so these both collapse, forcing the collapse of the first cycle as well. We
now have equality of all elements except 6, but again any cycle containing
6,suchas (6,11,8,1,0,2), will collapse as well.

Since 613 has no non-trivial homomorphic images, all quasigroups in the vari-
ety generated by Cy3 must be antisymmetric, and so must satisfy laws forcing an-
tisymmetry, although not necessarily finitely many. This is also true of the quasi-
groups arising from many other 2-perfect 6-cycle systems including C,;, Cas and
Cs7 of [4].

4. The existence of a finite basis

In this section we show that, at least in the case of i3 , there must be a finite set of
laws implying antisymmetry, since the variety generated by Cj3 has a finite basis
for its laws.

Lemma 4.1. The variely generated by the quasigroup arising from a 2-perfect
6-cycle system has permutable congruences.

Proof: It is known ([7]) that the existence of a Mal’cev polynomial p( z, y, z) with
the properties:

1) p(z,%,2) =z
@ p(z,2,2) ==z
implies that congruences permute.

In the quasigroups arising from 2-perfect 6-cycle systems the Mal’cev polyno-
mial can be taken to be p( z, y, 2) = y o [ 2\z] where z\z is the element such that
z o [2\z] = z. From the definition, p(z, 2,2) = 2 o [2\z] = z. So it remains
to show that p(z,z,2) = z o [2\z] = 2. Let z\z = a; then z 0 g = 7 and s0
zoa=[zo0a] oa= zby standard law (ii) as required. |
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Theorem 4.2. The variely generated by Cus is finitely based.

Proof: MacKenzie {6] proves that a congruence permutable variety generated by
a finite set of para-primal algebras has a finite basis.

Here Cy3 is a finite algebra which is para-primal since it has no proper non-
trivial subalgebras, so its variety satisfies MacKenzie’s conditions and is finitely
based. |

This is also true of the varieties generated by the quasigroups arising from C,;,
Cys and Cs7 of [4].

5. The search for a law implying antisymmetry

The variety defined by the two-variable laws of any variety is also the variety
of all algebras whose two-generator subalgebras belong to the original variety
(see Neumann [5, p. 21]). Since a quasigroup, all of whose two-generator sub-
quasigroups arise from 2-perfect 6-cycle systems, clearly itself arises from such
a system (since the defining conditions are all two-variable), if there are laws in
a quasigroup arising from a 2-perfect 6-cycle system which define antisymmetry,
then they must be two-variable.

Having decided that the varieties generated by the quasigroups arising from
certain 2-perfect 6-cycle systems must be finitely based, the authors began a search
for two-variable laws in these quasigroups. The method used depends upon the
fact that since each edge belongs to a unique 6-cycle, two vertices determine a
unique 6-cycle in which they are adjacent.

We start with any 6-cycle from C)3 and we label the vertices (z, y, zoy,yo[zo
yl, zo[yox], yox) as well as with the elements of Z;3 . Choose two non-adjacent
vertices in this 6-cycle. This pair is adjacent in a unique 6-cycle which ‘overlaps’
the original 6-cycle.

ly.(x.y)l.y

y 8
10 2 7\ y-(ly-(xy)Ly)
12
Xy

4 5 9 .[x.y)-0.Ly-(x-y)))
x@yx) 1\

y-(x.y)
y.ly-(x-y)l
Example 5.1

X

y.x 6

Here § and 2 are the non-adjacent pair chosen from the first 6-cycle, so the
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‘overlapping’ 6-cycle is (2,5,0,9,7,8). The labels in terms of z and y are
derived in the obvious way from the labels on 2 and 5.

Since a 6-cycle system on 13 points has so few vertices it does not take many
6-cycles to obtain a repeated numerical label. Although one might hope that such
a repetition would yield a law, this does not work in general.

[y-(x.y)Ly
x_ Y
5 2 y-{ly-(xy)ly)
y.x \0
9 7 .
xpx) 4 v-LeyD-(y.ly-(x.y)))
y-(x.y)
yly-(x.y)]

Example 5.2

Since the label 9 occurs in both 6-cycles one might hypothesise the law z o (yo
z) = yo([yo(zoy)] oy) but from Example 5.1 it can be seen that this equation
is not always satisfied.

The repetition of an entire 6-cycle is more promising; however, even this does
not always produce a law.

The cyclic nature of the system(s) under consideration suggests the use of a
pattern in the selection of the ‘overlapping’ 6-cycle to be chosen at each stage.
This often produces results.

...efc

Example 53

This pattern produces Law (a) below. In Cj3 the first 6-cycle always repeats on
the tenth 6-cycle. (This pattern also produces laws in other systems).
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The purpose of seeking these laws was to obtain laws implying antisymmetry,
S0 we want the substitution z o y = y o z to reduce the law to z = y. Consider the
following diagram.

[x.(y-X)1.(x.y)
x.(y.x)

(x.y)-[x.(y.x)] ;
4
[x.(y-X)L[(x.y)-(x.[y.x])]

(x.y)-L(x.Ly-x])-(x.y)]

When zoy = yox the vertex of the ‘overlapping’ 6-cycle which has as its label
[zo(yoz)]o[(zoy)o(xolyox])] isalsoequal to y o z. This can be verified
as follows:

Letzoy=yoz=z;then

[zo(yoz)lol(zoy)o(zo[yoz])]l=[z0z]o[z0(z02)]
'=zo[zox] (bystandard law (iii))
=zo[(yox)ox]
=zoy (by standard law (ii)) .

The dotted lines in the diagram indicate which words in z and y become equal
when the substitution z o y = y o x is made.

The ‘overlapping’ of 6-cycles, in a way that makes it possible to equate diamet-
rically opposite vertices in successive 6-cycles when z oy = y o z, produces laws
which can be simplified when the substitution zoy = yox is made. Unfortunately,
in the majority of cases, being able to simplify the law when z o y = y o z does
not reduce it to z = y, but to z = x or a similar tautology.

Example 5.4 produces Law (b) below and reduces to z = x whenzoy = yoz.

The search conducted using this method was fruitful, and many two-variable
laws have been found for the quasigroup Ci3 other than the standard laws men-
tioned earlier. The following laws were amongst those we found:

Law (a):

y = [[6(pb)1([bp) [(b(pb)1)1[[b(pb)]1(bp)],
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where
b= [a(na)][(an)(alnal)]

p=[ae(na)]lan]

a = [2(m2)][(zm)(z[mz])]
n=[z(mz)][zm]
z=[z(yz)1[(zy)(z[yz])]
m = [z(yz)][zy].

9
12
A7 10
3/ , ...etc
4 6 /
12)% & \9/
- T 12
1
1 4 5
0
Example 5.4
Law (b):
z=g(g9llg(fo)lg)),
where

f=dlld([d(cd)]1d)]d],

g = d[d({d(cd)]d)],

c = b{[b([b(ab)]1b)]1b],

d = b[b([b(ab)1b}],
a=v[[v([v(zv)]v)]v],
b=vlv([v(zv)]v)],

z = w([w([w(vw)]w)]w],
v = wlw([w(vw)]w)],

w = z[z[(zy)z]],

u = z[(z[(zy) z])z].
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Law (c):

zy = {[(y2) (z9) 1 (zy) (y2) I H{[(z) (y2)1[(y=z)(zy)]}.
6. The antisymmetry law

Theorem 6.1. A law which implies antisymmelry in the variety generated by 513
is:

c=d([[y(zy)]ald),

where
d=[{y(zy)1al[b([y(zy)1b)],

c=[b([y(zy) 101 [y(zy)]al,
b= [y(zy 1 (yz) [y(y2)]1],
a = [(yz) [y(yx)11[y(zy)].

Proof: In order to show that this law implies antisymmetry, we make the substi-
tution z o y = y o z. Then:
a=[(zoy)o(yo[zoyl)]olyo(zoy)]
=zoy (by standard law (ii));
b=[yo(zoy)lo[(zoy)o(yolzoyl)]
=[yo(zoy)]lo[zo(yoz)]
=yox (by standard laws (ii) and (iii));
c=[(yoz)o(lyo(zoy)lolyqzlol(yolzoyl)o(zoy)l
=yozx (by standard law (ii));
d=[(yolzoyl)o(zxoy)lol(yoz)o([yo(zoy)lolyoz])]
=yol(yoz)oy]
=yorx.

So the right hand side is

[yozlo[([yo(zoy)lo[zoyl)o(yoz)]
=[yoz]o[yo(yox)]
=zo(yox).
Hence the law reduces to z oy = z o (y o ), but since z o z = z we have
zoy=zo(yox) implies (zoy)o(zoy) =zo(zoy) andso zoy=r.

Hencezoy=zozandthusy = z. [ |

We have also found laws for the quasigroups arising from C»s and Cs7 of [4],
and from the other cyclic 2-perfect 6-cycle system of order 13 (see Gower [1]),
but as yet we do not have laws implying antisymmeiry for these.
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