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Abstract

Let 4.(G) denote the connected domination number of the graph
G. A graph G is said to be connected domination edge critical, or
simply ve-critical, if 7.(G + €) < 7.(G) for each edge e € E(G).
We answer a question posed by Zhao and Cao concerning ~y.-critical
graphs with maximum diameter.
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1 Introduction

A set S C V(G) of a graph G is a dominating set if every vertex not
in S is adjacent to a vertex in S. The domination number ¥(G) is the
minimum cardinality of all dominating sets. A connected dominating set S
in a graph G is a subset S of V(G) such that the induced subgraph (S} is
connected and S dominates G. Every connected graph G has a connected
dominating set, since S = V(G) is such a set. The connected domination
number 7.(G) is the minimum cardinality of all connected dominating sets
of G. A dominating set of G of cardinality ¥(G) is called a v(G)-set, while
a connected dominating set of G of cardinality v.(G) is called a v.(G)-set.

The open neighborhood of v is the set N(v) = {u € V|uv € E}. For
a set S C V, its open neighborhood is the set N(S) = U,esN(v). The
domination-related concepts not defined here can be found in [?].

JCMCC 100 (2017), pp. 3-8



A graph G is connected domination edge critical, or just v-critical, if
Ye(G + €) < 7(G) for any edge e € E(G) # 0. For non-adjacent vertices u
and v in G, if S is a connected dominating set of G + uv, we will denote S
by Suv.

It is also shown in [?], and we restate it here for emphasis, that the
addition of an edge to a graph can change the connected domination number
by at most two.

Theorem 1 (?] For any edge e € E(G),
1e(G) — 2 < 7(G + €) £ 1(G).

Chen, Sun, and Ma (?] characterized the v.-critical graphs G with v.(G) =
2. They showed that no tree with order n > 3 is y.-critical. We give the
following stronger result for y.-critical graphs G with v.(G) > 3.

Theorem 2 If G is a 7y.-critical graph and v.(G) > 3, then G has at most
one endvertex.

Proof. Suppose G is a ~.-critical graph with two endvertices u and v. If u
and v have a common support vertex w, then it is easily seen that G is not
7c-critical, by considering G + uv, where v.(G) = 7.(G + uv). Let u’ and
v’ be the support vertices of u and v, respectively. Note that v’ and ' is
in every v.-set S of G, and there is a v’ — v’ path in G. Consider S, and
assume that u,v € S,,. Assume, without loss of generality, that v’ € S,,.
Suppose that v’ € Syy. Since |Suy| < S, we have |S,, \ {u,v}| < |S| -3,
and §' = Syy \ {1,v} dominates G but is not connected in G, otherwise
¥e(G) < |S|. Note that since S’ is not connected, it has exactly two com-
ponents Cy and Cy, with v’ € C) and v € Cp. Since V(G) \ {u,v} is
connected, there is a vertex z € N(C}), and a vertex y € N(Cj) such that
zy € E(G). Then S’ U {z,y} is connected and dominates G, and we have
|S” U {z,y}| = |Suu| < |S], a contradiction. Hence v’ ¢ S,,, and v € S,
only to dominate v'. Note that N(v')\{v} # 0, and (N(v")\ {v})NSy, = 0.
Let z € N(v'), and = # v. Then Sy, U{z}\ {v} is connected and dominates
G. But Sy, U {z} \ {v}| = |Sus| < |S]|, a contradiction. Hence, not both
of u and v are in S,,. Therefore assume, without loss of generality, that
u € Syy and v ¢ Sy,. Then u € S, dominates v, and v’ ¢ S, and there
exists € N(v') such that = € S,,. Then S, \ {u} U {z} is connected and
dominates G. But |S,, \ {u} U {z}| = |Sus| < |5|, a contradiction. O



2 ~.-critical graphs with maximum diameter
Zhao and Cao [?] gave the following diameter result.

Theorem 3 [?] If G is a kc-critical graph, then the diameter of G is at
most k and this bound is sharp.

As an example, they construct a class of kc-critical graphs Gk-2 with
diameter k as follows. V(Gx_2) = {ai,bj,c; :0<i<k—-2,1<j<2}and
E(Gi—2) = {@itit1,ar—2b1,ak—2c1,b1b2,b1c1,bacz,c102 : 0 < ¢ < k — 3}
(See Figure 77.)

They pose the following question: Does every kc-critical graph with di-
ameter k have the graph in Figure ?? as an induced subgraph?

We answer their question by providing a class of graphs with the neces-
sary properties that does not contain the graph in Figure ?? as an induced
subgraph. We construct a k-critical graph Gy with diam(Gx) = k. Let
V(G) = {vi,,y| 0 < i < k}, and E(Gk) = {vivis1, TVk-3, TVk—2, TY, YVk|
0< i <k-—1}. (See Figure ?7.

Proposition 4 The graph Gy, is k.-critical with diameter k, for k > 4.

Proof. Since v; € D, 1 < i < k — 3, for every connected dominating set
D, and at least three of the remaining vertices, vk—_2, Vk—1, U, Z, and y,
are required to form a connected dominating set, 7.(Gx) > (k—3)+3 =k.
The set C = {v;| 1 < i < k} is a connected dominating set of Gx. Thus,
Ye(Gk) < k, and so v.(Gk) = k.

‘We now show that Gy, is k.-critical. For non-adjacent vertices u and v, let
S.. be a connected dominating set of Gx+uv. Consider S,,y,, for 2 <i < k.
Here Sy,v; = {v2,...,vk} is a connected dominating set with |Sy.v,| < k.
For Sy,z, and Syoy, {v2,...,Vk—3,%,¥, Uk} is a connected dominating set
with cardinality less than k. Now consider S,,,,, with 1 < i < k -2,
3<j<k,andi<j—2 Here, Spo; ={u|1 <I<kl#j-1}isa
connected dominating set with |S,,,,| < k. By the symmetry of Gk, relabel
z and y as vg—o and vk_;, respectively, and then use the same argument
as above to show |S,z| < k and |Sy,y| < k, whenever 1 <7 < k—3.
For Sy, _,y, {v:] 1 £ i < k—2}U {y} is a connected dominating set with
cardinality less than k. For Syy,_,, {vi] 1 < i < k-3}U{z,vk-1} isa
connected dominating set of cardinality less than k. Finally, for S,,_,y,
{v:] 1 <i < k—1} is a connected dominating set of cardinality less than k.



Hence, Gy, is k-critical, and by our construction, diam(Gy) = k. O
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Figure 1: kc-critical graph Gj_, with diameter k
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Figure 2: k.-critical graph G with diameter k

Theorem 5 If G is a k.-critical graph with diameter k > 4 and minimum
order, then G is the graph in Figure ?? or the graph in Figure 77.

Proof. Let G be a k-critical graph with diameter k¥ > 4 and with minimum
order. Suppose that |G| < k +2. Let P, = vg,vy,...,v be a diametrical
path of G. If G = P, then v.(G) < k, a contradiction, hence Gl = k+2.
Suppose then that |G| = k + 2, and let y be the additional vertex not on
Pg. If y is adjacent to an interior vertex of Py, then v.(G) < k. Assume,
without loss of generality, that y is adjacent to vk. Since diam(G) = k > 4,
y is not adjacent to vg. But then G = Py, and hence not k.-critical.
Thus |G| = k + 3.

Assume that |G| = k + 3, with two additional vertices z and y not on
Py. If both z and y are adjacent to interior vertices of Py, then 1(G) < k,
a contradiction. Assume, without loss of generality, that y is not adjacent



to any interior vertex of P,. We consider two cases. Either y is adjacent to
one of vy or vk, or y is not adjacent to any vertex of Py.

Suppose first the latter case, that y is not adjacent to any vertex of Pk.
Then y is adjacent to . Because G has at most one endvertex, both v
and vy have degree at least 2. As a consequence, we must have z adjacent
to both vy and v, contradicting our assumption that dist(vo,vi) = k = 4.

Assume then, without loss of generality, that y is adjacent to vk. Since
y is not adjacent to any other vertex of P and since dist(vo,y) < k, ¥
is adjacent to z. Thus, there exists a path, containing z, from v to y of
length at most k. Hence, z is adjacent to some vertex of Py. If z is adjacent
to v; on P, ¢ < k — 4, then dist(vo, vk) < k, a contradiction. This implies
that z is adjacent to some of the vertices v; on Py, where k —3 < j < k.

Suppose z is adjacent to vg. If = is not adjacent to an interior ver-
tex of Py, then diam(G) > k, a contradiction. If z is adjacent to vk_3,
then dist(vo,vk) < k, also a contradiction. If z is adjacent to vk—2, then
{v1,...,vk—2,2} is a connected dominating set with cardinality less than k,
a contradiction. Suppose that z is adjacent to vx_; and consider G + voy,
which requires at least k connected vertices to be dominated. Hence, we
have 7.(G + voy) = 7(G), which contradicts the assumption that G is .-
critical. Consequently, = is not adjacent to v,. Also, z is not adjacent to
all three vertices vx_3, vg—2, and vg_j, since then {vi,...,vk-3,9,2} is a
connected dominating set of cardinality less than k.

Now consider the cases where z is adjacent to exactly one of the vertices
Ug_3, Uk_2, OT Ux_1. Assume z is adjacent to vk—1. Then 4.(G + voy) 2 k,
implying that G is not ~y.-critical. If = is adjacent to vx_2, then v.(G +
zvg—1) = k (See Figure 77?), implying that G is not ~y-critical. If z is
adjacent to vk—3, then 7.(G + zvk_2) = k (See Figure ??), implying that
G is not ~v.-critical.

It follows that z is adjacent to exactly two of the vertices vi..3, vi—2,
and vx_s. If z is adjacent to vx_3 and vk_;, then {vy,...,vk-3,2,y} is a
connected dominating set of cardinality less than k. If x is adjacent to vk_3
and vi_z, then G is the graph in Figure ??. If z is adjacent to vx_z and
Vk—1, then G is the graph in Figure 77. O



