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Abstract The authentication codes with arbitration are said to be A2-codes.
Two constructions of A2-codes with secrecy from polynomials over finite
fields are constructed to prevent communication systems from attacks which
come from the opponent, the transmitter and the receiver. Parameters of the
codes and probabilities of successful attacks are also computed. At last, t-
wo constructions are compared with an known one. It is important that a
source state can't be recovered from the message without the knowledge of
the transmitter's encoding rule or the receiver’s decoding rule. It must be
decoded before verification.
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1 Introduction

As early as 1974, Gilbert, Macwilliams and Sloanel!l firstly constructed the
authentication codes based on projective geometry over finite fields. In 1985, the
information theory of authentication system was introduced by Simmons!?!, who
established three participants certification models, which include the transmitter,
the receiver and the opponent based on trust between the transmitter and the re-
ceiver. They share common secret keys.

Confidentiality and authentication are two important aspects of information

security. For authentication codes, there are authentication codes with secrecy
and those without secrecy. In an authentication code without secrecy, a source
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state can be recovered from the encoded message without any secrecy keys, which
is only used for authentication. For example, Wang and XingP®* structured two
constructions based on rank distance codes and algebraic curves over finite fields,
respectively. In an authentication code with secrecy, a source state is hidden in
the encoded message and can’t be recovered without the secret key, which is used
for both confidentiality and authentication. For instance, Stinson!5! introduced a
construction based on combinatorial designs, and Dingfs] constructed some codes
with secrecy based on trace functions.

But sometimes both the transmitter and the receiver are dishonest. In this case,
they need an arbiter, an honest player, know all informations of the system. But
he doesn’t take part in communication and only adjust the dispute between them.
As early as 1980’s, Simmons!”-8} proposed authentication codes with arbitration to
solve the distrust between the transmitter and the receiver. Adding an arbiter, four
participants certification models were established, which are called authentication
codes with arbitration, or A2-codes for short. )

In 1990’s, Johansson!®:'%l derived entropy based lower bounds on the cheating
probabilities and the sizes of keys. In 2001, Kurosawa and Obanal'!! given combi-
natorial bounds for them. In recent years, Gao, Chen, Nan and others!'2~!%) have
constructed a lot of A2-codes based on linear codes, projective geometry, singular
symplectic geometry, pseudo-symplectic geometry and so on.

But A%-codes with secrecy are rarely constructed. So a main goal is to con-
struct A2-codes with secrecy. It is hard to know the source state in an A2-code
with secrecy for an opponent when he observes a massage. Two constructions of
A?-codes with secrecy will be shown based on polynomials over finite fields in
this paper.

The paper is structured as follows: The second part is preliminary knowledge
about A2-codes. In Section 3 and Section 4, we will construct two constructions
of A%-codes with secrecy from polynomials over finite fields, respectively. Param-
eters of the codes and probabilities of successful attacks are also calculated. In
the last part, they are compared with an known one.

2 Preliminaries

Let &, &7, &g and A be four non-empty finite sets, which denote the set of
source states, the set of transmitter’s encoding rules, the set of receiver’s decoding
rules and the set of messages, respectively.

Definition 2.1. ([19]) Let f : & x &7 — A and g : M x Eg — & U {reject}
be two maps. The four tuple (& ,&r,Ex, M) is called authentication codes with
arbitration (A%-codes), if

(1) The maps f and g are surjective;
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(2) Forany m € # and e, € &, if there is an s € S satisfying f(s,e) = m,
then such an s is uniquely determined by the given m and e,;

(3) P(e;,er) #0and f(s,e;) =m imply that g(m,e,;) = s, otherwise,
g(m,e,) ={reject}. Where P(e,,e;) # 0 implies that any s encoded by e, can be
authenticated by e,.

Some notations are introduced as follows: Let &z(m) denote the set of re-
ceiver’s decoding rules for a given m € &, i.e., &r(m) = {e. | g(m,e,) € £}
Let & (m) denote the set of transmitter’s encoding rules for a given m € M, e,
&r(m) ={e | f(s,&) =m, s € F#}. Then .# (e,) is the set of messages for a giv-
ene €&y, ie., A (e)={m| f(s,e) =m, s € F}; A e;) is the set of messages
for a given e, € &, i.e., #(e;) = {m | g(m,e;) € &}. Similarly, let &7 (e,) de-
note the set of transmitter’s encoding rules for a given e, € &z, i.e., &r(e,) = {e |
f(s,e) € # (e,), for any s € }; let &r(e;) denote the set of receiver’s decoding
rules for a given ¢, € &r, i.e., &r(e;) = {er | g(m,e;) € &, forany m € A (e,)}.

Definition 2.2. ([10]) A2-codes include five attacks.
(1) The impersonation attack by the opponent: The opponent sends m € M 10
the receiver, and succeeds if and only if m is accepted by the receiver as authentic.
So the largest probability of the opponent’s successful impersonation attack is

|Er(m)|
Py = max =R
e ]

(2) The substitution attack by the opponent: The opponent observes m € #
which is sent by the transmitter, and replaces it with m' € #, where m # ',
and s € & hidden in m is different from s' € & hidden in m'. The opponent is
successful if and only if m' is accepted by the receiver as authentic. So the largest
probability of the opponent’s successful substitution attack is

!
o = ma [Sm) x|
w18 (m)

mrn

(3) The impersonation attack by the receiver: When the transmitter doesn’t
send message to the receiver, the receiver claims that he has received m € # from
the transmitter, and succeeds if and only if m can be generated by the transmitter
using his encoding rule. So the largest probability of the receiver’s successful
impersonation attack is

— max (G (M) 0 Er(en)]

Pr, = ma
Ro = me  |&r(e)]

(4) The substitution attack by the receiver: The receiver receives m € M from
the transmitter, but claims that he has receivedm’ € #, wherem#m', ands € &

201



hidden in m is different from s' € & hidden in m'. The receiver succeeds if and
only if m’ can be generated by the transmitter using his encoding rule. So the
largest probability of the receiver’s successful substitution attack is

\r(m) N & (m') N &1 (e,)]
Pr, = .
B e 16 (m)Nr(e))

m#m

(5) The impersonation attack by the transmitter: The transmitter sends m €
A to the receiver, and then denies that he has sent it. He succeeds if and only if
m is accepted by the receiver as authentic, and m is not one of the messages that
the transmitter can generate using his encoding rule. So the largest probability of
the transmitter’s successful impersonation attack is

|6r(m) 0 Sa(er)|

Pr=
mé”.‘:(;ze,) IépR(e’ )l

Theorem 2.1. ({10]) For any A%-codes, parameters of the codes and probabil-

ities of successful attacks satisfy following relationships:

|6l > (PPsPr)~!,
|&r| > (PiPsPryPr,) ",
|| > (PiPr,)" ")

In particular, if all of equalities hold up, then authentication codes with arbitra-
tion (A%-codes) are called perfect.

3 Construction I

3.1 The model

For a odd prime g, let F, be a finite field with g elements, F,* = F, \ {0}.
IFy[x] denotes a set of polynomials over I, F,[x] 0= {?g: aix! I a; € H"q} , where
3<w<i+1.

The set of source states is

S ={s|seF,}.
The set of transmitter’s encoding rules is

&r = {e, = (P (x),P(x),P3(x)) | Pi(x) € Fylx],, i=1,2,3, where P, (x) # 0}.
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The set of receiver’s decoding rules is
&n={er=(Bo.B1,B2.B) | Po.BosBy €F,y By €y}

The set of messages is

A = {m=(P(x),00)) | P(x),0(x) € Fyli, |

3.2 Operating rules

1. Key generation and distribution

(1) The key distribution center (KDC) randomly and privately chooses an
transmitter’s encoding rule ¢, = (P, (x),P2(x),P3(x)) € &, and sends it to the
transmitter as his key.

(2) The KDC randomly selects By € IFy, such that P (o) # 0, and calculates

B = Pi(Po), B2 = P2(Po), and B3 = P3(fo),
respectively. The KDC sends e, = (B, B1, B2, B3) to the receiver as his key.

2. Broadcast
For the source state s € ., the transmitter generates an authenticated message
using his key
P(x) = 5P (x) + P (x), Q(x) = sPs(x) + P3(x),

and sends m = (P(x),Q(x)) to the receiver, where s is hidden in m.
3. Verification
The receiver can verify the authenticity of the received message. He calculates

s =B (P(Bo) - B2),
and accepts the message m = (P(x), Q(x)), if and only if

Q(po) = sB2+ Bs.
Lemma 3.1. The construction above is well-defined authentication codes with
arbitration (A%-codes), that is
1) f(s,e)=me A, foralls € & and ¢, € &7;

(2) For any m € # and e, € &y, if there is an s € & satisfying f(s,e;) = m,
then such an s is uniquely determined by the given m and e,.
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Proof. (1) It is obvious. For any f(s,e,) = m, s is hidden in m, which can’t be
recovered from the encoded m without ¢,.

(2) Let m = (P(x),0(x)) € # and e, = (P, (x),P>(x),Ps(x)) € & . Assume
thatsand s’ € & and f(s,¢;) =m = f(s',¢,), then

P(x) = sPy(x) + Py(x),
O(x) =sP () +A(), { ('~ 5)Pi(x) =
P(x) = s'P (x) + Py(x), (s'~5)Py(x) =
Q(x) = 5'Py(x) + Py (x).
As Py (x) #0, s =5'. s is an uniquely source state contained in m. O

3.3 Parameters of codes

Theorem 3.1. Parameters of A2-codes which are constructed above are
|#1 =4, 1671 = 4*(¢” = 1), |6rl = (g — 1), and |.#| =
respectively.

Proof. For s € F,, and ¥ =, the number of source states is
|71 = Fyl = ¢
For any ¢, = (P, (x),P, (x),P3(x)) € &7, let
Pi(x) =ap+aix+-- +ap-1x¥~1 #£0, a; € F,,
Py(x) =bo+bix+ - +by_1x27!, b; €F,,
P(x)=co+erx+- +cu-1x?7!, cj €F,,
where j=0,1,--- ,@ — |, then the number of transmitter’s encoding rules is
16| = ¢2°(¢° — 1).

For any e, = (Bo, B1, B2, B3) € &, there are Py, B and B3 € F,;, and B, € F,*
So the number of receiver’s decoding rules is

62| = (g —1).
For any m = (P(x),Q(x)) € #, let
P(x)=hy+hyx+- +hy_1x2°1 hj e,
Q(x) =go+g1x+-+gu-1x?", g €F,,

where j =0,1,- — 1. For any e, = (P\(x), ,(x),P3(x)) € &, if the trans-
mitter randomly selects s € &, then Py(x) = P(x) — sPi(x) € Fy[x],, Ps(x) =
Q(x) — sPy(x) € Fylx],,, and f(s,er) = (P(x),Q(x)) € Fy[x]w X Fy[x]o. So the
number of messages is

WA o
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3.4 Probabilities of successful attacks

Lemma 3.2. For any m € .#, the number of e, € &g which is incidence with
mis
|&r(m)| = g*(q—1).
Proof. Assume that m = (P(x),Q(x)) € .# . For e, = (Bo, B, B2, B3) € &€&,
s=B1"" (P(Bo) - B2),
Q(Po) = sp2 + Ps3.
If Bo, B and J3, are fixed, B3 will be sure. So the number of e, € &r(m) is
|Er(m)| = g*(g—1). a
Lemma 3.3. Forany m,m’ € #,and m # m', the number of e, € &g which is
incidence with m and m' is
q(g—1) 2 |€r(m)N&(m')| > (¢-1)(g— 0 +1).

Proof. Assume that m = (P(x),Q(x)),m’ = (P'(x),Q'(x)) € .#, where P(x) #
P'(x). s € & hidden in m is different from s’ € % hidden in m’ (s # 5'). For

er = (Bo,B1, B2, Bs) € g,

er € Eg(m)NEp(m')

e, € 8p(m) &= {

s=B"(P(Bo) - B2),

] bBo)=sh -+, - P'(Bo) = P(Bo) = (s' - 9)B,
s =B (P'(Bo) - Ba), Q' (Bo) — Q(Bo) = (s —5)Ba.
Q'(Bo) =5'Ba+ Bs.

P'(x) = P(x) #0,
P'(Bo) — P(Po) # 0,
and at most g. If By and B are fixed, B, and fB; will be sure. So the number of
e, € &(m)N&r(m') is
a(g—1) > |Er(m)NEr(m)| 2 (g—1)(g—w+1). o
Lemma 3.4. For any e, € &, the number of e, € & which is incidence with
e, is

From above, { so the number of f is at least g — & + 1

|6 (er)| = 7@ oro.
Proof. Assume that e, = (Bo,B1, 2, B3) € &r. For e, = (P, (x),P2(x),P3(x)) €
éaT’
P(Bo) =ao+aifo+---+ag-16""" = B #0,
e € &r(er) == Pa(Bo) =bo+b1fo+--+bo-1®" = b2,
Py(Bo) = co+c1fo+ +cu1Bo® = B3
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f (“O\
( laBO:"':ﬂOw_l ) :l =ﬁly ( a.o \
Au-1 am:-l
(%) by b
'4=>< ( l:BOv"'!ﬁOm_l ) :I =ﬁ27 — A = ( ﬂz ) 3
ba;—l / b‘;’;l h
o
( c1 W :
( liﬁO:"':ﬁow~l ) : =ﬁ3' \C‘m—-l )
\ \ Ca)—l )
where
lsBO)"'»BOw_I
A= laBOv"'xBO‘o—] '
11B07"'1ﬁ0w—l
Then the rank of the matrix A is 3. So the number of ¢, € &7 (e,) is
|&r(er)| = > @~V or 0. O

Lemma 3.5. For any e, € ég and m € #, the number of e, € & which is
incidence with e, and m is

|67 (er) NEr(m)| = ¢!~ oro.

Proof. Assume that e, = (B, B1,52,B3) € &z and m = (P(x),Q(x)) € 4. For
e = (P (x),Py(x),Ps(x)) € &,

e € &1 (er)NEr(m)

ap

(o) (8
Py(Bo) =B #0, P Bs
Py(Bo) = B, bo ho

=< P3(Bo) = Bs, = B =1 :

P(x) = sPy (x) + Py (x), b1 ho-
0(x) = sPy(x) + Py (x). co 80

\ Ca;—l ) \ 8u-1 )
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where

lxﬁO:"’ -Bow-]
LBO;"' vﬁom_]
B= l:ﬁOr' 1B00-l ’
s1(®) (@)
s(®) J(@)

11®) is an @ x @ identity matrix, and the rank of the matrix B is 2w+ 1. So the
number of ¢, € &r(e,)N&r(m) is

|6r(e) N &r(m)| = ¢!~ or 0. o

Lemma 3.6. For any e, € &, m,m' € A and m # m/, the number of e, € ér
which is incidence with e,, m and m' is

|&r(e;) N Er(m)yN&Er(m')| =10r0.

Proof. Assume e, = (Bo,B1,B2,B3) € 6, m= (P(x),Q(x)),m’' = (P'(x),Q'(x)) €
M , where P(x) # P'(x). s € & hidden in m is different from s’ € # hidden in m'
(s= S’). For ¢ = (Pl (X) ,P2(X),P3 (X)) € épTy

[ Pi(Bo) =B #0,
P(Bo) = B2,
P5(Bo) = Bs,

e € &r(e)) N Er(m) N & (') = { P(x) =Py (x) + Pa(x),
O(x) = sP2(x) + P3(x),
P,(X) = S’P] (x) +P2(X),
Q' (x) = 5'Pa(x) + P3(x).

( B\
B
(@ | &
a hy
Aw-1 h¢;_|
bo 8o
by .
—=C . = : ,
: 8w-1
by-1 hy
€0
1 .
. go
Cw—l/ .
\g::o—l
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where

lrp()a”' ,[30"’_1
lapﬂ; Tt 150‘"_'
lyﬂOa" ' :p0w~l
C= sI(®) J(@)
§1(@) j@)
s1(@) o)
s J(@)

and the rank of the matrix C is 3@. So the number of ¢; € &r(e,;) N &r (m)NEr (m')
is
|é”7(e,)né°7(m)mfr(m’)| =1or0. O

Lemma 3.7. For any e, € 67, the number of e, € & which is incidence with
e is
g2 |ére)|2g—w+1.

Proof. Assume that ¢, = (P (x),P> (x), P (x)) € & . For e, = (Bo, B1,52,83) €
&R,
Pi(Bo) =B #0,
er € gle) = { P(Bo) =B,
P3(Bo) = Bs.

As Pi(x) # 0, the number of ff is at least g— @+ 1 and at most . If By is fixed,
Bi, B, and B3 will be determined. So the number of e, € &{e,) is

g2 |6rle) > g—0+1. O

Lemma 3.8. Foranye, € &r,mc .# and m & # (e,), the number of e, € &x
which is incidence with e, and m is

IéDR(e,)ﬂé"R(m)I <o-1.

Proof. Assume that m = (P(x),Q(x)) € # and ¢, = (P, (x), P, (x),P; (x)) € &F.
For e, = (o, B1, B2, Bs) € &k,

( Pi(Bo) = B1 #0,

Py(Bo) = B2,

Py(Bo) = B3,

s=B""(P(Bo) - ),

Q(Bo) = P2+ B3,

( (P(x),Q(x)) # (sPi (x) + Py(x),sPo (x) + P3 (x)).

er € 6p(er)NER(m) <= ¢
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As P(x) # sPy(x) + Py(x) or Q(x) # sPa(x) + P3(x), there is
P(x) = Py(x) = sPy (x) # 0 or Q(x) — P3(x) — sP2(x) # 0,
P(Bo) — P2(Bo) — sPi(Bo) =0,
O(Bo) — Ps(Bo) — sP2(Bo) =
1

ho—bo—sag hy—by—say - hoo) —by-1 —sap_| Po _(o)
go—co—sbp g1—c1—sby - go-1—Ca—1—Sby- : 0
Bow-—l
Let
Do ho—bgp—sap hy—~by—say -+ hgy_1—by—) —5ap-
go—co—sbp g —ci—sby - Bu-1—Co-1—Sbu-I

the rank of the matrix D is 1 or 2. So the number of By is at most @ — 1. If B is
fixed, B1, B> and B3 will be confirmed. So the number of e, € &z(e;) N &r(m) is

|Er(e:) NER(M)| < @ — 1. O

Theorem 3.2. In A%-codes with secrecy constructed above, if ¢, € &r and
e, € &g are chosen according to a uniform probability distribution, the largest
probabilities of success for different types of attacks are

1 1 1 1 w-—1
Pl—a,Ps—a,Pko—m,PR.— = ‘),andPr o+l
respectively.

Proof. By Theorem 3.1 and Lemma 3.2, there is

I R CRL N
P=mx gl ~Fa-0 1

From Lemma 3.2 and Lemma 3.3, there is

|Gr(m)N&R(mM)] _ glg=1) 1

Ps = max = = -,
STmm Gr(m)] ?*q-1) g
m#m'
Based on Lemma 3.4 and Lemma 3.5, there is
o o JEmngre)l _ g 1
Ro = X 1@re)] gD ge-h
By Lemma 3.5 and Lemma 3.6, there is
|E (m)NE (m' YN Er (e 1
Pr, = = .
B mime 1B mN&r(e)] 7@
m#m’
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From Lemma 3.7 and Lemma 3.8, there is

|€r(m)NER(e)] _ @1
m e |6 {er)] g-o+1

4 Construction II

4.1 The model

For a odd prime g, let F, be a finite field with g elements, F,* =F, \ {0}.
w-1
IF4[x] denotes a set of polynomials over Fy, Fylx], = { Y ax l a; €Fy 5, where
i=0

4<o<i+l.
The set of source states is

S ={s|selF,}.
The set of transmitter’s encoding rules is
8r={e=(A (), P00, B (3). 2o () | P¥) € Byl A1 (x) £0, 1= 1,2,3,4).
The set of receiver’s decoding rules is
8r={er=(Bo.Br. Br.Bs,Bu) | BouBosfs, o € Fyy B € Fy'}
The set of messages is

M= {m = (P(x),0(x)) [ P(x),0(x) € IFq[x]w} .

4.2 Operating rules

1. Key generation and distribution

(1) The key distribution center (KDC) randomly and privately chooses an
transmitter’s encoding rule ¢, = (P; (x), P, (x),P3(x),Ps(x)) € &, and sends it to
the transmitter as his key.

(2) The KDC randomly selects fy € IF,, such that P () # 0, and calculates
B = Pi(Bo), B2 = P2(Po), Bs = P3(Po), and Ba = Pa(o),
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respectively. The KDC sends e, = (o, B, B2, B3, Ba) to the receiver as his key.
2. Broadcast

For the source state s € .%, the transmitter generates an authenticated message
using his key

P(x) = sPy(x) + Po(x), Q(x) = sPs(x) + Pa{x),
and sends m = (P(x), Q(x)) to the receiver, where s is hidden in m.

3. Verification
The receiver can verify the authenticity of the received message. He calculates

s=PB17 (P(Bo) — Bo),

and accepts the message m = (P(x), Q(x)), if and only if

0(Po) = sB3 + Ba.

Lemma 4.1. The construction above is well-defined authentication codes with
arbitration (. A2-codes ), that is

(1) f(s,er)=m€ A, foralls€ # and e, € &T;

(2) For any m € # and e; € &y, if there is an s € & satisfying f (s,e) =m,
then such an s is uniquely determined by the given m and e,.

Proof. (1) It is obvious. For any f(s,e;) = m, s is hidden in m, which can’t be
recovered from the encoded m without ¢,.

(2) Let m = (P(x),Q(x)) € # and ¢ = (P, (x),P2(x),P5(x),Ps(x)) € &T.
Assume that s and 5’ € % and f(s,¢,) =m = f(s',¢), then

P(x) = sP(x) + Py(x),

Q() =sPs () +FPa(x), | { (s'=5)Pi(x) =0,
P(x) = 5P (x) + P (x), (s -s)A(x)=0.
Q(x) = s'Py(x) + Pa(x).

As P (x) #£0, s = 5. s is an uniquely source state contained in m. O

4.3 Parameters and Probabilities of successful attacks

Because the second construction is similar to the first one, proofs are deleted.

Theorem 4.1. Parameters of A2-codes which are constructed above are
l‘yl =4, ing = q3w(qw - ])’ ngl = q4(q— l)s and |‘”1 = qu’

respectively.
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Lemma 4.2. Some relative parameters of A%-codes which are constructed
above are:

(1) For any m € .#, the number of e, € &g which is incidence with m is
|6x(m)| = ¢*(g— 1);

(2) Forany m,m’' € .# ,and m # m', the number of e, € & which is incidence
withm and m' is

(@ =1) 2 |Er(m) Nr(m')] 2 q(g - D(g - 0+1);
(3) For any e, € &g, the number of e, € & which is incidence with e, is

|&r(er) = ¢* @~ or0;

(4) For any e, € &g and m € .#, the number of e, € & which is incidence
with e, and m is
|Er(e,) N & (m)] = ¢~ or0;

(5) For any e, € &g, m,m’ € M and m # n', the number of e, € & which is
incidence with e,, m and m' is

|&r(er)NEr(m)NEr(m')] = 10r0;

(6) For any e, € &, the number of e, € &g which is incidence with e, is

g2 |ére)|2qg—w+1;

(7) For any e, € &r,m € M and m ¢ M (e,), the number of e, € &g which is
incidence with e, and m is

|€r{er) NEr(m)| < @ —1.

Theorem 4.2. In A%-codes with secrecy constructed above, if e, € & and
er € &g are chosen according to a uniform probability distribution, the largest
probabilities of success for different types of attacks are

w-—1
g—w+1’

1
1)1=—1PS=

] 1
q q’

1
PRD=?(-‘;_—17, Fr, =ma and Pr =

respectively.
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5 Concluding remarks

For communication systems, we need new constructions of A2_codes which
are safe, cost-effective and highly efficient. But most of A%-codes are without
secrecy. In our two constructions of AZ-codes, a source state is hidden in the
message, which can’t be recovered from the message without the knowledge of
the transmitter’s encoding rule or the receiver’s decoding rule. Compared with
most of A2-codes, it greatly improved security.

The security of authentication codes could be also measured by the maxi-
mum probabilities of successful attacks. It means that the smaller probabilities of
successful attacks, the higher security of authentication codes. The economy of
authentication codes could be measured by the storage. It means that the smaller
storage, the more economical efficiency of authentication codes. Polynomials are
easier implemented than others using computer programs. So maybe our con-
structions are higher effective. Now let’s compare our constructions with Kong
and Nan’s construction. In [14]), when n = g + 1, the number of source states of
their construction is g as the same as ours. The specific result is listed as the Table
1.

Table 1: The Comparison of Three A2-codes

Kong and Nan’s [14] Construction I | Construction II
| q q q
g+
|&r| ¢ I1(¢' - 1)? 7°q°-1) | ¢°(¢°-1)
1=
g+ .
|l g7+ T(q'~ 1)2 Pg—1) g*(g-1)
=
2 i
|| | gtV —1— g T(a-1) q*° g*®
=
=T 1 1
i U 3 g
: i ;
Py 7 PaCE) 2o
Pr, ) ) )
q(g+1) {o-T) Hw-1)
PT 1 -1 qa)—l
g—w+1 g—w+1

Compared our two constructions, the more transmitter’s encoding rules or the
receiver’s decoding rules, the lower probabilities of successful attacks. Compared
with constructed authentication codes in [14], P; and Ps of their construction are
smaller than ours. But in our constructions, a source state is hidden in the massage
and which must be decoded before verification. It’s very hard for an opponent to
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know the source state. Meanwhile, our |£7|, |6z| and other probabilities of suc-
cessful attacks are smaller than theirs. So our constructions are more economical,
and they are better than theirs to protect against attacks from insiders. So our
constructions are more better.

References

[1] E.N. Gilbert, F.J. Macwilliams, N.J.A. Sloane, Codes which detect deception,
Bell Labs Technical Journal. 53 (3) (1974) 405 - 424.

[2] GJ.Simmons, Authentication theory/coding theory, Advances in Cryptology,
Volume 196 of the series Lecture Notes in Computer Science. 196 (1985) 411-
432.

[3] R. Safavi-Naini, H. Wang, C. Xing, Linear authentication codes: bounds and
constructions, IEEE Transactions on Information Theory. 49 (4) (2003) 866-
872.

[4] C. Xing, H. Wang, K.Y. Lam, Constructions of authentication codes from
algebraic curves over finite fields, IEEE Transactions on Information Theory.
46 (3) (2000) 886 - 892.

[5] D.R. Stinson, A construction for authentication/secrecy codes from certain
combinatorial designs, Journal of Cryptology. 1 (2) (1988) 119-127.

[6] C.S. Ding, A. Salomaa, P. Solé, X.J. Tian, Three constructions of authenti-
cation/secrecy codes, Journal of Pure and Applied Algebra. 196 (2-3) (2005)
149-168.

[7]1 G.J. Simmons, Message authentication with arbitration of transmitter/receiver
disputes, Advance in Cryptology-Eurocrypt’87, Lecture Notes in Computer
Science 304, Springer-Verlag, Berlin. (1988) 151-165.

(8] G.J. Simmons, A cartesian product construction for unconditionally secure
authentication codes that permit arbitration, Journal of Cryptology. 2 (2) (1990)
77-104.

[9] T. Johansson, Lower bounds on the probability of deception in authentica-
tion with arbitration, IEEE Transcations on Information Theory. 40 (5) (1994)
1573-1585.

[10] T. Johansson, Further results on asymmetric authentication schemes, Infor-
mation and Computation. 151 (1-2) (1999) 100-133.

[11] K. Kurosawa, S. Obana, Combinatorial bounds for authentication codes with
arbitration, Designs, Codes and Cryptography. 22 (2) (2001) 265-281.

214



[12] S.D. Chen, D.W. Zhao, New construction of authentication codes with arbi-
tration from pseudo-symplectic geometry over finite fields, Ars Combinatoria.
(2) (2013) 453-465.

[13] Y. Gao, X.H. Shi, H.L. Wang, A construction of authentication codes with
arbitration from singular symplectic geometry over finite fields, Acta Scien-
tiarum Naturalium Universitatis Nankaiensis. 41 (6) (2008) 72-77.

(14] D.B. Kong, J.Z. Nan, Using normal form of matrices over finite fields to
construct authentication codes with arbitration, Journal of Natural Science of
Heilongjiang University. 27 (3) (2010) 341-346.

[15] W.J. Li, J.Z. Nan, A construction of authentication codes with arbitration
from vector spaces over finite fields, Journal of Mathematical Research and
Exposition. 31 (2) (2011) 269-278.

[16] S.D. Chen, L.Z. Chang, Two constructions of multi-sender authentication
codes with arbitration based linear codes, Wseas Transactions on Mathematics.
11 (12) (2012) 1103-1113.

[17] Y. Gao, L.W. Chang, A new construction of A? authentication codes from
singular pseudo-symplectic geometry over finite fields, Journal of Combinato-
rial Mathematics and Combinatorial Computing. 81 (2012) 65-81.

[18] D.Y. Pei, Y. Li, Y. Wang, R. Safavi-Naini, Characterization of optimal au-
thentication codes with arbitration, Information Security and Privacy. (1999)
303-313.

[19] S.D. Chen, X.L. Zhang, Three constructions of perfect authentication codes
from projective geometry over finite fields, Applied Mathematics and Compu-
tation. 253 (1) (2015) 308-317.

[20] W.Ogata, K. Kurosawa, D.R. Stinson, H. Saido, New combinatorial design-
s and their applications to authentication codes and secret sharing schemes,
Discrete Mathematics. 279 (1-3) (2004) 384-405.

215



