A note on connected domination critical graphs

J. David Taylor
Lucas C. van der Merwe
Department of Mathematics,
University of Tennessee at Chattanooga
Chattanooga, TN 37403 USA

Abstract

Let $\gamma_c(G)$ denote the connected domination number of the graph G. A graph G is said to be connected domination edge critical, or simply γ_c -critical, if $\gamma_c(G+e)<\gamma_c(G)$ for each edge $e\in E(\overline{G})$. We answer a question posed by Zhao and Cao concerning γ_c -critical graphs with maximum diameter.

Keywords: Diameter, connected domination, edge addition, edge critical AMS subject classification: 05C35, 05C69, 05C75

1 Introduction

A set $S \subseteq V(G)$ of a graph G is a dominating set if every vertex not in S is adjacent to a vertex in S. The domination number $\gamma(G)$ is the minimum cardinality of all dominating sets. A connected dominating set S in a graph G is a subset S of V(G) such that the induced subgraph $\langle S \rangle$ is connected and S dominates G. Every connected graph G has a connected dominating set, since S = V(G) is such a set. The connected domination number $\gamma_c(G)$ is the minimum cardinality of all connected dominating sets of G. A dominating set of G of cardinality $\gamma(G)$ is called a $\gamma(G)$ -set, while a connected dominating set of G of cardinality $\gamma_c(G)$ is called a $\gamma_c(G)$ -set.

The open neighborhood of v is the set $N(v) = \{u \in V \mid uv \in E\}$. For a set $S \subseteq V$, its open neighborhood is the set $N(S) = \bigcup_{v \in S} N(v)$. The domination-related concepts not defined here can be found in [?].

A graph G is connected domination edge critical, or just γ_c -critical, if $\gamma_c(G+e) < \gamma_c(G)$ for any edge $e \in E(\overline{G}) \neq \emptyset$. For non-adjacent vertices u and v in G, if S is a connected dominating set of G + uv, we will denote S by S_{uv} .

It is also shown in [?], and we restate it here for emphasis, that the addition of an edge to a graph can change the connected domination number by at most two.

Theorem 1 [?] For any edge $e \in E(\overline{G})$,

$$\gamma_c(G) - 2 \le \gamma_c(G + e) \le \gamma_c(G)$$
.

Chen, Sun, and Ma [?] characterized the γ_c -critical graphs G with $\gamma_c(G) = 2$. They showed that no tree with order $n \geq 3$ is γ_c -critical. We give the following stronger result for γ_c -critical graphs G with $\gamma_c(G) \geq 3$.

Theorem 2 If G is a γ_c -critical graph and $\gamma_c(G) \geq 3$, then G has at most one endvertex.

Proof. Suppose G is a γ_c -critical graph with two endvertices u and v. If u and v have a common support vertex w, then it is easily seen that G is not γ_c -critical, by considering G + uv, where $\gamma_c(G) = \gamma_c(G + uv)$. Let u' and v' be the support vertices of u and v, respectively. Note that u' and v' is in every γ_c -set S of G, and there is a u'-v' path in G. Consider S_{uv} and assume that $u, v \in S_{uv}$. Assume, without loss of generality, that $u' \in S_{uv}$. Suppose that $v' \in S_{uv}$. Since $|S_{uv}| < S$, we have $|S_{uv} \setminus \{u, v\}| \le |S| - 3$, and $S' = S_{uv} \setminus \{u, v\}$ dominates G but is not connected in G, otherwise $\gamma_c(G) < |S|$. Note that since S' is not connected, it has exactly two components C_1 and C_2 , with $u' \in C_1$ and $v' \in C_2$. Since $V(G) \setminus \{u,v\}$ is connected, there is a vertex $x \in N(C_1)$, and a vertex $y \in N(C_2)$ such that $xy \in E(G)$. Then $S' \cup \{x, y\}$ is connected and dominates G, and we have $|S' \cup \{x,y\}| = |S_{uv}| < |S|$, a contradiction. Hence $v' \notin S_{uv}$, and $v \in S_{uv}$ only to dominate v'. Note that $N(v')\setminus\{v\}\neq\emptyset$, and $(N(v')\setminus\{v\})\cap S_{uv}=\emptyset$. Let $x \in N(v')$, and $x \neq v$. Then $S_{uv} \cup \{x\} \setminus \{v\}$ is connected and dominates G. But $|S_{uv} \cup \{x\} \setminus \{v\}| = |S_{uv}| < |S|$, a contradiction. Hence, not both of u and v are in S_{uv} . Therefore assume, without loss of generality, that $u \in S_{uv}$ and $v \notin S_{uv}$. Then $u \in S_{uv}$ dominates v, and $v' \notin S_{uv}$, and there exists $x \in N(v')$ such that $x \in S_{uv}$. Then $S_{uv} \setminus \{u\} \cup \{x\}$ is connected and dominates G. But $|S_{uv} \setminus \{u\} \cup \{x\}| = |S_{uv}| < |S|$, a contradiction. \square

2 γ_c -critical graphs with maximum diameter

Zhao and Cao [?] gave the following diameter result.

Theorem 3 [?] If G is a k_c -critical graph, then the diameter of G is at most k and this bound is sharp.

As an example, they construct a class of k_c -critical graphs G_{k-2} with diameter k as follows. $V(G_{k-2}) = \{a_i, b_j, c_j : 0 \le i \le k-2, 1 \le j \le 2\}$ and $E(G_{k-2}) = \{a_i a_{i+1}, a_{k-2} b_1, a_{k-2} c_1, b_1 b_2, b_1 c_1, b_2 c_2, c_1 c_2 : 0 \le i \le k-3\}$. (See Figure ??.)

They pose the following question: Does every k_c -critical graph with diameter k have the graph in Figure ?? as an induced subgraph?

We answer their question by providing a class of graphs with the necessary properties that does not contain the graph in Figure ?? as an induced subgraph. We construct a k_c -critical graph G_k with $diam(G_k) = k$. Let $V(G_k) = \{v_i, x, y | 0 \le i \le k\}$, and $E(G_k) = \{v_i v_{i+1}, x v_{k-3}, x v_{k-2}, x y, y v_k | 0 \le i \le k-1\}$. (See Figure ??.)

Proposition 4 The graph G_k is k_c -critical with diameter k, for $k \geq 4$.

Proof. Since $v_i \in D$, $1 \le i \le k-3$, for every connected dominating set D, and at least three of the remaining vertices, v_{k-2} , v_{k-1} , v_k , x, and y, are required to form a connected dominating set, $\gamma_c(G_k) \ge (k-3)+3=k$. The set $C = \{v_i | 1 \le i \le k\}$ is a connected dominating set of G_k . Thus, $\gamma_c(G_k) \le k$, and so $\gamma_c(G_k) = k$.

We now show that G_k is k_c -critical. For non-adjacent vertices u and v, let S_{uv} be a connected dominating set of G_k+uv . Consider $S_{v_0v_i}$, for $2 \le i \le k$. Here $S_{v_0v_i} = \{v_2, \ldots, v_k\}$ is a connected dominating set with $|S_{v_0v_i}| < k$. For S_{v_0x} , and S_{v_0y} , $\{v_2, \ldots, v_{k-3}, x, y, v_k\}$ is a connected dominating set with cardinality less than k. Now consider $S_{v_iv_j}$, with $1 \le i \le k-2$, $3 \le j \le k$, and $i \le j-2$. Here, $S_{v_iv_j} = \{v_l | 1 \le l \le k, l \ne j-1\}$ is a connected dominating set with $|S_{v_iv_j}| < k$. By the symmetry of G_k , relabel x and y as v_{k-2} and v_{k-1} , respectively, and then use the same argument as above to show $|S_{v_ix}| < k$ and $|S_{v_iy}| < k$, whenever $1 \le i \le k-3$. For $S_{v_{k-2}y}$, $\{v_i | 1 \le i \le k-2\} \cup \{y\}$ is a connected dominating set with cardinality less than k. For $S_{xv_{k-1}}$, $\{v_i | 1 \le i \le k-3\} \cup \{x, v_{k-1}\}$ is a connected dominating set of cardinality less than k. Finally, for $S_{v_{k-1}y}$, $\{v_i | 1 \le i \le k-1\}$ is a connected dominating set of cardinality less than k.

Hence, G_k is k_c -critical, and by our construction, $diam(G_k) = k$. \square

Figure 1: k_c -critical graph G_{k-2} with diameter k

Figure 2: k_c -critical graph G_k with diameter k

Theorem 5 If G is a k_c -critical graph with diameter $k \geq 4$ and minimum order, then G is the graph in Figure ?? or the graph in Figure ??.

Proof. Let G be a k_c -critical graph with diameter $k \geq 4$ and with minimum order. Suppose that |G| < k+2. Let $P_k = v_0, v_1, \ldots, v_k$ be a diametrical path of G. If $G = P_k$, then $\gamma_c(G) < k$, a contradiction, hence $|G| \geq k+2$. Suppose then that |G| = k+2, and let y be the additional vertex not on P_k . If y is adjacent to an interior vertex of P_k , then $\gamma_c(G) < k$. Assume, without loss of generality, that y is adjacent to v_k . Since diam $(G) = k \geq 4$, y is not adjacent to v_0 . But then $G = P_{k+1}$, and hence not k_c -critical. Thus $|G| \geq k+3$.

Assume that |G| = k + 3, with two additional vertices x and y not on P_k . If both x and y are adjacent to interior vertices of P_k , then $\gamma_c(G) < k$, a contradiction. Assume, without loss of generality, that y is not adjacent

to any interior vertex of P_k . We consider two cases. Either y is adjacent to one of v_0 or v_k , or y is not adjacent to any vertex of P_k .

Suppose first the latter case, that y is not adjacent to any vertex of P_k . Then y is adjacent to x. Because G has at most one endvertex, both v_0 and v_k have degree at least 2. As a consequence, we must have x adjacent to both v_0 and v_k , contradicting our assumption that $\operatorname{dist}(v_0, v_k) = k \geq 4$.

Assume then, without loss of generality, that y is adjacent to v_k . Since y is not adjacent to any other vertex of P_k and since $\operatorname{dist}(v_0, y) \leq k$, y is adjacent to x. Thus, there exists a path, containing x, from v_0 to y of length at most k. Hence, x is adjacent to some vertex of P_k . If x is adjacent to v_i on P_k , $i \leq k-4$, then $\operatorname{dist}(v_0, v_k) < k$, a contradiction. This implies that x is adjacent to some of the vertices v_j on P_k , where $k-3 \leq j \leq k$.

Suppose x is adjacent to v_k . If x is not adjacent to an interior vertex of P_k , then $\operatorname{diam}(G) > k$, a contradiction. If x is adjacent to v_{k-3} , then $\operatorname{dist}(v_0, v_k) < k$, also a contradiction. If x is adjacent to v_{k-2} , then $\{v_1, \ldots, v_{k-2}, x\}$ is a connected dominating set with cardinality less than k, a contradiction. Suppose that x is adjacent to v_{k-1} and consider $G + v_0 y$, which requires at least k connected vertices to be dominated. Hence, we have $\gamma_c(G + v_0 y) = \gamma_c(G)$, which contradicts the assumption that G is γ_c -critical. Consequently, x is not adjacent to v_k . Also, x is not adjacent to all three vertices v_{k-3} , v_{k-2} , and v_{k-1} , since then $\{v_1, \ldots, v_{k-3}, y, x\}$ is a connected dominating set of cardinality less than k.

Now consider the cases where x is adjacent to exactly one of the vertices v_{k-3}, v_{k-2} , or v_{k-1} . Assume x is adjacent to v_{k-1} . Then $\gamma_c(G+v_0y) \geq k$, implying that G is not γ_c -critical. If x is adjacent to v_{k-2} , then $\gamma_c(G+xv_{k-1})=k$ (See Figure ??), implying that G is not γ_c -critical. If x is adjacent to v_{k-3} , then $\gamma_c(G+xv_{k-2})=k$ (See Figure ??), implying that G is not γ_c -critical.

It follows that x is adjacent to exactly two of the vertices v_{k-3} , v_{k-2} , and v_{k-2} . If x is adjacent to v_{k-3} and v_{k-1} , then $\{v_1, \ldots, v_{k-3}, x, y\}$ is a connected dominating set of cardinality less than k. If x is adjacent to v_{k-3} and v_{k-2} , then G is the graph in Figure ??. If x is adjacent to v_{k-2} and v_{k-1} , then G is the graph in Figure ??. \Box