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Abstract

For n > 1, we let a, count the number of nonempty subsets S of
{1,2,3,...,n} = [n], where the size of S equals the minimal element of
S. Such a subset is called an extraordinary subset of [n] and we find that
a, = F,, the nth Fibonacci number. Then, for n > k > 1, we let a(n, k)
count the number of times the integer k appears among these a, extraor-
dinary subsets of n. Here we have a(n,k) = a(n—1,k)+a(n—2,k—1), for
n > 3 and n > k > 2. Formulas and properties for ¢, = Z:=1 a(n, k) and
Sn = Y pey ka(n, k) are given for n > 1. Finally, for fixed n > 1, we find
that the sequence a(n, k) is unimodal and examine the maximum element
for the sequence. In this context the Catalan numbers make an entrance.

1. Determining a,

For n > 1, let a,, count the number of subsets S of {1,2,3,...,n} = [n],
where the minimal element in S equals the size of S. Such a subset is called
an eztraordinary subset of (n). We find, for example, that as = 5 — for the
extraordinary subsets {1}, {2,3}, {2,4}, {2,5}, and {3, 4,5} of [5].

Both [1] and [2] have only {1} as an extraordinary subset, so a; = as =
1. For n > 3, consider the extraordinary subsets S of [n] according to
whether or not n € S. (i) If n ¢ S, then any of the a,—; extraordinary
subsets of [n— 1] prove to be extraordinary subsets of [n]. (ii) To obtain the
extraordinary subsets of [n] that contain n, start with each extraordinary
subset S of [n — 2], increase each element by 1, then add in the element n.
Since the situations in (i) and (ii) exhaust all possibilities and have nothing
in common, it follows that

Gp=0n_1+8n-2, a;=1, az=1, so

a, = F,,, the nth Fibonacci number.

(This example appears as Exercise 50 on Pp. 263-264 of [1].)
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2. How Many Times Does an Element Appear among the a,
Extraordinary Subsets?

For n > k > 1, let a(n, k) count the number of times that the element
k appears among the a, extraordinary subsets of [n]. The following table
provides the values for 1 < k <n <12.

n\k 1 2 3 4 5 6 7 8 9 10 11 12
1 1

2 1

3 1 1 1

4 1 2 1 1

5 1 3 2 2 2

6 1 4 4 3 3 3

7 1 56 7 5 5 5 5

8 1 6 11 9 8 8 8 8

9 1 7 16 16 13 13 13 13 13

10 1 8 22 27 22 21 21 21 21 21

11 1 9 29 43 38 34 34 34 34 34 34
12 1 10 37 65 65 56 55 55 55 55 55 55

Table 1

For n > 1, a(n,1) = 1 because {1} is the only extraordinary subset of
[n] of size 1. When n > 3 and n > k > 2, Table 1 suggests that

a(n,k) =a(n - 1,k) +a(n -2,k - 1).

This follows in general and is established by an argument similar to that
given in Section 1. If S is an extraordinary subset of [n], where k € S and
n ¢ S, then S is an extraordinary subset of [n — 1] and the number of times
this happens is a(n — 1, k). Otherwise, consider each of the a(n — 2,k — 1)
extraordinary subsets of [n — 2] which contain k — 1. For each such subset,
increase each element by 1 and then add in the element n. This then
provides the remaining extraordinary subsets of [n| which contain k. As
before, these two situations exhaust all possibilities and have nothing in
common, so a(n,1) =1, forn > 1, a(2,2) =0, and

a(n,k)=a(n—-1,k)+an-2,k—-1), n>3, n>k>2.

Searching for patterns in Table 1, our first result reads as follows:
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Theorem 1: For n > 2, a(n,n) = F_a.
Proof: Here we are counting the extraordinary subsets of [n] that con-
tain n. There is 1 extraordinary subset of size 2 — namely, {2,n}; ("7%)

such subsets of size 3 — the subsets {3,z,n}, where 3 < z < n; (*;°) such
subsets of size 4 — the subsets {4,y,2,n}, whered <y<z<mn;..., and,
(i) for n even, ("'ﬁ_;l)) = 2 — 1 such subsets of size § — those containing
2 and n, and 3 — 2 of the elements Z+L,...,n—-1
(ii) for n odd, (";;}2) = 1 such subset of size 21 — namely, the subset
{_-L’ 2 1o vn}

Consequently, since 1 = (" 3) it follows that

a(n,n) = ("53)+(n;4)+(n—5)+ +( _2)__ o, m even
3+ T+ () + - +(l;_) Fooon odd.

This follows from Lucas’s Formula (1876), which appears as Theorem 12.4
on Pp. 155-156 of [3]. It will prove useful in the next section.
As we continue to examine the results in Table 1 we observe the follow-

ing.

a(10,7) = 21=a(9,7)+a(8,6)=13+8=(8+5)+(5+3)
8 +2(5) + 3 = (%)a(8,7) + (})a(7,6) + (3)a(6,5)
a7, 7) + (3)a(6,6) + (3)a(5,5) + (3)a(4,4)

This example now leads us to our next result.
Theorem 2: For 0<r<n-—-k,

a(n,k)=f:(:) aln —r — 4,k — i),

i=0

Proof: The proof follows by induction. We see that the result is true
for r = 0, and follows for r = 1 from above. Assuming the result true for
a(n—1,k) and a(n —2,k—1), for 0 <r —1<n—k—1, we now find that

a(n,k) =a(n —1,k) +a(n — 2,k — 1)
_Z( ) (n=1)=(r—1) —4,k—1)

=0
1

'*'Z(r )a(" 2) —(r—1)—i,(k—1)—1)

1=
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_3 1(’",1) a(n —r —ik—1)

1

4 o
U
-~ O

-+

(rzl)a(n—r—i—lv(k_l)_i)

=0

r—1
+Z(7.”_1)a(n—r—(i—l)—l,(k—1)~(i_1))

@,

+<T_1)a(n—'r—(r—l)—l,(k—l)—('r—l))

=(”El) a(n—r,k)+§ ((Tzl) + (::11» a(n—r—ik—1)

r—1
+(r—1) a{n —2r,k —7)

Qs+t r-ir-0+ (ot

-3 (:)a(n-'r—i,k—i).

i=0

=

3. The Total Number of Elements in the a, Extraordinary
Subsets of [n]

For n > 1, let t, count the total number of elements (repeats are

counted) that occur among the a, extraordinary subsets of [n]. Hence,

=Y =1 a(n,k). Sot; =1, t; =1, and, from the results in Section 2, it
follows that for n > 3,

n

th=>_ a(n,k)

k=1
n—1
=a(n,1)+ Z [a(n —1,k) + a(n — 2,k ~ 1)] + a(n,n)
k=2
n—-1 n—1
=a(n—1,1)+> a(n-1,k)+_ a(n—2k-1)+a(n,n)
= k=2
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n-1 n—-2

= (a(n -1,1)+ Z a{n— l,k)) + Z a(n —2,k) + a{n,n)
k=2 k=1

> ol

n—
k=1
th1 +tno+a(n,n)=th_1 +1n_ 2+ Fn_2.

-

n—2
a(n—1,k) + Z a(n — 2,k) + a(n,n)
: k=1

The solution for this nonhomogeneous recurrence relation has the form
t" 1t where t%) denotes the homogeneous part of the solution and £{P)
the particular part. Following the techniques given in Chapter 7 of [1] and
Chapter 10 of [2], we find that the forms for t& and t& ar

t,gh) = Clan + Czﬂn and tslp) = Anoz" + Bnﬂ",

where a = k%@, the golden ratio, and 8 = 1%@ Substituting Ana™ +
Bng™ for t, in the given recurrence relation we have

Ana™ + Bnf" = A(n — 1)a™ 1 + B(n - 1)™!
+A(n—2)a™ 2+ B(n-2)""% + L(cz"‘2 + 8",
V5
from which it follows that Ana™ = A(n—1)a™~! + A(n—2)a""? + Zza"~?
and A = ‘—1?@@. A similar calculation leads to B = :11—‘0\5. So

tn = 1" + 8™ + (ﬁ——\/g) no® + (4—_—@> nB", and from

10 10
~1++5 -1-v5
1=t =cra+cB+ (T)OZ‘F (—16—-—) B, and
1=t2=c1a2+0252+( 1+\/_) (2)a? + (1—10—\/5) (2)82%, we have
c _3ve and ——%
1™ 75 2T T

Therefore we have

, 3B o 3 Loy VBan g
Theorem 3: t, = =5 @ Y'B ——lﬁn(a +ﬁ)+-ﬁn(a - 8"
3 1
=3Fn—ﬁnLn+§nFn,n21.
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(Here L, denotes the nth Lucas number. The Lucas numbers are defined
recursively by Lo =2, Ly =1, and Ly, = Lp_1 + L2, n > 2.)

4. Properties of ¢,

Using Theorem 3 we find the values of t,, for 1 < n < 20, to be as
follows:

n n t, n t, n [
1 6 18 11 324 16 4957
2 7 33 12 564 17 8462
3 3 8 59 13 977 18 14406
4 9 105 14 1685 19 24465
5 10 185 15 2895 20 41455

Table 2

The sequence t;,t2,t3,... appears as sequence A010049 in (4], where it
is referred to as the sequence of Second-Order Fibonacci numbers. Further,
tn counts the total number of summands (parts) in the compositions of
n + 1, where 1 is not allowed as a summand.

The entries in Table 2 now lead to the following seven results.

Theorem 4: For n > 1, t3, is divisible by 3.

Proof: First we observe that, for n > 1, L, = n+1 + Fno1. (This is
Corollary 55 on P. 80 of [3].) From this it follows that Lz, = Fy +
F,_ 1 = F3n+1 + (F3n+1 - an) = 2F3n+1 — F3,. This result, along with
Theorem 3, implies that

1 1 1
tan =3 (ngn — 1o Len + -2-ﬂF3n)
=3 (LR~ P @R - Fa) + inF
= 5 3n 10 3n+1 3n 2 3n
1 1
=3 (5) (F3n - nF3n+1 + 3nF3n) =3 (g) ((271. + 1)F3n - nF3n—l)-

Consequently, to prove this theorem we need to establish that ((2n +
1)F3, — nF3,_1) is a multiple of 5, for n > 1. We proceed by induction,
observing that for n = 1,3F3 — F; = 3(2) — 1 = 5. So we assume the
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result true for an arbitrary (but fixed) n (> 1) — that is, we assume that
((2n + 1)F3, — nF3p,_1) is a multiple of 5. For the case of n 4 1, we have

(2(n+1) + 1) F3(nt1) — (0 + 1) F3n1)-1
— (21 + 3)(3Fsn + 2Fsn_1) — (n + 1)(2Fsn + Foncr)
= (4n + 7)F3n + (3n+ 5)F3p-1
— (22 +1) + 5)Fan + (51 + 5)Fyn_y — 2nF3n_1
= (5Fsn + (57 + 5) Fyn_1) + 2((2n + 1) Fan — nFsn_1),

which is a multiple of 5 since ((2n + 1)F3n — nF3,_1) is a multiple of 5 by
the induction hypothesis. The result now follows for n > 1.

Theorem 5: For n > 1, ts, is divisible by 5.

Proof: Once again we shall use induction. Since ts = 10, the result is
true for n = 1. Assuming the result true for some arbitrary (but fixed)
n (> 1), we have t5, divisible by 5. That is,

3 1 1
tsn =3F5n - —(5n)L5n + ‘2'(5n)F5n
3 b5n 1 3
= (g ) an —_ 571(2F5n+1 - an) = (-5- -+ 371) an —_ 'nan.H

is divisible by 5. Continuing now with n + 1, we have

1
ts(ns1) = -F5(n+1) 758+ Dlsmeny + 35 (5)(" + D F5(n41)

3
= -5-F5n+5 - —(n +1)(2Fsnt6 — Fonys) + §(n +1)Fsnqs
(

29
™+ 10)F5n+1 + (—5- + 41'l) Fs,

+3(n+ 1)) Fanss — (14 1)Fnss

Glw oW

+3(n+ 1)) (5Fsn+1 + 3Fsn) — (n + 1)(8Fsn+1 + 5F5n)

= (10n + 10)F5n+1 —3nFsnpr + ('g' + Qn) Fs, — (5n — 4)F5,
= (10n + 10)F5n+1 +3 ((g + 3n) Fsn — nF5n+1) — (5n — 4)F5n,

where the second summand is divisible by 5 from the induction hypothesis.
Then by Theorem 16.1 on P. 196 of 3], for m > 1 and n > 1, F},, divides
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Frn. Consequently, Fs (= 5) divides Fs, and the summand (5n — 4)Fs,, is
divisible by 5. So the result for n + 1 now follows.

Theorem 6: For n > 0, tsn+q is divisible by 5.

Proof: If n = 0, then tsn4.q4 = t4 = 5. This establishes the initial case.
Assuming the result true for some arbitrary (but fixed) n (> 0), from The-
orem 3 the following is divisible by 5.

3 1 1
tonta =g Fonss = E(5n +4)Lsnyq + 5(5?1 +4)Fsn44q

3 1 1
= 5F5n+4 - E(5n +4)(2F5n45 — Fonya) + -2-(5n + 4) Fspig

4
= (31’1 + 3)F5n+4 - (Tl + g) F5n+5.

Replacing n with n + 1 we have
4
t(n+1)+4 =tsn49 = (3(n + 1) + 3) Fy(ny1y4q — ((n +1)+ ) F5ny1)45

=(3n 4 6)F5n10 — (n + ) (Fsn+9 + Fonts)

21 9
= (2n + —5—) Fsnio — (n + -5~) Fsnyis

21 9
(2 + ) (5F5n+5 + 3F5n44) — <n + g) (3F5n+45 + 2F5n44)

78
( 5 + 7n> F5n+5 + (4n + 9 F5n+4

78 12 4
“((Frm) (e %) -3(n+5)) o
+ (4n + 9)Fon 44
4
= (10n + 18)F5n+5 +3 ((3?7, + 3)F5n.|_4 - (n + g) F5n+5)
- 5nF5n+4.

Since Fy (= 5) divides F5n45 and the second summand is divisible by 5 due
to the induction hypothesis, it follows that ts,.4 is divisible by 5 for n > 0.

Theorem 7: For n > 1, tg, is even.
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Proof: Since ¢, = $F, — nln + §nF,, it follows that

1
Fen E(Gn)Len + -2-(6n)F5n

t6n

3
Fen — —n'(2F6n+l — Fsn) + 3nFgn

Il

3
5
3
5
= l[an(18n + 3) — 6nFgp+1], so
5ten = Fen(18n + 3) — 6nFgnq.

Then, as F; (= 2) divides F3j for k > 0, we have Fgn = F3(2n) divisible by
2. So 5tgn is even, and as ged(2,5) = 1, it follows that 2 divides tgn, for
n>1.

Theorem 8: For n > 0, tgn45 is even.
Proof: From t, = %Fn - I—’OnL,. + -;-nFn, it follows that

3 1 1
tonts = 5F6n+5 - E(Gn +5)Len+s + —(6n + 5)an+5
3
-5-F6n+5 - —6(611 + 5)(2F6n+6 — Fon+s) + 5 (671 +5)Fenss
1
g((18n + 18)F6n+5 - (671 + 5)F6n+6) SO

5t6n+5 = (18n + 18)an+5 - (61’1 + 5)F6n+6-

Since F3 (= 2) divides Fg for k > 0, we see that 5tgn 45 is even. Then, as
the ged(2,5) = 1, we have 2 divides tgn+s5 for n > 0.

Theorem 9: For n > 1, if ¢, is even, then n = 0 or 5 (mod 6).

Proof: From the recursive definition of the Fibonacci numbers we know
that F), is even if and only if n =0 (mod 3) (and so F}, is odd if and only
ifn=1o0r 2 (mod 3)). Since

3 1 1
tn = -5-F - -f(—]nLn + EnFn
3 1 1
= -5-Fn - —n(2Fn+1 - Fn) + ETLF"
3 1
5 5 )Fn 5nF,,.H, we have
5t 3(71- -+ l)F - nFn+1
With ¢,, even, it follows that 3(n + 1)F;, — nF,4, is even.

(1) If n = 1 (mod 6), then n = 1 (mod 3) and n +1 = 2 (mod 3),
so both F,, and Fy,,, are odd. Also, since n = 1 (mod 6), n is odd, so
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(n+1) is even. Then as nF,4, is odd and 3(n + 1)F, is even, it follows
that 3(n + 1)F, — nFyn4; is odd — contradicting 5t, being even.

(2) If n = 2 (mod 6), then n = 2 (mod 3), so F, is odd and F,,, is
even. Therefore, with n even, once again we have 3(n + 1)F,, — nF,;; odd
— contradicting 5¢, being even.

Similar arguments for n = 3 (mod 6) and n = 4 (mod 6) likewise con-
tradict that 5t,, is even.

Hence it follows that n =0 or 5 (mod 6).

From Theorems 7, 8, and 9 we now conclude this section with the fol-
lowing,.

Theorem 10: Forn > 1, t, is even if and only if n =0 or 5 (mod 6).

5. The Sum of the Elements in the a,, Extraordinary Subsets
of [n]

Forn > 1, let 5, denote the sum of all the elements (repeats are counted)
that occur among the a, extraordinary subsets of [n]. So for a fixed value
of n,s, = Y p_, ka(n, k). We find, for instance, that s; = 1, s, = 1, and
s3 = 6. To obtain a formula for s, we consider the following for n > 3:

]
[\’]:

Sn a(n, k) = Zk(an-—l k) +a(n—2,k—1))+nF,_,
k=1 k=1
=) ka(n—1,k)+ Y ((k=1)+1)a(n -2,k — 1) + nF,_,.
k=1 k=1

Since a(n — 1,n) = a(n — 2,n — 1) = a(n — 2,0) = 0, we find that

n-—1 n-1
Sp = Zka(n—1,k)+Z(k—1)a(n—2,k—-1)
k=1

k=2
n—1
+ ) a(n-2,k—1)+nFn—2
k=1

n—1 n—2 n—-1
= Zka(n—l,k)+Zka(n—2,k)+Za(n——2,k—1)+nFn_2
k=1 k=1 k=1

=8p-1+ Sp—2+ tn-—? +nF,_2
1
10(

1
=851+ Sp—g — m(n —2)L, o+ E(lSn —4)F, 5, n>3.

1
=Sp-1+Sn—2+ ¢ Fn—z —2)Ln2+ §(n —2)Fh_2+nFL_
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The form of the solution here is
Sn = 1™ + 8" + Ana™ + Bnf® + Cn?a™ + Dn?p",

where the particular part is Ana™ + Bnf8" + Cn%a™ + Dn?p".
Upon substituting Ana™ + Cn2a™ into the recurrence relation

1 neo 1 a™?
Sn =sn_1+s,,_2—-1—0(n—2)a +m’(15n—4)—\/?

vE-2) ., BvE-1n\ .,
—sn—1+5n—2+(—57—5'— 01 + —T a )

we learn that
Ana™ + Cn2a™
=A(n-1)a" 1 +Cn-1)2a" 1+ A(n-2)a"" 2+ C(n - 2)2a" 2
‘/5 -2 n—2 (3\/5 - l)n n—2
= (—g\—/-—s—' o + —IT— a’™%, so
Ano? + Cn2%a® = A(n—1)a+C(n—1)%a + A(n - 2) + C(n — 2)?

+ (\/5 - 2) + ((3\/5 - _1)) n, from which it follows that

5v5 10
7 3V5 1 25
A= —’5—0-*'%'311(10——?64'?.
Similar calculations give us
7 35 1 25
B=-f-2 ™P=" -3
7 35 7 35
. n n — n —— n
So s, =c1a” +c2f8 +( 50-%-—25 )na +( 50 25 ) B
1 2\/3 2. n 1 2\/3 2pn
+ ( 10+¥)"°‘ +(‘m‘¥ WA
From s; =1 and sp = 1, it follows that ¢; = %‘55 and cp = —%455, and
this now provides the following.
Theorem 11: Forn > 1,
_ 6 3 7 2 5 1 ,
Sp = %Fn + -5-nFn - 50nLn + 5n F, mn L,.
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6. Properties of s,

Using Theorem 11, we find the values of s,, for 1 < n < 20, to be as
follows:

n n 8y n Sn n Sn

1 6 66 11 2202 16 49338
2 7 142 12 4188 17 89585
3 6 8 200 13 7871 18 161646
4 9 582 14 14639 19 290036
5 10 1141 15 26982 20 517768

Table 3

The results in Table 3 suggest the following.

Theorem 12: For n > 1, (a) san is divisible by 6; and, (b) s4, is even.
Proof: (a) From Theorem 11 it follows that

6 3 7 2 1
83, = éngn + —(37’1 Fs, — %(371)113” + —(3n)2F3n - ib-(3n)2L3n

6 18n? 2ln  9n?
(25+—+ )F3n (50 )LSn

Since L3, = 2F3,41 — F3,, we find that

6 111n  45n 21n 9n
83n—(§+w+ 10)F3n 2( +10>F3n+l’50

5053, =(225n° + 111n + 12) F3,, — 2(45n° + 21n) Fipn ).

We need to show that (225n% + 111n + 12)Fy, — 2(45n2 + 21n)F3,,, is
divisible by 12 for n > 1. For then [50s3, divisible by 12| =
[25s3n divisible by 6] => [s3, divisible by 6, since the ged(25,6) = 1].
Once again, we use the result of Theorem 16.1 on P. 196 of (3] and note
here that F3 (= 2) divides Fs,, for n > 1. Further, (225n2 + 111n + 12) =
3(75n% + 37n + 4). If n is even, then (75n2 + 37n + 4) = n(75n + 37) + 4
is even. For n odd, 75n2 and 37n are both odd, so 75n2 + 37n is even, as
is 75m% + 37n + 4. Consequently, (22512 4 111n + 12)F3,, is divisible by
12, for n > 1. Also, 2(45n2 + 21n) = (2)(3)(n)(15n + 7), which is divisible
by 12 when n is even. If n is odd, then 15n + 7 is even. Consequently, for
n > 1, 2(45n2 +21n) F3, . is divisible by 12. Therefore, for n > 1, 50s3, =
(225n2 + 111n + 12)F3, — 2(45n2 + 21n)Fa,,; is divisible by 12, and it
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follows that s3, is divisible by 6.
Proof: (b) Again from Theorem 11 we start with

1 2
— 35(4n)’Lan.

Since L4p = Fans1 + Fan—1 = 2Fyn41 — Fyn, it follows that

6 12 32n? 1 8n?
S4n = ( + __7_7: + '_n—) Fy, — ( dn + —T-l—) (2F4n+1 - F4n)

6 3 7 2
S4n = 551"'41. + B‘(4n)F4n - '56(4")L4n + 3(4")2F4"

25" 75 5 25 ' 5
_ (8 + T4n + 40n? B — 28n + 16n2 P o
~\25" 25 5 an 25 5 dntls

2554n = (6 + 74n + 200n%) Fy, — (28n + 80n?) Fant1,

which is even. Consequently, since the gcd(2,25) = 1, we have s4, even.
7. The Unimodality of the Numbers a(n, k)

Examining the binomial coefficients in a fixed row of Pascal’s triangle,
we find that the numbers increase to a maximum — that maximum occur-
ring once for n even and twice for n odd. Following (the last occurrence
of ) the maximum, the numbers then decrease. Consequently we say that
for a fixed integer n > 0, the binomial coefficients (3), (7), ..., (}) form a
unimodal sequence. In general, a sequence zg, 21, . . ., Zr, is called unimodal
if there is an integer v, where (i) 0 < r < n; (i) zo L 21 <22 < ... < 2y
and (iii) 2, > Zr41 2 Tr42 2 ... 2 Tn.

The results in Table 1 suggest that for a fixed positive integer n, the
sequence a(n,1),a(n,2),...,a(n,n) is unimodal. In this section we shall
establish that this is true for all n. Along the way various properties of the
numbers a(n, k) will come to the forefront. We start with the following.

Theorern 13: Let n = 2i, fori > 1. If i+ 1 < k < n, then a(n,k) =
Fn—2.
Proof: Here we find that

n—4 n->5 n—=6 n—(i-1)
ky=1 ..
mH) +( 1 )*( 2 )+( 3 )* *( i—2 )
where (i) 1 accounts for the extraordinary subset {2, k}, (ii) ("7*) accounts
for the extraordinary subsets containing 3 and k and any element in [n],
other than 1,2,3,k, and (iii) ("’iff;l)) accounts for the extraordinary sub-

sets that contain k and i, and any i — 2 of the i — 1 (= n — (i — 1)) elements
in [n], excluding 1,2,3,...,i, and k. Consequently, by Lucas’s Formula
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(Theorem 12.4 on Pp. 155 — 156 of [3]),

oe=(57) (1) (50039 -+ (1)

n_9 .
_’Z n=3)-7\ _ o _
- j = (n-3)+1 = £n-2.

=0

This explains why the entries in the second half of each row of Table 1, for
n even, all equal F,,_s.

Referring back to Theorem 13, we now want to know what happens
when k = 1.

Theorem 14: Let n = 2k, for k > 1. Then a(n,k) = F,_5 — 1.
Proof: Here

a(n, k) =a(2k, k)

() () G50)

where (}~;) accounts for the extraordinary subsets of [n] that contain
k —1 and k, and any k — 3 of the n — k(= k) elements of [n] exclud-
ing 1,2,3,...,k—2. The summand (Z:f) counts the extraordinary subsets
of [n] where k is minimal.

o e (2 = (20) = (22) + (20 = (55°) + (58, it fllows
al

on=("0 ) () () (17) -+ (23)
L))

E(E )

=0
-2 .
((n —j) -J

3
nN

[CC IR

) +1= F(n_.3)+1 +1=F, o+1.
o

<.

Turning now to the case where n is odd, we find comparable results in
Theorems 15 and 16.

Theorem 15: Letn = 2i—1,fori > 1. Ifi < k < 2i — 1, then
a(n, k) = Fp_,.
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Proof: (i) For i +1 < k < 2i — 1, it follows that ¢ 4+ 1 < k < 24, so from
the result in Section 2, we find that

aln, k) = a(2i — 1,k) = a(2i, k) — a(2(i — 1), k — 1).
Then from Theorem 13 we have
a(n, k) = Fai_g — Fyi_1)—2 = Foip — Faieg = Fai—3 = Foi_1y-2 = Fn-2.

(i) When k = 4, the result in Theorem 14 shows us that a(n, k)
a(2i — 1,3) = a(24,1) — a(2(i — 1), — 1) = (Fai—2 + 1) — (Foi-1y-2 + 1)
Fi—g — Faiq = Fai_3 = Figi—1y-2 = Fna.

i

Theorem 16: For n =2k—1, where k > 2, a(n,k—1) = Fo_a+(k—2).

Proof: This result follows by induction on k. When k£ =2 (and n = 3),
an,k—1)=a(3,1)=1=FR=FR+0=F+(2-2)=F,_2+(k—2).
Assuming a(n,k — 1) = a(2k — 1,k — 1) = F,,_o + (k — 2) for some fixed
(but arbitrary) k(> 2), thenfor k+1land n=2(k+1)—-1=2k +1, we
have

a(n,(k+1)—-1) =a(n,k) =a(n—1,k)+a(n—2,k—1)
—a(2k, k) +a(2k—1,k—1)
= (Fin-1y-2 + 1) + (Fin-2)-2 + (k — 2)),

where the first summand follows from Theorem 14 and the second from the
induction hypothesis. Consequently,

a(n, k) = (Fp—a+ Fpg)+(k—=1)=Faa+ (k—1) = Faeo + ((k+1) - 2),
and the result follows for k£ > 2 (and n = 2k — 1).
Our next three results will help to verify that, for m even, the entries
a(3m, 1),a(3m, 2),a(3m, 3),...,a(3m, 3m)
form a unimodal sequence where the maximum value is
a(83m,m) = a(3m,m + 1).

Theorem 17: For m > 1, a(3m,m) = a(3m,m + 1).
Proof: We find that

a(3m,m) =1 + (3m1_ 4) + (3m2_ 5) + (3m3_ 6) +oet

Im—m + 3m—-m
m-—3 m-1)
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where (i) the summand 1 accounts for the extraordinary subset {2, m}, the
only subset of [3m] which contains m and where 2 is minimal; (ji) the sum-
mand (3"‘1"4) accounts for the extraordinary subsets of [3m] which contain
3, m, and one of the elements from [3m], other than 1,2, 3, m; (iii) the sum-
mand (*7;®) accounts for the extraordinary subsets of [3m] of size 4, which
contain m; (iv) the summand (*7-7") accounts for the extraordinary sub-
sets of (3m) of size . — 1, which contain m; and, (v) the summand (32:;")
accounts for those extraordinary subsets of [3m], where m is minimal.
Meanwhile, a similar argument provides

a(8m,m+1) =1+ (3ml— 4) + (3m2— 5) + (3m3— 6) +oeet
(3:::;71) + (3m ,_n(in; 1)) + (3m —:nm + l)).

From the last two summands in a(3m, m + 1), we now find that

3m - (m+1) 3m—(m+1) 2m -1 2m -1
+ = +
m—2 m m—2 m
_[(2m -1 + 2Zm-1\ [/ 2m \ _ (3m-m
T\m-2 m-1)" \m-1/ " \m-1)
the last summand in a(3m, m). Consequently, it follows that

a(3m,m) = a(3m,m + 1), for m > 1.

Theorem 18: Form >2and 1 <k <m—1, a(3m,k) < a(3m, k +1).
Proof: For k = 1 (and m > 2), a(3m,1) = 1 < 3m — 2 = a(3m,2), as
the extraordinary subsets of [3m] which contain 2 are those where 2 is
minimal. These subsets consist of 2 and one other element selected from
[3m] - {1,2}.

For k =2 (and m > 3),a(3m,2) =3m -2 =1+ (3m-3) < 1 +
(3m — 3)(§). Now ((m —1) > k) = (m 2 3) = ((3B=4) > §). So
a(3m,2) <1+(3m=3)(3) < 1+ (3m-3)(38~1) = 1+ (*%%) = a(3m, 3).

For k > 3 (and m > 4), a(3m, k) = 1+ (37 + 35) +- -+ (020 +
(3,:"_'1"), where (i) the summand 1 accounts for the extraordinary subset
{2, k}, the only subset of [3m] which contains k and for which 2 is minimal;
(ii) the summand (*%%) accounts for the extraordinary subsets of [3m] of
size 3 which contain 3, k, and one of the elements from [3m]—{1, 2, 3, k}; (iii)
the summand (*7,°) accounts for the extraordinary subsets of [3m] of size
4 which contain 4, k, and two of the elements from [3m| — {1, 2,3, 4, k}; (iv)

the summand (72*) accounts for the extraordinary subsets of (3m] which
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contain the minimal element k — 1, alon% with k, and & — 3 elements from
[3m] — [k]; and, (v) the summand (**3") accounts for the extraordinary
subsets of [3m] where k is minimal.

Meanwhile, for k > 3 (and m > 4),
a(3m k+1) _ 1+(3m—4) (3m—5)+ +(3m— )+(3m (k+l))+(3m—(k+l))
where (i) the summand 1 accounts for the extraordinary subset {2,k + 1},
the only subset of [3m] which contains k+1 and for which 2 is minimal; (ii)
the summand (*7~*) accounts for the extraordinary subsets of [3m] of size 3
which contain 3, k+1, and one of the elements from [3m]—{1, 2, 3, k+1}; (iii)
the summand (3”‘"5) accounts for the extraordinary subsets of [3m] of size
4 which contain 4, k+1, and two of the elements from [3m]—{1,2,3,4,k+1};
(iv) the summand (3"’“'("“)) accounts for the extraordinary subsets of [3m]
which contain the minimal element k, along with k+ 1, and k — 2 elements
from [3m] — [k + 1]; and, (v) the summand (3’"‘('”'1)) accounts for the
extraordinary subsets of [3m] where k + 1 is minimal.

Consider the last summand in a(3m, k) —namely, (*7*7 ). We find that

) = () + (Y.

For the last two summands in a(3m, k + 1) we have

3m;(k2+1)) (3m—(k+l)) - 3mk:k2—1) +(3m—kk—l).

From the (3m — k — 1)th row of Pascal’s triangle, where 1 < k < m —1, the
values of the binomial coefficients increase, so it follows that (Sm'k 1) <

3""'“'1). Consequently, for m > 2 and 1 < k¥ < m — 1, a(3m,k) <
a(3m, k+1).
Focusing on the sequence a(3m, 1), a(3m, 2),...,a(3m,3m), for m even,

we see that for m = 2, the resulting sequence — namely, 1,4,4,3,3,3 —
is unimodal, with maximum value a(6,3) = a(6,2) = 4. Our next result
helps to answer what happens when m > 4.

Theorem 19: Let m be even with m > 4. Then for m+1 < k <
-1, a(3m, k) > a(3m, k + 1)
Proof Form+1<k< -1,

a@m ;) = 14 (7 + (79 + -+ O + €03,

where (i) the summand 1 accounts for the extraordinary subset {2, k}; (ii)
the summand ( ™=4) accounts for the extraordinary subsets containing

3, k, and one element from [3m) — {1,2, 3, k}; (iii) the summand (*"°) ac-
counts for the extraordinary subsets containing 4, k, and two elements from
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[3m] — {1,2,3,4,k}; (iv) the summand (*7*7*) accounts for the extraordi-
nary subsets containing k — 1, k, and k — 3 elements from [3m] — [k]; and,
(v) the summand (3"‘“") accounts for the extraordinary subsets where k is

minimal.
Meanwhile, for m +1 < k < & 2 — 1, a similar argument leads to

3m—4 3m -5 Im -k
a(3m,k+l)=l+( 1 )+( 9 )+---+<k_3)+

(3'm ;£k2+ 1)) + (3m _](ck + 1)).

So the result will follow if we can show that (377%) > (3m'(k+l)) +

(=), since (37F) = (3% + (*™751), we need to determine
when (3""“'c > (3”"("“)) We find that

In—k-1 I3m—(k+1
(") () =
(3m -k -1)! (3m—-k—1)!
(k—1)1(3m — 2k)! ~ k!(3m — 2k — 1)!
k'(3m — 2k — 1)! > (k — 1)!(3m — 2k)! <=
k>(@Bm—-2k) <= 3%k>3Im<=k>m.

Since m+1 < k, it follows that k£ > m. But to guarantee all of the logi-
cal equivalences we need to have 3m —2k—1 > 0 — that is, we need to have
3m—12>2kork < 5(3m—1) = 32 — 1. This follows because k < 3 —1.
Consequently, all of the above mequalltles are valid in reverse order, from
which it follows that a(3m,k) > a(3m,k+ 1) form+1<k <3 1.

The results in Theorems 13,14,17,18, and 19 now lead to the following.

Theorem 20: For m even, with m > 2, the 3m entries
a(3m,1),a(3m,2),...,a(3m,3m)

form a unimodal sequence with maximum value a(3m, m + 1) = a(3m, m).

Before proceeding, let us demonstrate the result of Theorem 20 for the
case where n = 12. From Theorem 13, with ¢ = 6, we have a(12,k) =
Fia_2 = Fjo = 55, for 7 < k < 12. Theorem 14, with i = k = 6,
tells us that a(12,6) = Fla_2+1 = Fjgo+1 = 56 > 55 = a(12,7).
When m = 4 in Theorem 19, we learn that a(12,k) > a(12,k + 1) for
all 5 < k < 5, so we have a(12,5) > a(12,6). Theorem 17 tells us that
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when m = 4, a(12,4) = a(12,5). Finally, Theorem 18, for m = 4, implies
that a(12,1) < a(12,2) < a(12,3) < a(12,4).

It then follows that the sequence a(12,1),a(12,2),...,a(12,12) is uni-
modal, and that a(12,4) = a(12,5) is the maximum value that occurs in
the sequence.

To deal with the case where m is odd, we need the following result,
comparable to Theorem 19.

Theorem 21: Let m be odd with m > 5. Then for m+1 < k <
Im=l a(3m, k) > a(3m, k +1).
Proof: The proof here is similar to the one given for Theorem 19.

The results in Theorems 15,16,17,18, and 21 now lead to the following.

Theorem 22: For m odd, m > 1, the 3m entries
a(3m,1),a(3m,2),...,a(3m,3m)

form a unimodal sequence with maximum value a(3m,m + 1) = a(3m, m).

Now we’ll consider the case where n = 3m+1. The results in Table 1 (of
Section 2), for m = 1,2, and 3, demonstrate that the sequence in the rows
for n = 4,7, and 10, are unimodal with a maximum value that only occurs
once in each sequence. We shall prove this result for m > 4 by considering
the following eight theorems.

Theorem 23: Form > 1, a(3m+1,m) =a(3m + 1,m + 2).
Proof: From Table 1 we see that this result is true for m = 1,2, and 3,
so we shall consider m > 4. We find that

a(3m+1,m) =1+ ((3m "'11) - 4) + <(3m +21) - 5) N

+ ((3m+1) —m) + ((3m+1)—m),
m—3 m-—1
where (i) the summand 1 accounts for the extraordinary subset {2,m},
the only subset of [3m + 1] which contains m and where 2 is minimal; (ii)
the summand (®™*1~4) accounts for the extraordinary subsets of [3m +1]
which contain 3, m, and one of the elements in [3m+ 1}, other than 1,2, 3, m;
(iii) the summand (®™*1)=™) accounts for the extraordinary subsets of

[3m +1] of size m — 1, which contain m; and, (iv) the summand (©®7+1)-™)
accounts for the extraordinary subsets of [3m + 1] where m is minimal.
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A similar argument provides

aBm+1,m+2)= 1+ ((3m+11)_4> + ((3m+21)_5) 4+

+ ((3m"-|l-i)3— m) + ((3m +n:)_—2m - 1) + ((3m +nt)_—1m - 2)
(om0

When we examine the last summand for a(3m + 1,m), we see that
Bm+1)—-m\ (2m+1\ [ 2m + 2m
m-—1 “\m-1/" \m-1 m—2
_{ 2m + 2m —1 + 2m -1
T \m-2 m—1 m+1

=<(3m+1)—m—1)+((3m+1)-m_2)

m—2 m-—1

(),

the last three summands in a(3m + 1, m+2). This establishes that a(3m +

1,m)=a(B3m+1,m+2).

But how is a(3m + 1, m + 1) related to a(3m +1,m)? The following will

answer this question and show us one way that the Catalan numbers arise
from the entries in Table 1. (The Catalan numbers appear as sequence

A000108 in [4]. Numerous examples where these numbers occur can be

found in [5,6].)

Theorem 24: For m > 1,a(3m + 1,m + 1) > a(3m + 1,m). In fact,

a(3m+1,m+1) —a(3m +1,m) = 717 ("), the mth Catalan number.
Proof: Here we find that

a(3m+1,m +1) —a(3m +1,m)
_ ((3m+1) —(m+1)) 4 ((3m+1)—(m+1)) _ ((3m+1)—m)

m—2 m m-—1

2m + 2m 2m+1\  [2m 2m \ 1 2m
m-2 m m-1/ \m m-1/" m+1\m/’
From Theorems 23 and 24 we also learn the following.

Theorem 25: For m > 1,a(3m +1,m+1) > a(3m + 1,m + 2).
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The next result is comparable to Theorem 18.

Theorem 26: Form > 2and 1 < k <m—1,a(83m + 1,k) < a(3m +
1,k +1).

Proof: The results in Table 1 confirm that this is true for the cases
where m = 2 and m = 3. For m > 4, we need to compare

aBm+1,k) =1+ ((3m+1)—4> + ((3m+1)—5) o d

1 2
((3mk+_1:)3 - k) s ((3mk+—li - k) i
aBm+1k+1) =1+ ((3m+11) _4) + ((3m+21)‘5) bt
((I,’omk+_1:)3 - k) + ((3m + ::)_—-2(k + 1)) + ((3m + l)k— (k+ 1)).

Comparing the last summand in a(3m + 1, k) with the last two summands
in a(3m + 1,k + 1), we find that

((3mk+_li - k) _ (S;Cn_—lk) + (3:1_—;)

=((?»m+1) —(k+ 1)) N ((3m+1) —(k+ 1))

k-2 k-1
< ((3m + ’16)_—2(k + 1)) + ((3m + l)k— (k+ 1))’

since (¥m+D-(k+1)) < ((3m+l)k"(k+l)), for 1 < k < m — 1. Consequently,
form>2and1<k<m-1,a3m+1,k)<a(Bm+1,k+1).

Focusing now on the sequence a(3m + 1,1),a(3m + 1,2),...,a(3m +
1,3m + 1), for m even, we see that for m = 2, the resulting sequence —
namely, 1,5,7,5,5,5,5 — is unimodal, with maximum value a(7,3) = 7.
As with Theorem 19, our next result helps to answer what happens when
m 2 4.

Theorem 27: Let m be even with m > 4. Then for m+1 < k <
%’2 —1,a3m+1,k) > a(3m+1,k+1).
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Proof: Form+1<k <32 -1,

a(3m+1,k)=1+((3m+1)_4) + <(3m+1)‘5)+...+

2
((3mk+—1; -1 k) N ((3mk+—li - k)’ while
a(B3m+1,k+1)=1+ ((3m+11) —4) + ((3m-|-21) _5) 4ot
<(3mk+_1; - k) + ((3m +;)——2(k + 1)) + ((3m + 1)k- (k+ 1)).

As in the proof of Theorem 19, here the result will follow if we can show
that (GmHD=F) > (GmtD-(k+D)) | (BmiD=(k+D)) - Ginge ((BmtD-ky _

(@m+D-Ce+D)y | (®m+D—(+1)) 'we need to determine when (Cma kD) >
((3m+l)k-(k+1)), We find that

3m+1)— (k+1 3m+1)— (k+1
(( k)_ 1( )) S (( )k ( )) —
(3m — k)! (3m — k)!
(k—D)IBm—2k+1)! ~ kI(3m — 2k)!
k{(3m — 2k)! >(k — 1){(3m — 2% +1)! —>

k>0Bm—-2k+1) e

3k>3m+14=>k>m+%.

Since m + 1 < k, it follows that &k > m + 3 1. But in order to guarantee
all of the logical equivalences we need to have 3m — 2k > 0 — that is,
we need to have 3m > 2k or k < 3;" This follows because k& < 3;" -1
Consequently, all of the above inequalities are true in reverse order from
which it follows that a(3m+1,k) > a(3m+1,k+1) form+1 <k < 3 -1

The next result now follows from Theorems 15,16, 23, 26, and 27.
Theorem 28: For m even with m > 2, the 3m + 1 entries a(3m +
1,1),a(3m + 1,2),...,a(3m + 1,3m + 1) form a unimodal sequence with

maximum value a(3m + 1,3m + 1).

To deal with the case where m is odd we need the following result, com-
parable to Theorem 21.
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Theorem 29: Let m be odd with m > 5. Then for m+1 < k <
dm=l a(3m+1,k) > a(3m+1,k+1).
Proof: The proof here is similar to the one given for Theorem 27.

The results in Theorems 13, 14, 23,24, 25,26, and 29 now lead to the
following.

Theorem 30: For m odd, m > 1, the 3m +1 entries a(3m+1,1),a(3m+
1,2),...,a(3m+1,3m+1) form a unimodal sequence with maximum value
a(3m+1,m+1).

Finally, let us consider the case where n = 3m + 2. The results in Ta-
ble 1, for m = 1,2, and 3, demonstrate that the sequences in the rows for
n = 5,8, and 11, are unimodal with a maximum value that only occurs
once in each sequence — at the entry a(3m + 2,m + 1). That this is also
true for m > 4 follows from Theorems 20, 22, 28, and 30, and the result in
Section 2. Consequently, the following two results complete this section.

Theorem 31: For m > 1, the 3m + 2 entries a(3m + 2,1),a(3m +
2,2),...,a(3m+2,3m+2) form a unimodal sequence with maximum value

a(3m+2,m+1).

Theorem 32: For n > 1, the n entries a(n, 1),a(n,2),...,a(n,n) form a
unimodal sequence with maximum value

a(n,g) (=a(n,§-+1)),n50 (mod 3)

a(n,n_1+1),nz-1 (mod 3)

3

a(n,n;2+l),n52 (mod 3).

8. Further Instances where the Catalan Numbers Arise

In Theorem 24 we found that for m > 1, a(3m+1, m+1)—a(3m+1,m) =
L (>™), the mth Catalan number. From Theorem 23 it then follows that

m+1
form>1,a(3m+1,m+1)—a(3m+1,m+2) is also ;—n—%(f;") Our next
result provides two more instances where the Catalan numbers arise.
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Theorem 38: For m > 1,

1 2m
3 - = — i
aBm+2,m+1)—a(3m+2,m+2) m+l(m)’ while
_ 1 2(m+1)
a(Bm+2,m+1)—a@Bm+2,m)= ((m+1)+1)< m 41 )

Proof: After eliminating common summands we find that

a(3m+2,m+1)—a(Bm+2,m+2)

“(Mtn i)

(3mjn2-|).1 m+2)+((3m+72n+§m+2)))

-(

() - (G )+ (o)
() ()= ((2) + ()
- (2;") - (ﬂf’:l) = — 1( m) the mth Catalan number, while

a(3m+2,m+1)—a(Bm+2,m)
EREE
=(Gra) () - () ()
_ (2mm+ 1) 3 (2;:1_4—11)

1 (2(m+1)

“m+ D1\ m+1 ), the (m 4 1)st Catalan number.

Lastly, upon examining three consecutive entries in certain columns of
Table 1, we have the following.
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Theorem 84: Form > 1,

a(3m ~ 1,m) + a(3m, m) —a(3m + 1, m)

=-1—(2m>, while
m+1l\m

a(3m+1,m+1)—aBm,m+1)—a(Bm-1,m+1)
_ 1 (Z(m—l))
T((m-1)+1)\ m-1 /"

Proof:
a(3m — 1,m) + a(3m, m) — a(3m +1,m)
=a(3m — 1,m) + a(3m, m) — (a(3m,m) — a(3m — 1,m - 1))
=a(3m —1,m)—a(B3m—-1,m—1)
=a(3(m-1)+2,(m-1)+1)—aB3(m—-1)+2,m-1)

T m+1\m

from the second result in Theorem 33,

- (2m), the mth Catalan number,

while
aBm+1,m+1)~-a(B3m,m+1)—a(B3m—1,m+1)
=(a(B3m,m+1)+a(3m - 1,m)) —a(3m,m+ 1) —a(B3m - 1,m+1)
=a(3m—-1,m) —a(3m —-1,m+1)
=a(3(m-1)+2,(m—-1)+1)—-a(B3(m—-1)+2,(m—-1)+2)
_ 1 (Z(m -1)
(m-1)4+1\ m-1
from the first result in Theorem 33.

), the (m — 1)st Catalan number,
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