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Abstract

Two-fold automorphisms (or “TF-isomorphisms”) of graphs are
a generalisation of automorphisms. Suppose «, 8 are two permuta-
tions of V = V(G) such that for any pair (u,v), u, veV, (uv)is
an arc of G if and only if (a(u), B(v)) is an arc of G. Such a pair of
permutations is called a two-fold automorphism of G. These pairs
form a group that is called two-fold automorphism group. Clearly, it
contains all the pairs (o, @) where « is an automorphism of G. The
two-fold automorphism group of G can be larger than Aut(G) since
it may contain pairs (a, ) with a # 8. It is known that when this
happens, Aut(G) x Z, is strictly contained in Aut(G x K3z). In the
literature, when this inclusion is strict, the graph G is called unstable.

Now let T’ < Sy x Sy. A two-fold orbital (or “TF-orbital”) of T is
an orbit of the action (a, 8) : (u,v) = (a(u), B(v)) for (o, 8) € T and
u,v € V. Clearly, T is a subgroup of the TF-automorphism group of
any of its TF-orbitals. We give a short proof of a characterization of
TF-orbitals which are disconnected graph and prove that a similar
characterization of TF-orbitals which are digraphs might not be pos-
sible. We shall also show that the TF-rank of ', that is the number
of its TF-orbitals, can be equal to 1 and we shall obtain necessary
and sufficient conditions on T for this to happen.
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Then, we shall show that, unlike the case of a coherent configura-
tion made up of orbitals of a permutation group, the usual definition
of structure constants does not, in general, hold for TF-orbitals. We
shall give some simple conditions on I" which guarantee that its TF-
orbitals do admit the definition of the structure constants and we
shall show that, in general, TF-orbitals allow “structure constants”
based on walks of length 3 rather than length 2. We shall then use
this last result to obtain, for a rank 3 strongly regular graph G, a
necessary condition for it to be unstable, by using the fact that the
two-fold automorphism group of G must have TF-rank 2.

1 General Introduction and Notation

A mized graph is a pair G = (V(G), A(G)) where V(G) is a finite set and
A(G) is a set of ordered pairs of elements of V(G). The elements of V(G)
are called vertices and the elements of A(G) are called arcs. When refer-
ring to an arc (u,v), we say that u is adjacent to v and v is adjacent from
u. Sometimes we use v — v to represent an arc (u,v) € V(G). The
vertex u is the start-verter and v is the end-vertez of a given arc (u,v).
An arc of the form (u,u) is called a loop. A mixed graph cannot contain
multiple arcs, that is, it cannot contain the arc (u,v) more than once, but
it can contain loops, that is, arcs of the form (u,u). A mixed graph G
is called bipartite if there is a partition of V(G) into two sets X and Y,
which we call colour classes, such that for each arc (u,v) of G the set {u,v}
intersects both X and Y. Note that a bipartite mixed graph cannot have
loops because the corresponding vertex would have to be in X N'Y, which
is empty. A set S of arcs is self-paired if, whenever (u,v) € S, (v,u) is also
inS. If S = {(u,v),(v,u)}, then we consider S to be the unordered pair
{u, v}; this unordered pair is called an edge. Therefore, a mixed graph can
contain edges, non-self paired arcs and loops. Let Sy denote the symmetric
group of all permutations on V. An element of Sy x Sy will be called a
two-fold permutation or TF-permutation and each subgroup T of Sy x Sy
will be said to be a two-fold pemutation group or TF-permutation group.
A TF-orbital of T is an orbit of the action of T' on V x V. If (u,v) is an
arc, denote by I'(u,v) the TF-orbital of I' containing (u,v). Note that a
TF-orbital is, in general, a mixed graph.

A graph is a mixed graph without loops whose arc-set is self-paired.
The edge-set of a graph is denoted by E(G). A digraph is a mixed graph
with no loops in which no set of arcs is self-paired.
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A bipartite digraph with a bipartition V(G) = X UY is said to be
strongly bipartite if each arc of G is incident from a vertex in X to a vertex
inY.

Given a mixed graph G and a vertex v € V(G), we define the in-
neighbourhood Ni,(v) by Nin(v) = {z € V(G)|(z,v) € A(G)}. Similarly,
we define the out-neighbourhood Noyi(v) by Ny (v) = {z € V(G)|(v,x) €
A(G)}. The in-degree pin(v) of a vertex v is defined by pin(v) = [Nin(v)|
and the out-degree poy:(v) of a vertex v is defined by pout(v) = |Nout(v)l-
When G is a graph, these notions reduce to the usual neighbourhood
N(v) = Nin(v) = Noyw:(v) and degree p(v) = pin(v) = Pout(v)-

Let G be a graph and let v € V(G). Let N(v) be the neighbourhood of
v. We say that G is vertez-determining if N(z) # N(y) for any two distinct
vertices z and y of G [12].

A two-fold isomorphism or TF-isomorphism from G to H is a pair of
bijections «, 8: V(G) — V(H) such that (u,v) is an arc of G if and only if
(a(u), B(v)) is an arc of H. When such a pair exists, we say that G and H
are TF-isomorphic and write G=TF H. The TF-isomorphism is denoted by
(o, B). The inverse (™!, 87}) of (o, B) is a TF-isomorphism from H to G.

1
6 2 2 6
7
’ 3 3 5
H
4

G

Figure 1: Two non-isomorphic but TF-isomorphic graphs.

The two graphs G and H in Figure 1, which have the same vertex set
V(G) = V(H), are non-isomorphic and yet TF-isomorphic. In fact (e, B),
where o = (2 5) and B = (1 4)(3 6), is a TF-isomorphism from G to H.
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This concept was first studied by Zelinka [19, 20] in the the context
of isotopy of digraphs. Some graph properties are preserved by a TF-
isomorphism. Such is the case with the degree sequence, as illustrated by
Figure 1. In [8] we showed that alternating trails or A-trails, which we shall
define in full below, are invariant under TF-isomorphisms. For instance,
the alternating trail 5 — 6 «+— 1 — 2 in G is mapped by (a, 8) to the
similarly alternating trail 2 — 3 <— 1 — 2 which we shall later be call-
ing “semi-closed”.

When G = H, (a, B) is said to be a TF-automorphism and it is called
non-trivial if « # 8. The set of all TF-automorphisms of G with multiplica-
tion defined by (e, 8)(7, §) = (ay, 84) is a subgroup of Sv(g) X Sv(g) and it
is called the two-fold automorphism group of G and is denoted by Aut™ (G).
Note that if we identify an automorphism a with the TF-automorphism
(o, @), then Aut(G) C Aut™ (G). Hence Aut(G) =Aut™ (G) whenever all
TF-automorphisms are trivial. It is possible for an asymmetric graph G,
that is a graph with |Aut(G)| = 1, to have non-trivial TF-automorphisms.
This was one of our main results in [8). For any graph G, the automor-
phism group of the direct product G x K5 contains all permutations arising
from lifting elements of Aut(G), but may have further elements: in general,
Aut(G) x Z,C Aut(G x K3), but the inclusion might be strict. Whenever
Aut(G) x Zy C Aut(G x K»), the graph is called unstable. In [9] we showed
that G is unstable if and only if it has a non-trivial TF-automorphism and
in [10] we highlight some of the advantages of using TF-automorphisms to
study unstable graphs.

The canonical double cover of a mixed graph G, denoted by CDC(G),
(also called its duplez especially in computational chemistry literature, for
example, [14]) is the mixed graph whose vertex set is V(G) x {0,1} and in
which there is an arc from (u, 1) to (v, ) if and only if i # j and there is an
arc from u to v in G. The canonical double cover of G is often described as
the direct product G x K» (3, 2], and is sometimes also called the bipartite
double cover of G. In [7] we proved the following result:

Theorem 1.1. Let G, H be graphs. Then G=™H if and only if CDC(G) =
CDC(H). ) O

Let G be a mixed graph. The incidence double cover of G, denoted by
IDC(G) is a bipartite graph with vertex set V(IDC(G))= V(G) x {0, 1}
and edge set E(IDC(G)) = {(»,0),(v,1)} | (,v) € A(G)}. The reader
may refer to [5] for more information regarding the incidence double cover
of graphs and its relevance to the study of semi-symmetric graphs. For
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graphs, the canonical double cover is identical to the incidence double cover.
In [9], we proved the following extension of Theorem 1.1.

Theorem 1.2. Let G, H be mized graphs. Then G=™H if and only if
IDC(G) 2 IDC(H). o

The alternating double cover or ADC of G, denoted by ADC(G), is
the direct product of G and the digraph P with V(P) = {0, 1} and
A(P) = {(0,1)}. This means that the vertex set of ADC(G) is V(G)xV(P)
and ((u,0),(v,1)) € A(ADC(Q)) if and only if (u,v) € A(G). Clearly,
ADC(G) is strongly bipartite, having vertices of the form (u,0) as sources
and vertices of the form (u, 1) as sinks. In fact, ADC(G) is obtained from
IDC(G) by changing any edge {(u,0), (v,1)} to an arc ((»,0), (v,1)). The
following is a straightforward consequence of Theorem 1.2.

Corollary 1.3. Let G, H be mized graphs. Then G=™H if and only if
ADC(G) = ADC(H). o

A set P of arcs (possibly containing also loops) of a mixed graph G
is called a trail of length k if its elements can be ordered in a sequence
ai, a2,..., ax such that each a; has a common vertex with a;;; for all
i=1, ..., k—1. If u is the vertex of a;, that is not in az and v is the
vertex of ax which is not in ax_i, then we say that P joins u and v; u is
called the first vertez of P and v is called the last vertez with respect to
the sequence a;, as, ..., ai. If, whenever a; = (z,y), either a;4; = (z,2)
or aj4+1 = (2,y) for some new vertex z, P is called an alternating trail or A-
trail. If the first vertex u and the start-vertex v of an A-trail P are different,
then P is said to be open. If they are equal then we have to distinguish
between two cases. When the number of arcs is even, P is called closed
while when the number of arcs is odd, P is called semi-closed. In a closed
A-trail, for two arcs in the sequence that meet at a vertex z, either both
arcs are incident from z or both arcs are incident to z. In a semi-closed
A-trail, there is exactly one vertex z such that for the two arcs meeting at
z, one arc is incident to = and the other is incident from z.

In [8], we proved the following result which we shall use later on.
Proposition 1.4. Let G and G’ be mized graphs and P be an A-trail in
G. Let (a,B) be any TF-isomorphism from G to G'. Then there erists an

A-trail P’ in G' such that (o, B) restricted to P maps P to P'. Moreover,
P is closed if and only if P’ is closed.
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Proposition 1.4 implies that alternating trails are invariant under the
action of a TF-isomorphism.

Any other graph theoretical terms which we use are standard and can
be found in any graph theory textbook such as [1]. For information on
automorphism groups, the reader is referred to [11]. For an introduction to
coherent configurations [6] and [18].

2 Disconnected Two-Fold Orbital Graphs and
Digraphs

Let ' < Sy x Sy and G be a TF-orbital of I'. If G is a graph, we say that
G is a two-fold orbital graph or a TOG. If G is a digraph, we say that
G is a two-fold orbital digraph or a TOD. In [7], Theorem 4.3 provides
a characterisation of disconnected TOGs. In this section we give a much
shorter proof of this result and then investigate whether the result can be
extended to cases when the TF-orbital yields a digraph or a graph.

Let G be any mixed graph. Consider the relation R on the set A(G)
defined hy: zRy if and only if z and y are the first and last arcs of an A-trail
of G. Clearly R is an equivalence relation. As shown in [9), Corollary 5.2, if
G is a connected bipartite graph, then R has two equivalence classes, while
if G is a connected non-bipartite graph, then G has only one equivalence
class.

Therefore, if R is defined on the arcs of a disconnected graph, then the
number of equivalence classes will be equal to the sum of the number of
non-bipartite components and twice the number of hipartite components
of G.

Proposition 2.1. Let H and K be two connected components of a discon-
nected graph G such that (a,B) € Aut(G) maps an arc (u,v) of H to an
arc of K. Then there ezists a bijection from one equivalence class induced
by R on the arcs of H to one equivalence class induced by R on K.

Proof. Define ¢ : A(G) = A(G) as follows: ¢4 (a) = b if and only if
given that a = (u,v) then b = (a(u), B(v)). Let a = (u,v) and b = (z,y)
be arcs of H such that aRb. It is easy to check that since A-trails are
invariant under the action of a TF-isomorphism, as shown in Proposition
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1.4, ¢a,p(a)Rda,p(b). The same argument applies to ¢,-1 g-1. Hence ¢q g
is a bijection as stated. o

Corollary 2.2. Let H and K be two connected components of a graph G
such that (o, B8) € Aut(G) maps an arc (u,v) of H to an arc of K. Then
one of the following conditions holds:

(a) H and K are non-bipartite and TF-isomorphic;

(b) One of them, say H, is non-bipartite and K is bipartite and isomorphic
to CDC(H);

(¢) H and K are bipartite and isomorphic.

Proof. Assume first that H is non-bipartite, then the equivalence class con-
taining arc (u,v) consists of all the arcs of H. This must therefore he
mapped by ¢q,5 to an equivalence class of containing arcs of K amongst
which we find (a(u), B(v)).

If also K is non-bipartite, the equivalence class containing the image of
(u,v) under (o, ) consists of all the arcs of K. Clearly ADC(H) and
ADC(K) must then be isomorphic and hence, by Corollary 1.3, H and K
are TF-isomorphic.

If K is bipartite, R has two equivalence classes. Letting U and V be the
colour classes of K, then one equivalence class of R consists of arcs running
from U to V and the other consists of arcs running from V to U. These
two classes of R form two strongly bipartite digraphs which we denote by

and ¥ such that the arcs of K run from U to V and (u,v) € A(-I?) if
and only if (v,u) € A(?). In this case, @4, takes all the arcs of H to one
of these sets of arcs, that is, to either K or %K. Let us assume that the
arcs of H are mapped into the arcs of R. Note that for any edge {z,y} of
H, the arcs (z,y) and (y,z) must be mapped to distinct arcs say (zo,¥1)
and (yo,z1) both running from U to V. The vertex set of R must be twice
the size of the vertex set of H. Hence |V(K)| = 2|V(H)|. The digraph

covers the arcs of H once. Note that K can be obtained from K by
substituting each of its arcs with an edge. Let & be obtained from hy
replacing every arc (u,v) with the arc (v,u). Now ¢4 (A(H)) = A(R)
and ¢g,«(A(H)) = A(?). But both ¢s,s and ¢g,, are bijections. There-
fore, define ¢ : K — CDC(H) such that ¢ sends an arc (a(u), B(v)) of
K to ((u,0),(v,1)) of CDC(H) and the corresponding arc (8(v), a(u)) of
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K to ((u,1),(v,0)). Therefore, the edge {,v} of H is covered hy the two
edges {(u,0),(v,1)} and {(v,1), (v,0)}. This gives that K is isomorphic to
CDC(H), that is,(b) holds.

We are left with the case where both H and K are bipartite: then an
equivalence class of one is mapped by ¢4 s to an equivalence class of the
other. The digraphs induced by these equivalent classes may he obtained
by directing the arcs from one (vertex) colour class to the other. The TF-
automorphism (c, 8) of G restricted to such a digraph containing (u,v) say
His TF-isomorphism from H to the digraph R induced by the equivalence
class of R containing the image of (u,v). Since H and K are both bipartite
they must be isomorphic. Therefore (¢) holds. O

We are now in a position to give a short proof of the main result in [7].

Theorem 2.3. Let G be a TOG with no isolated vertices and let its com-
ponents be G,,...,G and:

V(G| 2 [V(G2)| 2 ... 2 |V(Gk)|.
Then each G; i € {1, ..., k} is still a TOG. Moreover:

(1) if V(G| = |V(Gk)|, then Gy, Ga, ..., Gy are pairwise TF-isomorphic:

(i1) otherwise, there exists a unique indezr € {1, ..., k — 1} such that
G12Gy...G, %Gy &TF | =TF g,

where G; = CDC(Gy,).

Proof. First note that since G is a TOG, given any components say Gp, G,
then there exists (@, 8) € Aut(G) which maps an arc (u,v) of G, to an arc
of G4. Therefore, we can use the result of Corollary 2.2 to any pair of com-
ponents. If [V(G,)| = |[V(G,)| then either (a) or (c) of Corollary 2.2 holds,
that is, the two components are either non-bipartite and TF-isomorphic or
bipartite and isomorphic, since TF-isomorphisms and isomorphisms pre-
serve the order of a graph. On the other hand if, say, |V(Gp)| > |V(G,)|
then (b) holds and so G, = CDC(G,). Furthermore, the set of elements of
I' = Aut(G) which map arcs of any component G; to arcs of G;, irrespec-
tive of whether G; is bipartite or non-bipartite, restricts to a group I'; of
TF-automorphisms of G; and therefore G; is a TOG on I;. ]
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The fact that disconnected TOGs have connected components of only
two TF-isomorphism types, need not be true for TODs. Our next result
proves this, but first we need to introduce a class of examples.

Let m = 2k > 2 he an integer. A residue class modulo Z,, can be said
to be “even” or “odd” according to whether it helongs to the subgroup of
index 2 or not (this notion would make no sense if m were odd). Define a
digraph G = G(m) by: V(G) = Z;, X Zmm, and A(G) consists of the ordered
pairs of the following four kinds: ((z,¥), (z,y+1))  even, ((z,¥), (z,y—1))
z odd, ((z,¥), (x+1,9)) y even, ((z,¥), (z—1,y)) y odd. In other words, two
vertices form an arc when they share a coordinate and the other coordinate
differs by 1, where the higher of the two coordinate values is the first vertex
if the equal coordinate is odd and the second vertex if the equal coordinate
is even. Note that G is a digraph because m > 2, otherwise it would be
C,. It is clear that G is connected: its underlying graph is the cartesian
product of two m-cycles.

Geometrically, G can be seen as a torus obtained by taking a m x m
grid and identifying each side with its opposite. For this reason we refer to
a digraph constructed this way as an m-torus digraph. Figure 2 shows the
m-torus digraph for m = 6. The squares are of two kinds: let us call black
those that induce a closed A-trail and white those that induce a directed
cycle.

Let us first determine Aut(Gy,). Call an arc ‘horizontal’ when its end-
vertices share the first coordinate and ‘vertical’ when they share the second
one. Let A be the subgroup of Aut(Gy,) consisting of the maps of the
following four kinds:

type 00 : (z,y) — (z+i,y+j)4, jeven
type 01 : (z,y) — (z+4,—-y+7)iodd, jeven
type 10: (z,y) =~ (—z+1,y+j) i even, j odd
type 11: (z,y) — (z+14,y+j)4, jodd.

The set of all automorphisms of the above types is closed under com-
position and is therefore a subgroup of Aut(Gn). Also the mapping from
A to Zy x Z defined by sending an automorphism of type ¢’ to (¢,€') is a
homomorphism. Each element of A takes a horizontal arc into a horizontal
arc and a vertical arc into a vertical arc. Since there are k even and k odd
elements in Z,, A has order 4k2. Now consider the map ¥ : (z,y) — (¥, z)
which commutes with all the elements of A. We adjoin to A, this map .
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Figure 2: The m-torus digraph for m = 6.

Hence (A, ) is the direct product of A and (¥) and so has order 8k2. So
we observe that the order of A equals the number of vertices and that of
(A, 9) equals the number of arcs of G,,.

Let us now consider an automorphism ¢ of Aut(G,,) that fixes and
arc e. Note that e belongs to a unique closed A-trail of order 4 and to a
unique directed 4-cycle. Both trails must be fixed by ¢ and clearly they are
fixed arc-wise. This causes further A-trails and directed cycles to be fixed
arc-wise by ¢ and, since G,, is connected, it follows that ¢ = id. There-
fore Aut(G,,) is semiregular on arcs. Since (A, ) has as many elements as
there are arcs, this forces it to be a regular group, hence (A, ¥) = Aut(G,,).
Note that A is transitive, hence regular on the vertex set of G,,. In the
full automorphism group, the stabilizer of a vertex v has order 2 and the
non-trivial element swaps the arcs incident with v.
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Now, for the same values of m, define the digraphs H = H(m) as fol-
lows: V(H) = Zmm X Zm X Z2, A(Hp) consists of the ordered pairs of the
following kinds: ((z,y,0), (z,y+1,1)) z even, ((z,,0), (z,y—1,1)) z odd,
((il:, Y, O)v (2: + l’ya 1)) y even, ((xi Y, 0): (.'L' - 1’ Y, 1)) Y 0dd7 ((I, Y, 0): (l‘ +
1,-y,1)) and ((z,v,1), (x 41, —y,0)). Note that this definition follows the
same track of that of G(m), with the fundamental difference that the third
coordinate distinguishes between sources and sinks. Unlike G(m), the di-
graph H(m) is disconnected: it splits into (m?)/2 components of order 4,
each isomorphic to a black square. The maps obtained from those in A by
preserving the third coordinate are automorphisms of H(m). Of course, it
has further automorphisms.

Let K(m) be the union of G(m) and H(m). Define two permutations
of V(K): a swaps (z,y) with (z,y,0) and fixes (z,y,1) for all z,y; 8 swaps
(z,y) with (z,y,1) and fixes (z,y,0) for all z,y. Then (a,B) is a TF-
automorphism of K (m). In fact, due to the definition of H(m), the two-fold
permutation (c, 8) takes arcs of G, to arcs of H and conversely. Together
with the aforementioned maps, this TF-automorphism generates a group
I of TF-automorphisms of K(m). It can be shown that K(m) = I'(u,v)
for any arc (u,v) of K(m), therefore K(m) is a TOD.

We are now set to state and prove the announced result.

Proposition 2.4. Given any positive integer k > 2, there exists a dis-
connected TOD with at least k mutuelly non-TF-isomorphic components.

Proof. Let K(m) be obtained as above. It is true that K(m) contains
connected components of only two types. However, one can take any union
of graphs K(m,), K(mz), K(mgs),.. and, as above, for any m;, m;, there
always exists some TF-isomorphism from G, to a number of black squares
in Hp,,; with vertices (a,b), (a,b+1), (a+1,b+1), (a +1,b), where both
a and b are even. This gives the required TOD. ]

3 TF-rank equal to 1

The rank of a permutation group I is defined to be the number of orbitals
of I'. The study of permutation groups of rank 3 is an important meeting
point of permutation group theory and graph theory. For instance, the
reader may refer to [13].

Let T' < Sy x Sy be a two-fold permutation group acting on the set
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V x V and let
£={f"'a:(aB) cT}.

We say that I is I-transitive on V if for any u,v € V, there exists 8~ € &
such that 8~ 'a(u) = v, that is a(u) = B(v). We say that T is TF-transitive
on V if, for all u,v € V, there exists (o, 8) € T such that a(u) = v and
B(u) =v.

We know, in general, that the number of orbitals of a permutation group
(I',V) is at least 2 and this happens only when (T, V) is 2-transitive.

However, unlike the usual rank, the TF-rank can be equal to 1. This
is possible hecause TF-permutations can take arcs to loops. The following
result characterizes the actions whose TF-rank is equal to 1.

Theorem 3.1. Let T C Sy x Sy be a two-fold permutation group. Then,
(T, V x V) has TF-rank equal to 1 if and only if T is both T-transitive and
TF -transitive.

Proof. Suppose that (I, V x V') has TF-rank equal to 1. Therefore, all the
arcs and loops are members of the same TF-orbital. Consider any arc (u, v)
and the loop (w,w). There exists (a, 8) € T such that (o, 8)(u,v) = (w, w)
which implies that a(u) = wB(v). This holds for any pair of elements u, v
of V, since every pair of vertices are joined by two arcs running in opposite
directions and there is a loop at each vertex. Hence TF-rank equal to 1
implies that I is X-transitive. Now, for any pair of vertices u, v € V,
consider the loops (u,u) and (v,v). There exists (o, 3) € T such that
(a, B)(u,u) = (v,v) by virtue of the fact that all loops are members of the
same TF-orbital. This implies that a(u) = v and 8(u) = v. Therefore, T’
is TF-transitive.

Conversely, suppose that I is $-transitive and TF-transitive on V. Since
I' is E-transitive on V, for any (u,v), there exists 8~la € T such that
B la(u) = v so a(u) = B(v). Therefore, any arc has a loop in its TF-
orbital. If I" is TF-transitive, then any given pair of loops are, by definition,
in the same TF-orbital since, given u, v € V, there is (a,8) such that
a(u) = v and B(u) = v, therefore (a, 8)(u, u) = (v,v). Hence, all the loops
are in the same TF-orbital. Therefore, all the arcs are also in the same
TF-orbital since any arc has some loop in its orbital. Hence I has TF-rank
equal to 1. (]

A trivial example for which the TF-rank is 1 is Sy x Sy itself. Now let
us construct a simple, yet non-trivial example. Let |V| = p, with p prime.
Consider I'” generated by (a, a~!) where a = (12...p). The presence of the
TF-permutation (a,a~!) ensures that all the TF-orbitals are self-paired,
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that is, they are graphs. The TF-orbitals for p = 5 are illustrated in Figure
3.

Figure 3: The TF-orbitals generated by (a,a™!) where & = (1 2 3 4 5).

In order to get TF-rank equal to 1, we need to gather all the loops in
one orbital. This can be done by letting T’ = {(, &), (o, @™ 1)). Since all the
loops are in the same orbital and every edge has a loop in its orbital under
(a,a™1), then all the edges and all the loops are in the same TF-orbital so
that the TF-rank is equal to 1.

4 Structure constants and TF-Orbitals

Let I' < Sy x Sy and let Ry, Ry, ..., R, be the TF-orbitals of (T, V x V)
considered as mixed graphs. These TF-orbitals partition the arcs of K}y,
which is the complete graph on V with loops. It is clear that if I' contains a
non trivial (e, B), then some loop is in the same TF-orbital as some arc be-
cause a # f implies that there exists some vertex z such that a(z) # B(z),
that is the loop (z,z) is in the same TF-orbital as the arc (a(z), B(z))-

When considering the orbitals of a permutation group (I',V) as par-
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Figure 4: The TF-orbitals for I' = {(c, 8)) where a = (1 2 3 4) and 8 =
(2 4).

titioning the edges of K |°V|, we obtain a coherent configuration and the

system of orbitals admits the structure constants pfj: Given arc {(a,b) in
Ry then the number of vertices z such that (a,z) is in R; and (z,b) is in
R; equals pfj and is independent of the choice of (a,b) in R.

However, the system of TF-orbitals of (I, V x V) does not, in general,
admit the structure constants. The following counterexample is enough to
show this. Let I' = (((1 2 3 4),(2 4)))={((1 2 3 4),(2,4)), ((1 3)(2 4),id)),
((4321),(24)), (id,id)}. The TF-orbitals are shown in Figure 4. Consider
the arc (1,2) in class R;. There is a path in Ry; the arc (1,4) followed by
the arc (4,2). This would make pj, = 1. But now consider the arc (2,4)
also in class R;. There is no similar directed path from 4 to 2 with both
arcs in Ry. Therefore, p}, cannot be defined.

On the other hand, there exist systems of TF-orbitals that admit struc-
ture constants. For example, let I'=(((1 2 3 4),(1 2)(3 4))) = {((1 2 3 4),
(12)(3 4)), ((13)(24),id)), ((4321),(12)(34)),(id, id)}. The TF-orbitals
are shown in Figure 5. It can easily be checked from this figure that these
TF-orbitals admit structure constants. Here we give two conditions on T’
which are sufficient for this to happen.

A two-fold permutation group T' is said to satisfy Property K if, for any
z,y € V and any (o,8) € T, the ares (z,y) and (B(x),B(y)) are in the
same TF-orbital.

Theorem 4.1. Suppose I' < Sy x Sy has Property K. Then, given any arc
(a,b) in the TF-orbital Ry, the number of vertices © such that (a,z) is in
R; and (z,b) is in R; is independent of the choice of (a,b) in Ry. Therefore
the TF-orbitals admit the definition of structure constants p:‘J

Proof. Let (a,b) and (a’,b’) be two arcs in the TF-orbital Rj. Therefore
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there is an (o, 8) in I’ mapping (a, b) into (a’,b’). Let z be such that (a, z)
is in R; and (z,b) in R;. Then (&, B) maps (a,z) into (a’,z’), which is
therefore also in R;. Now, Property K gives that (z,b) and (B8(z), 8(b)) =
(z',b') are both in the same TF-orbital, therefore both in R;. Therefore 8
is a bijection from

W = {z: (a,z) € R;,(z,b) € R;}

to
W' = {z': (a’,z') € R;, (', V') € R;},
which gives the required result. a
: ® )
1 3 i 3
- D) ——y
A A
e [ — S
2 4 2 4

Figure 5: The system of TF-orbitals for I' = {((1 2 3 4), (1 2)(3 4)))-

Now, let us say that a two-fold permutation group I' is said to satisfy
Property M if, for any (a,8) in I, (3, ) is also in I'. Clearly, Property M
implies Property K, but the converse does not hold in general. For exam-
ple, let T be the set of all pairs (y,77!), ¥ € Sy. The TF-orbitals of T
are only two, R, consisting of loops and R; consisting of arcs of the form
(u,v) where u # v. Every permutation 3 takes arcs to arcs and loops to
loops, hence Property K is satisfied. However, most permutations differ
from their inverse, so Property M is not satisfied.
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The fact that Property M implies Property K makes it easier to ob-
tain two-fold permutation groups fulfilling Property K. For example, let
I'; be a permutation group acting on V and let A; consist of all two-fold
permutations (8, 8) with 8 € I'y. Fix ap € Sy \T'; and B € Ty and let
I = (Ay, (a0, Bo)). Clearly, I satisfies Property M, hence Property K.

As another example, let I'; be a permutation group and I's be a sub-
group of I';. Consider the direct product I'y x I';. For any element (c, 8) of
Ty x Ty, B is also in I'y, therefore (8, B) is also in I'; x I'y, which therefore
satisfies Property M, hence Property K.

The system of TF-orbitals of such two-fold permutation groups has the
property that the space generated by linear combinations of their adja-
cency matrices is closed under matrix multiplication and therefore forms
an algebra. However, they do not form a coherent configuration hecause
this space of matrices does not contain the identity and is not closed under
taking of transpose. If the TF-orbitals happen to be all undirected graphs
then the matrices are all symmetric and therefore we obtain a structure
which satisfies the axioms of a coherent configuration except that it does
not contain the identity. Klin (personal communication and [4]) has shown
that such structures can arise naturally in other contexts.

Although TF-orbitals do not in general admit structure constants, we
can prove that an extension of the structure constants to directed alternat-
ing walks of length 3 can, in general, be defined.

Theorem 4.2. LetT' < Sy xSy and let Ry, Ry, ..., R, be TF-orbitals of
I. Leti, j, k and s be any elements of {1, 2, ..., r}. Let (a,b) be an arc
in R;. Then the number of arcs (y,x), such that (y,z) € R;, (a,z) € R;
and (y,b) € Ry is independent of the choice of arc (a,b) in R,.

Proof. Figure 6 illustrates the arcs in the statement. An arc (a,’’) also in
Ry is also shown. For any such arc (a,’b’) in R, there is an {a, B) such
that (o, 8)(a,b) = (a’,b').

Let the sets W and W’ be defined as follows:

W = {(y,z)€R; : (a,z) € R; and (y,b) € Ry}
W' = {(v,z')e R; : (d/,2') € R; and (¥, V) € Ry}

Then clearly (e, 8) induces a bijection from W to W', thus |W| = |W'|.
But (a,b) and (a’,b’) are two arbitrary arcs in R,, therefore the result fol-
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Figure 6: Definition of pj;; for TF-orbitals.
lows. O

If (a,b) is an arc in R,, we denote the number of arcs (y,z), such that
(v,z) € R, (a,z) € R; and (y,b) € Rk by pjj.

Theorem 4.2 can be expressed in terms of matrices by:

AiA;FAk = E::lpgjkAs

where A_ is the adjacency matrix of the orbital R, and A7 is its transpose.

5 Unstable rank 3 strongly regular graphs

There are two cases of instability which are considered to be trivial. First of
all, if G is bipartite, then G x K consists of two copies of G and therefore,
unless Aut{G) is trivial, G is unstable. Secondly, if G has two vertices
u, v which share the same neighbourhood set, then G admits the TF-
automorphism (a, id) where a = (u v) and therefore G is unstable. Hence,
when we consider unstable graphs we tacitly exclude such graphs.

Let us now direct our attention to unstable strongly regular graphs of
rank 3 with the usual parameters n, k, A, u in order to illustrate a simple
application of Theorem 4.2. Let G be such a rank 3 strongly regular graph.
We shall assume that k > p so that G is vertex-determining. It should be
noticed that the excluded case only consists of trivial graphs (disconnected
unions of complete graphs or complete multi-bipartite graphs). Therefore
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the orbitals of Aut(G) on V(G) x V(G) are G, where V(G,) = V(G) and
A(Go) = {(v,u) 1w € V(G)}, G and G. It is well known that the adjacency
matrix A of G satisfies:

A2 (u= M)A+ (u—k) =upJ

where J is the all-1's matrix. Now in [17], Proposition 2 it is proved that
A = u if G is unstable. We give a different proof by applying TF-orbitals.

Theorem 5.1. Let G be a rank 3 unstable strongly reqular graph with
parametersn, k, A, u. Let p be the number of walks of length 3 joining any
pair of adjacent vertices in G and let q be the number of walks of length 3
Joining any pair of non-adjacent vertices in G. Then

A=
q pk
p = pk+k-—p

Proof. Since the graph G is unstable, Aut™ (G) contains non-trivial TF-
automorphisms. Consider the TF-orbitals of Aut™ (G) on V(G) x V(G).
Of course, the three orbitals G,, G and G cannot be split into more TF-
orbitals. We also know that since the TF-permutations (whether trivial or
not) are automorphisms of G, the orbital G remains unchanged. But since
some loop must be in the same TF-orbital as some arc, we conclude that
all loops join G to form one TF-orbital G~ (where G is the complement
of G with a loop at every vertex). Therefore we have that the TF-rank of
Aut™ (G) is 2 and the TF-orbitals are G and G.

Now, the adjacency matrix of G is A, but that _9‘1: G isJ— Asince G
has a loop at every vertex. Let G = R; and let G = R; and let us use
Theorem 4.2. By applying the existence of structure constants to R, and
R, we get

A = pinA + pin(J - A)

which we can write as
A3=pA+q(J-—A) - (1)

where p = pj,; and ¢ = p}y,.
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Let 8 = A — p. Therefore (1) becomes:
A? = kI + 0A +u(J-1) ...(2)

Substituting for A? again in (2), gives

(k—p—-p+q+0%A = (q—pk—0u)J+I1(6(n—k)).

But the right-hand side is a constant matrix except for the diagonal and
this is equal to A times a constant. This can only happen if:

k—p—p+g+6* = 0
q—pk—6p = 0
Bp—k) = 0
therefore # = O since k # u. It follows that:
A= pu
g—pk = 0
and k—p-p+q = 0

o

Note that the fact that ¢ = pk is not surprising. In G, every vertex is
non-adjacent to itself (while every vertex is adjacent to itself in the other
TF-orbital G°). The number of walks of length 3 joining u to itself is equal
to twice the number of triangles containing u. But the degree of u is k,
every edge lies on A = u triangles and therefore Ak = uk counts every
triangle containing u twice and hence is the same as q.

Equation p = pk + k — p can also be obtained by a direct counting
argument. Let u and v be adjacent. There are (k — 1)(z — 1) walks from
u to v without repeated edges. The remaining walks have either u or v
repeated. The former are of the form (u,z), (z,u), (u,v), where z is any
neighbour of « (including v itself), hence there are k of them. There are
also k of the latter walks. Note that (u,v), (v,u), (u,v) appears twice. The
overall number of walks from u to v is thus (k—1)(m—1+2)—1 = km+k—-m.

An unstable strongly regular graph of rank 3 seems to b be very unstable,
in this sense. Since every loop is in the other TF-orbital G, it follows that
for every pair of non-adjacent vertices @, b in G, the edge {a,b} is in G’
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and therefore in the same TF-orbital as the loop (¢, ¢). Therefore, for every
vertex c, there exists (e, 8) in Aut™ (G) such that a(a) = ¢ = B(b). This
is similar to TF-transitivity, but only for pairs of vertices not adjacent in
G.

An example of a well-known strongly regular graph which is unstable
with A = u (although it does not have rank 3) is the Shrikhande graph
S illustrated in Figure 7 which has the same parameters as the cartesian
product K4(1K, (shown to be unstable in [17]), namely (16,6,2,2).

Figure 7: The Shrikhande graph.

Using the computational package Sage (16] we find that [Aut(S)] = 192
but [Aut(S x K3)| = 23040, confirming the instability of S. However A = u
does not force instability. For example, the last graph in the list of 3845
strongly regular graphs with parameters (n, k, A, ) = (35, 18,9,9) in [15] is
the graph G whose vertices are the lines of PG(3,2) with adjacency when
they have one point in common. It can be constructed as the graph whose
vertex set is consists of all 3-subsets of {1,2,...,7} and two of them are
adjacent when they have exactly one element in common. Again using
Sage, it can be shown that |Aut(G)| = 40320 and |Aut(G x K3)| = 80640,
therefore G is stable.

We finally note that if G is strongly regular, then at least one of G
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and G is stable because the parameters A and p cannot be equal for hoth
graphs.
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