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Abstract

We define a new fairness notion on edge-colorings, requiring that
the number of vertices in the subgraphs induced by the edges of each
color are within one of each other. Given a (not necessarily proper)
k-edge-coloring of a graph G, for each color ¢ € Z; let G[i] denote
the (not necessarily spanning) subgraph of G induced by the edges
colored i. Let 1;(G) = |V(G[i])|. Formally, a k-edge-coloring of a
graph G is said to be vertez-equalized if for each pair of colors i,j €
Zk, |vi(G) — vi(G)| < 1. In this paper a characterization is found
for connected graphs that have vertex-equalized k-edge-colorings for
each k € {2,3} (see Corollary 4.1 and Corollary 4.2).

1 Introduction

Fairness notions in edge-colorings of graphs have been extensively studied.
In what follows, a graph G is called even if all vertices of G have even
degree. Given a (not necessarily proper) k-edge-coloring of a graph G, for
each color i € Z;, let G(i) denote the spanning subgraph of G with edge set
equal to the edges colored i, and let G[i] be the (not necessarily spanning)
subgraph induced by the edges colored i. Then a k-edge-coloring of G is
called an even k-edge-coloring if for each color i € Z, G(%) is an even graph.
A k-edge-coloring of G is said to be eguitable if for each vertex v € V(G)
and for each pair of colors 4,j € Zg, |degg(;)(v) — dega)(v)| €{ 0,1}
Moreover, a k-edge-coloring of G is said to be evenly-equitable if
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(i) for each color i € Zy, G(i) is an even graph, and

(i) for each vertex v € V(G) and for each pair of colors 4,5 € Zi,
ldega ) (v) — deggs)(v)| €{ 0,2}

A k-edge-coloring of G is said to be balanced if the edges between each pair
of vertices are shared as fairly as possible among the k colors. A k-edge-
coloring of G is called equalized if G contains ||E(G)|/k] or [|E(G)|/k]
edges of each of the k colors.

In 1970’s de Werra studied these special types of edge-colorings for bi-
partite graphs. Due to his work in [1, 2, 3, 4] it is known that for each
k € N every bipartite graph has a k-edge-coloring that is balanced, equi-
table and equalized at the same time. Several other results exist for more
general graphs. In particular, Hilton proved in [6] that each even graph
has an evenly-equitable k-edge-coloring for each k € N, thereby completely
settling this problem. The existence of equitable k-edge-colorings is much
more problematic, and very unlikely to be completely solved. For example,
settling the existence of equitable A-edge-colorings is equivalent to classify-
ing the Class 1 graphs (see [9, 10] for example). One general result on this
topic was found by Hilton and de Werra [8] who proved that if k > 2 and G
is a simple graph such that no vertex in G has degree equal to a multiple of
k, then G has an equitable k-edge-coloring. More recently, Zhang and Liu
[11] extended this result by proving that for each k > 2, if the subgraph
of G induced by the vertices with degree divisible by k is a forest, then G
has an equitable k-edge-coloring, thereby verifying a conjecture made by
Hilton in [7].

In this paper we consider a new fairness notion, requiring that the num-
ber of vertices in the subgraphs induced by the edges of each color are
within one of each other. Given a k-edge-coloring of a graph G, for each
color i € Z; let G[i] denote the (not necessarily spanning) subgraph of G
induced by the edges colored i. Let v;(G) = |V(G]i])|. Formally, a k-edge-
coloring of a graph G is said to be vertez-equalized if for each pair of colors
t,J € Zg, |vi(G) — v;(G)| < 1. In this paper a characterization is found
for connected graphs that have vertex-equalized k-edge-colorings for each
k € {2,3} (see Theorems 2 and 3).

If H is edge-colored with colors in Z; then define m(H) to be a color
¢ € Zy for which v.(H) < vy (H) for all ¢’ € Zi. Throughout the paper S;
denotes the star with i edges and i + 1 vertices (so S; is the same as the
complete bipartite graph K ;).

The following lemma will be very useful in proving the main results.
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Lemma 1. Fach non-empty connected graph has a spanning subgraph that
is a union of vertez-disjoint non-empty stars.

Proof. Let G be a non-empty connected graph, and T' be a spanning tree
of G. Let H be formed from T by greedily removing the middle edge in any
path of length 3 until no 3-path remains. Then clearly each component is
a star and §(H) > 1 since removing a middle edge never creates a vertex
of degree 0. O

2 Vertex-equalized 2-edge-colorings

Theorem 2. Suppose G is a connected simple graph. Then G has a vertez-
equalized 2-edge-coloring if and only if G # Ka.

Proof. It is clear that K3 has no vertex-equalized 2-edge-colorings. To
prove sufficiency, assume that G # K. If G is empty, then the result
is trivial; otherwise by Lemma 1, G has a spanning subgraph H consist-
ing of vertex-disjoint non-empty stars. Form a non-decreasing ordering
(G1,G2, ...,Gs) of the components in H with respect to the number of
edges in each component. Then form an ordering (ej,e5,...,e;) of the
edges of H where if ¢ € Gy, ¢; € G; and i < j, then k<l Al
ternately color these edges with 0 and 1. Suppose that in H the num-
ber of stars with exactly one edge is even. This procedure clearly yields
a vertex-equalized 2-edge-coloring of H. If in H the number of stars
with a single edge is odd, then G; & K, its edge ¢’ is colored 0, and
vo(H) € {v1(H)+1,v(H)+2}. Also, since G # K3, s > 2 (that is, G2 ex-
ists). G is connected, so there must be an edge e # €’ incident with a vertex
in G;. Color e with 1. This gives a vertex-equalized 2-edge-coloring of H+e.
H if the number of stars in H with a single edge is even

Let Hy = A . . .
H + e if the number of stars in H with a single edge is odd.

Now the vertex-equalized 2-edge-coloring of Ho can be completed to
a vertex-equalized 2-edge-coloring of G as follows. Let E(G) \ E(Ho) =
P, e where e; = {z;,1:}. For each k where 1 < k < p, let H; =
Hi_y +ex. Then for 1 < i < p, if for some ¢ € {0,1} both z; and y;
in H;_, are incident with ¢ then color e; with ¢; otherwise color e; with
m(H;_1). This gives a vertex-equalized 2-edge-coloring of G. O
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3 Vertex-equalized 3-edge-colorings

Theorem 3. Suppose G is a connected simple graph. Then G has a vertez-
equalized 3-edge-coloring if and only if G # K», Ss.

Proof. 1t is clear that K5 and S, have no vertex-equalized 3-edge-colorings.
To prove sufficiency, assume that G # K», S,. If G is empty, then the result
is trivial; otherwise by Lemma 1, G has a spanning subgraph H consisting
of vertex-disjoint non-empty stars. We begin by coloring the edges in H
together with at most two edges in G— E(H), considering five cases in turn.
In H let a € N be the number of S;’s, and b € N be the number of Ss’s.
Let m = min{a, b}. Properly edge-color the 3m edges in m of the S;’s and
m of the S3’s with m edges of each color. For each i € Zj, color with i all
edges in |(a — m)/3] of the uncolored $;’s and all edges in [ (b —m)/3] of
the uncolored S;’s. The components that are left uncolored in H are all
Si’s with ¢ > 3, along with exactly one of the following

(i) one K3 and no Sy’s,

(ii) two K>'s and no Sy’s,
(iii) one S; and no K3's
(iv) two S2’s and no K’s, or

(v) no other components.

Let L be the subgraph of H consisting of the uncolored components.
Form a non-decreasing ordering (L, L, ..., L,) of the components in L with
respect to the number of edges in each component. Then form an ordering
(€1, €3, ..., et) of the edges of L where if e} € Ly and e; € Ly with i < j then
k<l

Suppose we are in case (i); so L; & K, its edge being e}. If s > 2 then
Ly = S; where i > 3, in which case a vertex-equalized 3-edge-coloring of
L can be produced by coloring e} with 0, e, with 1, ej with 1, e} with 2,
and for 5 < k <t coloring e}, with k (modulo 3). So now we can assume
s = 1; so in H there is no component isomorphic to S; where i > 3. If in
H there is a component isomorphic to S, then m > 1 and so H contains
3 components Ly, H' = S, and H” & K, such that currently in H’ one
edge is colored 1 and the other edge is colored 2, and in H” the only edge
is colored 0. Produce a vertex-equalized 3-edge-coloring of L by coloring
ey with 0, recoloring the edge in H” with 1, and recoloring both edges in
H' with 2. Finally suppose that in H there is no component isomorphic
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to S; where i > 2; so s = 1 and m = 0. Then since G # Kj, in H there
exist four components Ly, H', H"”, H", each isomorphic to K3, such that
currently the edge in H' is colored 0, the edge in H” is colored 1, and the
edge in H" is colored 2. Since G is connected, there are at least two edges
e, e # ¢, in G incident with a vertex in V(L UH'). Color e} with 0, e with
1, and e’ with 2. This 3-edge-coloring of L + {e, e} is vertex-equalized.

In case (ii) Ly,Ls = K, and E(L;) = {e}}, E(L2) = {e3}. Color
¢}y with 0, and e, with 1. Since G is connected, there must be an edge
e ¢ E(L;U Ly) incident with at least one vertex in Ly U L2. Color e with 2.
For 3 < k < t, color e}, with k—1 (modulo 3). (In fact, thinking recursively,
as e, ...,e} are colored in turn, the resulting partial edge-coloring of G is
vertex-equalized.) '

In case (iii) Ly = Sz, and E(L;) = {e},e3}. Color e with 0, and e
with 1. Since G is connected and G # Sz, there must be an edge e ¢ E(L,)
incident with at least one vertex in L. Color e with 2. For 3 < k < ¢, color
e, with k — 1 (modulo 3) to produce a vertex-equalized 3-edge-coloring of
Lie

In case (iv) L1, Ly = Ss, and E(L;) = {e},e5}, E(L2) = {e3,€}}. Color
¢, and e}, with 0, e} with 1, and €} with 2. For 5 < k < ¢, color €}, with
k — 1 (modulo 3).

In case (v) for 1 < k < t, color e}, with £ —1 (modulo 3).

It is important to note that in each of the above cases a vertex-equalized
3-edge-coloring of a spanning subgraph Hg of G has been found. Now
the vertex-equalized 3-edge-coloring of Hp can be completed to a vertex-
equalized 3-edge-coloring of G. Let E(G)\ E(Ho) = {e: | 1 < i < p}
where e; = {z;,y:}. For each i where 1 < i < p, let H; = H;~; + e; and
recursively (inductively) color the remaining uncolored edges to produce a
vertex-equalized 3-edge-coloring of G as follows. For 1 < i < p, assum-
ing that H;_; has a vertex-equalized 3-edge-coloring in which vo(H;-1) >
v1(H;—1) = vo(H;—)) (rename colors if necessary), one of the following
statements holds:

(1) vo(Hi-1) = v1(Hi—1) = va(Hi-1),
(ii) vo(Hi1) = vi(Hi—1) = vo(Hi1) + 1,

(lll) Vo(H,'_l) = Vl(Hi—l) +1= Vz(Hi_l) +1.

In case (i) color e; with ¢ where ¢ is any color occurring on an edge in
H;_, incident with z;. In case (ii) color e; with 2. In case (iii): color e;
with 1 if there is an edge colored 1 in H;_, incident with x; or y;; otherwise
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color e; with 2 if there is an edge colored 2 in H;_; incident with z; or Yi;
and if e; is still uncolored then color it with 0 (note that in this case each
of z; and y; must be incident with edges colored 0 in H;_,).

O

4 Further Remarks

Companion results for Theorem 2 and Theorem 3 follow easily for the case
when G is connected, but not necessarily simple. In this section, it is
assumed that edges join two distinct vertices; so loops are not described as
edges.

Theorem 4. Suppose G is a connected graph (possibly with loops and mul-
tiple edges) such that the underlying simple graph G, has a vertez-equalized
k-edge-coloring. Then G has a vertez-equalized k-edge-coloring.

Proof. For each multiple edge e = {u,v} in G, color e with ¢ € Z; if {u,v}
in G, is colored c. For each loop ! at a vertex w, color ! with ¢ € Z;, if c is
the color of an edge in G, that is incident with w. a

Corollary 4.1. Suppose G is a connected graph (possibly with loops and
multiple edges). Then G has o vertez-equalized 2-edge-coloring if and only
if G # Ka.

Proof. Clearly K has no vertex-equalized 2-edge-coloring. To prove suffi-
ciency let G be connected and G # K,. Then in view of Theorems 2 and 4
we can assume that G, = K>. If G has any loops then color all loops with
0, and all edges with 1. If G has no loops, then color one edge with 0, and
the remaining edges with 1. a

In what follows, 2K denotes a pair of vertices with a pair of parallel
edges joining them.

Corollary 4.2. Suppose G is a connected graph (possibly with loops and
multiple edges). Then G has a vertez-equalized 3-edge-coloring if and only
if G # 83, K2,2K;.

Proof. Clearly S, K2 and 2K, have no vertex-equalized 3-edge-coloring.
To prove sufficiency let G be connected and G # S5, K2,2K>. Then in
view of Theorems 3 and 4 we can assume that G, = Ky or G, = 5.
Suppose G, = K3. Then there are at least 3 edges in G. Color one such
edge with 0, one with 1, and color all the other edges and loops in G with
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2. Suppose G, = S;. Let {z,y} and {y, z} be the edges in Gy. If G has
a loop, then color all loops in G with 0, all edges that join z to y with 1,
and all edges that join y to z with 2. If G has no loops, then G has at least
three edges. Color one edge with 0, one edge with 1, and the remaining
edges with 2. O

Note that a generalization of Corollary 4.1 and Corollary 4.2 for discon-
nected graphs does not seem to be easy to obtain. For example, to settle
the case with two colors (see Corollary 4.1) such a result would require the
classification of all graphs G for which all vertex-equalized 2-edge-colorings
satisfy vo(G) = v1(G), since the graph consisting of two components G and
K, would have no vertex-equalized 2-edge-coloring.

Also note that extending Theorem 2 and Theorem 3 to edge-colorings
with four or more colors would require a different approach. This is because
the idea of taking a spanning subgraph of a graph G, finding a vertex-
equalized k-edge-coloring of this subgraph and then completing this coloring
to a vertex-equalized k-edge-coloring of G by coloring a single edge at a time
rarely works if k > 4. On the other hand, for a graph G that has many edges
it is not difficult to see that one can take a vertex-equalized 3-edge-coloring
of G and then recolor some of the edges in G with a new color to get a
vertex-equalized 4-edge-coloring of G. Another approach for dense simple
graphs would be to somehow find k edge-disjoint spanning subgraphs (for
example, use Dirac’s Theorem [5] k times to find k hamiltonian cycles in
a graph on n vertices with § > 2(k — 1) + n/2, coloring the edges in the
ith such subgraph with color i and all the other edges with any color to
obtain a vertex-equalized k-edge-coloring in which v; = n for 1 <4 < k).
Nevertheless, new ideas will be needed to settle the problem in general.

Finally the authors would like to note that an interesting related prob-
lem is to find the spectrum of v.(G) among all vertex-equalized k-edge-
colorings of a graph G; that is, find N(G) = {v.(G) | ¢ € Z, G has a
vertex-equalized k-edge-coloring with colors in Z}.

References
[1] D. de Werra, Balanced schedules, INFOR-Can J Oper Res Inform Pro-
cess 9 (1971), 230-237.

[2] D. de Werra, Equitable colorations of graphs, Rev Fran Inf Rech Oper
5 (1971), 3-8.

(3] D. de Werra, A few remarks on chromatic scheduling, Combinatorial
programming: methods and applications (Proc NATO Advanced Study

131



Inst, Versailles, 1974), In: NATO Advanced Study Inst Ser, Ser C:
Math Phys Sci, vol. 19, Reidel, Dordrecht, 1975, pp. 337-342.

[4] D. de Werra, On a particular conference scheduling problem, INFOR-
Can J Oper Res Inform Process 13(3) (1975), 308-315.

[5] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math.
Soc. (3) 2, (1952), 69-81.

(6] A.J. W. Hilton, Canonical edge-colorings of locally finite graphs, Com-
binatorica 2(1) (1982), 37-51.

(7] A.J. W. Hilton, (r,r + 1)-factorizations of (d,d + 1)-graphs, Discrete
Math 308(5-6), (2008), 645-669.

(8] A.J. W. Hilton and D. de Werra, A sufficient condition for equitable
edge-colourings of simple graphs, Discrete Math. 128 (1994), no. 1-3,
179-201.

[9] D. G. Hoffman and C. A. Rodger, Class one graphs, J. Combinatorial
Theory (B), 44 (1988), 372-376.

[10] D. G. Hoffman and C. A. Rodger, The chromatic index of complete
multipartite graphs, J. Graph Theory, 16 (1992), 159-163.

[11] X. Zhang and G. Liu, Egquitable edge-colorings of simple graphs, J.
Graph Theory, 66 (2011), 175-197.

132



