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Abstract
The cycle length distribution (CLD) of a graph of order n is
(c1,€2,--.,¢n), where ¢; is the number of cycles of length 4, for
i = 1,2,...,n. For an integer sequence (a,,az,...,an), We con-

sider the problem of characterizing those graphs G with minimum
possible edge number and with CLD(G) = (c1,¢2, . .., ¢n) such that
¢i > a; for i = 1,2,...,n. The number of edges in such a graph is
denoted by g(a;,as,...,a,). In this paper, we give the lower and
upper bounds of ¢(0,0,k,...,k) for k =2,3,4.
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1 Introduction

Throughout this paper all graphs will be simple, undirected, finite, and
connected. The cycle length distribution (CLD) of a graph of order n is
(e1,€2---,Cn), where ¢; is the number of cycles of length i. For an integer
sequence (a;,asz, .. .,ay,), we would like to characterize those graphs G with
maximum possible edge number and with CLD(G) = (c1, ¢z, . . -,¢n) such
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that ¢; < a; for ¢ = 1,2,...,n. The number of edges in such a graph is
denoted by f(a1,as,...,a,). For an integer sequence (a1,a2,...,a,), we
would like to characterize those graphs G with minimum possible edge num-
ber and with CLD(G) = (cy,¢2,...,¢n) such that ¢; > a; fori =1,2,...,n.
The number of edges in such a graph is denoted by g(a1, az,...,a,). Shi [13]
gave the definition of the cycle length distribution (CLD) of a graph and
raised some related problems which have attracted the attention of re-
searchers for a long time in the following:

Problem 1.1 ( [13]) Determine f(a),az,...,an).
Problem 1.2 ( [13]) Determine g(a,az,...,a,).

In particular, we denote f(1,1,...,1) and g(1,1,...,1) by f(n) and
g(n), respectively. Erdos raised the problem of determining f(n) (see [1]
Problem 11 ) in 1975. Partial results of Problem 1.1 are given in (2,3, 6-
12,14,15,17]. Jia [5]has given the lower and upper bounds of g(n) for n
sufficiently large. Recently, George et al. [4] determined ¢(0,0,1,1,..., 1)
for3<n <22

In this paper, we generalize Jia’s constructive technique of graphs with
g(mn) to graphs with g(0,0,k,...,k) for k = 2,3, 4. The similar results with
respect to g(0,0,k%,...,k) for k = 2,3,4 are obtained.

2 Bounds on g(0,0,k%,...,k) for k = 2,3, 4.

Let n and k be positive integers and let C,, be an n-cycle. We assume
that all edges in E(G) — E(C,) are drawn inside the bounded region of C,,
and called by chords. Label the vertices of C, c G by v1,...,v, in cyeclic
order. Denote G[H] by the edge-induced subgraph of G whose edge set is
H and whose vertex set consists of all ends of edges of H.

Lemma 2.1 ( [16]) For a positive integer r,
M(r)y<2mtt 1,

where r and M(r) are denoted by the number of chords and distinct cycles
of a Hamilton graph G, respectively.
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Lemma 2.2

g(0,0,k,...,k) > n+loga(kn — 2k + 1) — 1.

Proof. Let G be a graph with g(0,0,%,...,k) edges such that G has at
least k t-cycles for 3 <t < n. Clearly, G hasr = ¢(0,0,k,...,k)—n chords.
By Lemma 2.1, G has at most 27! — 1 distinct cycles. Thus, we have

k‘(n _ 2) < 2r+1 —1= 2g(0,0,k,...,k)—n+1 -1.

Hence

9(0,0,k,...,k) > n+loga(kn — 2k +1) — 1.

Theorem 2.3 When n is large,

9(0,0,2,...,2)<n+ glogzn-i- g

Proof. We now prove this theorem by constructing a graph which has at
least two t-cycles for 3 < ¢t < n. Define

=21 44,0 =1,2, ...,k teyy = 1
where k is a positive integer such that
2% 1ik<n<2+k

Then
k <logen+1.

Let G} be a graph which contains C,, and the following edges(see Fig. 1(a)):
€1 = V1V3,€i+1 = vt..vt“_,,i = 1,2, ‘e ,k.

If tx, = n, then we don’t need to add ex41. For convenience, we refer to
¥, V1 &S ey in this case.
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If2k—l+k<pSnandq:n—tk,thCDQZI- We have

p—q—(k+1)=kaa,-2‘.
i=0
where a; =0or 1,i =0,1,...,k — 2.
Define )
{5 fay @y

where Ej;, E33 can choose either of the paths vyvavs and vv3v4 and either
of the paths v;vav3v4 and vivzvauy, respectively.

For 1 <1i <k —2, we define

Eips = { €it2 ifa; =0; 2.2)

'Ut'.+l’0t‘.+l+1"'vg'.+2 1fa,- =1.

By (2.1) and (2.2), we have
le(E2)] = 2 + aq, |e(Eiy2)| = ai2' +1,i=1,2,--- ,k — 2.
Let Ey41 be the path
Evyr:v, 041 - Vtppr-
Then |e(Ek41)| = n — tx + 1 = g + 1. Therefore, the paths
E3,Es,...,Ex,Epy,.

form a cycle of length

k+1 k-2
Dol = (B + Y le(Bisa)| + le(Brs)]
j=2 i=1
k-2 )
= 1+ (a2 +1)+q+1
i=0
= 14p—q—(k+1)+k—1+qg+1
= p.

Let S be p-cycle. For E; = E3; or Eq), without loss of generality, assume
that S contain Ej;. If vive,vavq € E(S),v1vs,v3v4 ¢ E(S), then there
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exists a new cycle S’ such that St = S — vjvy — vovg + V1v3 + vavs. If
v1vg, vovg & E(S), v v3,v3v4 € E(S), then there exists a new cycle S/ such
that S/ = S — v1v3 — v3vg + V12 + v2vs. Thus [E(SY)| = |E(S)| = p. For
either choice of E3, there exist two distinct cycles with length p.

Ifk+1<p< 21 4k, then we have

k-2
p—k-—l=Za.—2i.

1=0

Let Es,..., E) be as defined in (2.1) and (2.2). Therefore, the paths
E2, E37 ) Ek,€k+1.

form a cycle of length

k k=2
1+ (Bl = le(B)l+ ) le(Eir2)l +1
j=2 =1
k-2 )
= 1+) (a2 +1)+1
=0
= 14p—k—-1+k-1+1

= p.
For either choice of F3, there exist two distinct cycles with length p.

Denoted the number of edges added to C,, by k,, then

ki <k+1<logan+2.

Consider 3 < p < k + 1. Let G} = G}[v1v2,v2u3, v3vs, €1, €2, . . ., €kt 1)-
Then |V (G?)| = k+2. Let f; = v194,_,;,5 = 1,2,...,m, wherem = |55 ].
Clearly, |V(G?)|-2m = k+2-2| 552 |, 3 < k+2-2(532) < k+2-2( 55| <
k+2-2532 = 4. If [V(G?)|-2m = 3, then f, = vivq. If[V(G})|-2m =4,
then f,, = viv7.

Let G? be the graph with added edges f; for 1 < j < m to G¥(see
Fig. 1(a)). If p = k + 1, then the paths

EZ) €3,€4,---,Ck41-
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form a cycle of length k1. For either choice of E,, there exist two distinct
cycles of length k + 1 if and only if E; = Es;.

Ifk+2-2j<p<k+3-2j,j=1,2,...,mand p#k+1, then the
paths
Ez, €3,€4,... ,ek_gj, fj.
form a cycle of length p = k — 2j + 2 + ag, a0 € {0, 1}, where the value of
ag dependents on the choices of E,. For either choice of E,, there exist two
distinct cycles of length p.

If3<p<k+2-2m < 4or5, then we denote Hy = G3[v1v2, v2vs, v3vg,
e1,e,v1v4) or Hy = G?[vlvz,vgvg,v3v4,v4v5,e1,eg,e3,v1v7] and easily ver-
ify that H contains at least two cycles with length for 3 <p < k+1—2m.

Denote the number of edges added to G by k,, then ko = m = [£31] <
< glogan + 1.

Let H} be a graph with at least two t-cycles for every 3 < i < n by
adding k; + k2 edges to C,. Thus

2
O

" 1 1 3 5
e(H1)=n+k1+k2sn+log2n+2+-2-logzn+§=n+§logzn+_‘

®)

Figure 1: A construction of graphs having at least two t-cycles for 3 < ¢t <
120.
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The following corollaries are immediate from Lemma 2.2 and Theo-
rem 2.3.

Corollary 2.4 When n is large,

n + loga(n — g) < ¢(0,0,2,...,2) < n+gloggn+ g

Recall that |[V(G?)] = k + 2 and k < logon + 1. By Corollary 2.4, if
we add edges to G by using the similar method as we construct Hi by
adding edges to C,, such that G2 be constructed a graph which has at least
two t-cycles for 3 < ¢ < k + 2(see Fig. 1(b)), then kp < 3loga(k +2) + % <
$loga(logan + 3) + §. Thus g(0,0,2,...,2) S n+ky +k2 < n+logem +
—g-logg(loggn +3)+ %. It is easy to see that

Corollary 2.5 For a sufficiently large integer n,

9(0,0,2,...,2) < n+logon + gloggloggn +0(1).

Remark 2.1 Let k be the number of chords in a (2)-pancyclic graph of
order n. Zamfirescu [18]proved that k < [@J By Corollary 2.5, we

improve it and have & < logon + %logzloggn +0(1) .

Theorem 2.6 When n is large,

8
g(0,0,3,...,3) <n+ 7logzn+5.

Proof. In a similar manner as in the proof of Theorem 2.3, we construct
a graph which has at least three t-cycles for 3 <t < n. Define

tigs =224 43,i=1,2,.. . k—4,tkp2 = 1.
where k is a positive integer such that
-2 k—1<n< 2 k-1

Then
k <logon+2.
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Let G} be a graph which contains C,, and the following edges(see Fig. 2)

€1 = V1V3, €2 = VU2V4, €3 = VU3Vg, €4 = V4Vg, €5 = VgV12.
€iys5 = 'Utg-+5”t.-+o:i = 1,2,...,k -4,
If tx11 = n, then we don’t need to add ex,;. For convenience, we refer to
UnV) 8S ex41 in this case.
If25-2 4 k-1 <p<nandq=mn—tky;, then g > 1. We have

k—6
P—q—(k'l'l)=Zai+32i+3+201+4bz+b1—1~.

i=0

wherea; =0or1,i=10r3,4,...,k—3and b;=00r 1,5 =1,2.

Define

E41 ifb1=b2=1;

Eyp ifby =0,by=1;

Ey ifby=1,bp=0;

Eyy if by = by = 0.

where Ey4; can choose any one of three paths v)v,v3v4v5vV6v7V8Yg, V1VU3V2V4

Ei= (2.3)

UsUgU7VgV9, V1UgU3UgU7UsUsUqvy; E42 can choose any one of three paths
V1 V3V U5V U7UgVy, V1VU2V4V5VeVUTVBYY, U1U3VsU7UsU5V4Ve; Ey3 can choose any
one of three paths v;vav3v4ve, v1v2vU3UsVe,v1V3V2v4ve; Egq can choose any
one of three paths v,v3uguy, v1v3v4v9, V1V2v4vs.

_J es ifa; =0
Es - { VgV10V11%12 if a) = 1. (2'4)

For 1 €1 < k — 5, we define

Eiys = { €it5 ifaie2 =0; (2.5)

‘Ug‘.+s’vgl.+5+1 oo vl-‘+s if aiy2 = 1.
By (2.3), (2.4) and (2.5), we have

le(Eq)| =4by + by — 1+ 4 = dby + by + 3, |e(Es)| = 2ay + 1;

le(Eirs)| = aiy22t2 +1,i =1,2,--- ,k —5.
Let Ex4; be the path

Ek+l : ’ng_*_l’l)tk“.;.l . .v¢k+2.
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Then |e(Ek41)| = n — tky1 + 1 = g + 1. Therefore, the paths
E4yEs,...,Ex, Epys.

form a cycle of length

k+1 k=5
DTIEEN = D le(Birs)l + le(Brra)l + [€(Eg)] + le(Es|
ji=4 i=1
k—6 ]
= D (a2 + 1)+ (g+1) + (b2 + b1 +3) + (201 + 1)
t=0

= (p—q—(k+1)~2ay—4dby—by+14+k-5)+(qg+1)
+ (4by + b +3)+ (201 +1)
= p,
In a similar manner as we discuss E in the proof of Theorem 2.2. For any
choice of E4, there exist three distinct cycles with length p.
If k <p<2¥2%+k—1, then we have

k—6
p—k—l:Zai+32i+3+2a1 +4by + b, - 1.

i=0

Let Ey, ..., Ey be as defined in (2.3), (2.4) and (2.5). Therefore, the paths
EhyE%’“‘)E%:ek+b

form a cycle of length

k k-5
1+ ) |e(E))| > le(Eirs)| + le(Ea)| + le(Es| +1
i=4 =1
k-6 ]
Z(ai+32’+3 +1)+ (4b2 +b+3)+ (20,1 +1)+1
i=0
(p—k—1—2a1—4b2—b1+1+k—5)
(4b2 + by +3)+(201 +1)+1

p-

It

+

For any choice of Ej, there exist three distinct cycles with length p.

163



Denote the number of edges added to C,, by k;, then

ki <k+1<logan+3.

Consider 3 < p < k+1, let G% = G}[v1v2, v2v3, . .. ,vsv9, €1, €2, . .. y€k+1],
then |V(G2)| = k + 5. Let

fj = vlvtk-,-l—'lj’j = 1, 2, ces ,m-

where m = I_k—;‘;J If12 = t5 < tk+1-7m < ti13 = 1035, then fm+1 =
V112, fm42 = vive. If 9 < thyy7m < te = 12, then fr, = v1v12, fng1 =
U Vg.

Let G} be the graph with added edges f; for 1 < j<m+1(or1 <j <
m + 2) to G¥(see Fig. 2). If p= k + 1, then the paths

E47E51 €6:€75-..,€kt1-

form a cycle of length k + 1. For any choice of E4, there exist three distinct
cycles of length k + 1 if and only if E4 = Ey44, F5 = es.

fk+2-7/<p<k+8-7j,j=1,2,...,mand p# k +1, then the
paths
E4,E5786)e7’~"1ek—7j1fj'

form a cycle of length p = k + 1 + 4by + by + 221 — 7j,a1,by, b0 € {0,1},
where the value of a;,b; and b, dependent on the choices of Es and E4,
respectively. For any choice of E4, there exist three distinct cycles of length

p.

If3 < p < k+1-7m < 12, then we denote Hy = G3[v1vz, vaus, ..., v11012,
V19, V1 V12, €1, €2, €3, €4, €5] and easily verify that Hj satisfies at least three
cycles with length 3<p <k +1— 7m.

Denote the number of edges added to G% by ky, then ky < m +2 =
552 +2s g 42

Let H3 be a graph with at least three t-cycles for every 3 < i < n by
adding k; + ko edges to C,,. Thus

logon

l
5(H5)=n+k1+k2Sn+logzn+3+-7-+2=n+.8ﬂﬂ

+ 5.
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The following corollaries are immediate from Lemma 2.2 and Theo-
rem 2.6.

Corollary 2.7 When n is large,

n + logs(3n —5) — 1 < ¢(0,0,3,...,3) 5n+glogzn+5.

Applying the above construction to G3 by using the similar method as
we construct Hj, we shall obtain the following upper bound.

Figure 2: A construction of graphs having at least three t-cycles for 3 <
t < 1100.

Corollary 2.8 For a sufficiently large integer n,

8
9(0,0,3,...,3) < n+logen + 7log2loggn +0(1).

Theorem 2.9 When n is large,

5
9(0,0,4,...,4) <n+ zloggn+5.

Proof. In a similar manner as in the proof of Theorem 2.3, we construct
a graph which has at least four t-cycles for 3 <t < n. Define

tita = 9i+1 +i+3,i=12,...,k -3, =1.
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where k is a positive integer such that
262 Lk <n< 2kl 4k,

Then
k < logon 4+ 2.

Let G} be a graph which contains C,, and the following edges(see Fig. 3)

€) = V1V3, €2 = UgV4, €3 = UqV7,€4 = UsVg.
€it4 =‘Ug‘.+"vt‘.+5,i = 1,2,...,k—3.

If ty41 = n, then we don’t need to add ex,;. For convenience, we refer to
UnV] 8S ex41 in this case.

If2¥-2 4+ k <p<nand g=n—tgy, then ¢ > 1. We have
k=3
p—q—(k+1)=Za.~2'.
i=0
wherea; =0o0r 1,1 =0,1,...,k - 3.
Define B if 0
_ 31 llayp=U;
E3—{ E32 ifao=1. (26)

where E3;, E33 can choose either of the paths v;vov, and vivsvy and either
of the paths vyvav3vs and v v3vavy, respectively.

and B 'f 0
_ 41 I a; = U
E={ gn fuzd (2.7)

where Ey;, E42 can choose either of the paths v4v7vs and v4vsvs and either
of the paths v4usvgvrug and v4vrvesUs, respectively.

For 1 <i < k —4, we define

E.+4 — €it+d if Aiy) = 0; (2 8)
i} - - .
UtipaVtiga+1 ' Vtiys if aiy1 = 1.

By (2.6), (2.7)and (2.8), we have

|E(E3)| =24+ ap, |€(E4)l =2+ 20.1;
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le(Biya)l =1+ ai12°4,i=1,2,-- ,k— 4.
Let Ej4+; be the path

Ej41: Utrp1 Vtksr+1 - o Vo
Then |¢(Ek+1)| = n — tkt1 + 1 = g + 1. Therefore, the paths
Es,E,...,Ex, By,

form a cycle of length

k+1 k—4
STeEN = 3 le(Eira)l + e(Ba)| + le(Ba)| + le(Besr)]
j=3 i=1
k-3 )
= ) (a2 +1)+2+g+1
1=0

= p—-q—(k+1)+k—-2+2+q+1
= p.

In a similar manner as we discuss E; in the proof of Theorem 2.2. For
either choice of E3 and E,, there exist four different cycles with length p.

If k4+1 < p < 2¥2 4+ k, then we have

k-3 ]
p—k—1=Zai2'.
i=0

LetEs,..., Ex be as defined in (2.6), (2.7)and (2.8). Therefore, the paths
E3,Ey,...,Ek,ex41.

form a cycle of length

k k-4
1+ Y leE) = D le(Bira)| + le(EBa)| + |e(Ea)l +1
k-3
= ) (a2 +1)+2+1

i=0

= 14+p—-k—-1+k-2+4+2
— p,
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For either choice of E3 and Ej, there exist four different cycles with length
.

Denote the number of edges added to C, by ki, then

ki <k+1<logen +3.

Consider 3<p<k+1,let G2 = G1[v1v2, vous, v3v4, UsUE, UTUS, V13, U2
Vg, U5Us, U4V7, €5, €6, - - - , €k+1), then [V(G3)| =k + 4. Let

fj =’U1‘ng_“_4j,j = 1,2,...,m.
where m = [!‘-Z‘-é_l. If 8 = t5 < tgti—am < tg = 39, then fr4 =
V1Vg, fmi2 = v1va. If 4 < tpep1_7m < t5 = 8, then fr = vivs, frt1 = v10a.
Let G3 be the graph with added edges f; for 1 <i < m + lfor1<i<
m +2) to G4(see Fig. 3). If p = k + 1, then the paths

E3aE4,eS:eﬁa ve 3 €kl

form a cycle of length k + 1. For either choice of E5 and Ej, there exist
four distinct cycles of length k + 1 if and only if E3 = E3;, Eq = Ey;.

fk+2-4j<p<k+5-45,j=1,2,...,mand p# k + 1, then the
paths
E3, E4, €5,€6y..., ek_4j+1, fj.
form a cycle of length p = k — 45 + 2 + ag + 2a;, a9, a; € {0, 1}, where the
value of ag,a) dependent on the choices of E3 and Ej, respectively. For
either choice of E3 and Ey, there exist four distinct cycles of length p.

If3 <p < k+1—4m < 8, then we denote Hz = G3[v v, vous, ..., vrvs,
V104, V1Vg, €1, €2, €3, €4] and easily verify that Hj satisfy at least four cycles
with length 3<p<k+1—4m.

Denote the number of edges added to G2 by ky, then ky = m + 2 =
52 +2< & +1< Liogon +2.

Let H3 be a graph with at least four t-cycles for every 3 < i < n by
adding k; + ky edges to C,,. Thus

1
e(H3)=n+ki +ka<n+logon+3+ Zlog2n+2=n+§log2n+5.
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The following corollaries are immediate from Lemma 2.2 and Theo-
rem 2.9.

Corollary 2.10 When n is large,

7
n + loga(n — Z)+1 <¢(0,0,4,...,4) <n+ %loggn+5.

Applying the above construction to G3 by using the similar method as
we construct H}, we shall obtain the following upper bound.

Figure 3: A construction of graphs having at least four t-cycles for 3 <t <
180.

Corollary 2.11 For a sufficiently large integer n,

5
9(0,0,4,...,4) < n+logan + Zlogglogzn + O(1).

3 Conclusion

In this paper, we studied the extremal functions g¢(0,0,k,...,k) for
k = 2,3,4 and gave the partial results of Problem 1.2. The Problems 1.1
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and 1.2, which are so called the cycle-size packing and covering problems
and have been studied extensively, remain open. Now we present some of
the many corresponding(unanswered) problems and conjectures which have
been developed in the following:

Problem 3.1 ( [10]) Determine the mazimum number of edges in a hamil-
tonian graph on n vertices with no repeated cycle lengths.

Conjecture 3.2 ( [8])

lim f—("‘)—\/r_:” =24

n—00

Let f2(n) be the maximum number of edges in a 2-connected graph on
n vertices in which no two cycles have the same length.

Conjecture 3.3 ( [2]) limm‘%_—" =1

Conjecture 3.4 ( [5]) g(n) =n+ logan + O(1) as n — oo.
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