The T_4 and G_4 constructions of Costas arrays

Tim Trudgian and Qiang Wang* April 9, 2015

Abstract

We examine two particular constructions of Costas arrays known as the Taylor variant of the Lempel construction, or the T_4 construction, and the variant of the Golomb construction, or the G_4 construction. We connect these with Fibonacci primitive roots, and show that under the Extended Riemann Hypothesis the T_4 and T_4 constructions are valid infinitely often.

1 Introduction

A Costas array is an $N \times N$ array of dots with the properties that one dot appears in each row and column, and that no two of the N(N-1)/2 line segments connecting dots have the same slope and length. It is clear that a permutation f of $\{1, 2, \ldots, N\}$, from the columns to the rows (i.e. to each column x we assign exactly one row f(x)), gives a Costas array if and only if for $x \neq y$ and $k \neq 0$ such that $1 \leq x, y, x + k, y + k \leq N$, then $f(x + k) - f(x) \neq f(y + k) - f(y)$.

The rich history of Costas arrays can be found in the survey papers of Golomb and Taylor [8, 7], Drakakis [3], Golomb and Gong [6]. Let us briefly recall some known constructions on Costas arrays. In the following, p is taken to be a prime and q a prime power. The known general constructions for $N \times N$ Costas arrays are the Welch construction for N = p - 1 and N = p - 2, the Lempel construction for N = q - 2, and the Golomb construction for N = q - 2, N = q - 3. Moreover, if $q = 2^k$, $k \ge 3$, the Golomb construction works for N = q - 4. The validity of the Welch and Lempel constructions is proved by Golomb in [4]. The Golomb constructions for N = q - 3 and $N = 2^k - 4$ depend on the existence of (not necessarily distinct) primitive elements α and β in \mathbb{F}_q such that $\alpha + \beta = 1$. This existence was proved by Moreno and Sotero in [12]. (Cohen and Mullen give a proof with less computational checking in [1]; more recently, Cohen, Oliveira e Silva, and Trudgian proved [2] that, for all q > 61, every non-zero element in \mathbb{F}_q can be written as a linear combination of two primitive roots of \mathbb{F}_q .)

[&]quot;The first author (timothy.trudgian@anu.edu.au) is supported by Australian Research Council DECRA Grant DE120100173 and the second author (wang@math.carleton.ca) is supported by NSERC of Canada.

Among these algebraic constructions over finite fields, there are the T_4 variant of the Lempel construction for N=q-4 when there is a primitive element α in \mathbb{F}_q such that $\alpha^2+\alpha=1$, and the G_4 variant of the Golomb construction for N=q-4 when there are two primitive elements α and β such that $\alpha+\beta=1$ and $\alpha^2+\beta^{-1}=1$. Through the study of primitive elements of finite fields, Golomb proved in [5] that q must be 4, 5 or 9, or a prime $p\equiv \pm 1\pmod{10}$ in order for the T_4 construction to apply. Note that this is not a sufficient condition (for example p=29). In the same paper, Golomb also proved that the values of q such that the G_4 construction occurs are precisely q=4,5,9, and those primes p for which the T_4 construction occurs and which satisfy either $p\equiv 1\pmod{20}$ or $p\equiv 9\pmod{20}$.

In this paper, we connect the T_4 and G_4 constructions with the concept of Fibonacci primitive roots. We show, in Theorems 2 and 3, that under the Extended Riemann Hypothesis (ERH) there are infinitely many primes such that T_4 and G_4 can apply. We conclude with some observations and questions about trinomials of primitive roots.

2 Fibonacci primitive roots

The T_4 construction requires a primitive root α such that

$$\alpha^2 + \alpha = 1. \tag{1}$$

To investigate the nature of solutions to (1) we recall the notion of a *Fibonacci* primitive root, or FPR. We say that g is a FPR modulo p if $g^2 \equiv g+1 \pmod{p}$. Shanks and Taylor [15] proved a similar statement to that which we give below.

Lemma 1. If g is a FPR modulo p, then g-1 is a primitive root modulo p that satisfies (1), and vice versa.

Proof. It is clear that g satisfies $g^2 \equiv g+1 \pmod{p}$ if and only if g-1 satisfies (1): all that remains is to check that g and g-1 are primitive. Suppose first that g is a FPR modulo p. Then, since $g(g-1) \equiv 1 \equiv g^{p-1}$, we have

$$(g-1)^n \equiv g^{p-n-1} \pmod{p},$$

Note that, as n increases from 1 to p-1, g^{p-n-1} generates \mathbb{F}_p , since g is primitive. Hence g-1 is a primitive root modulo p. The converse is similarly proved.

Let F(x) denote the number of primes $p \le x$ that have at least one FPR. Shanks [14] conjectured that under ERH, $F(x) \sim C\pi(x)$, where $\pi(x)$ is the prime counting function, and where $C \approx 0.2657...$ Lenstra [9] proved Shanks' conjecture; see also Sander [13]. We therefore have

Theorem 2. Let T(x) be the number of primes $p \le x$ for which p satisfies the T_4 construction. Then, under the Extended Riemann Hypothesis

$$T(x) \sim \frac{27}{38}\pi(x)\prod_{p=2}^{\infty}\left(1-\frac{1}{p(p-1)}\right) \sim (0.2657...)\pi(x).$$

Unconditionally, it seems difficult to show that there are infinitely many primes that have a FPR.

Phong [10] has proved some results about a slightly more general class of primitive roots. For our purposes, [10, Cor. 3] implies that if $p \equiv 1, 9 \pmod{10}$ such that $\frac{1}{2}(p-1)$ is prime then there exists (exactly) one FPR modulo p. This does not appear, at least to the authors, to make the problem any easier!

We turn now to the G_4 construction, which requires two primitive roots α, β such that

$$\alpha + \beta = 1, \quad \alpha^2 + \beta^{-1} = 1.$$

Since we require that $p \equiv 1,9 \pmod{20}$ we are compelled to ask: how many of these primes have a FPR? We can follow the methods used in [9, §8], and also examine Shanks's discussion in [14, p. 167]. Since we are now only concerned with $p \equiv 1,9 \pmod{20}$ we find that the asymptotic density should be $\frac{9}{38}A$, where $A = \prod_{p=2}^{\infty} \left(1 - \frac{1}{p(p-1)}\right) \approx 0.3739558138$ is Artin's constant. This leads us to

Theorem 3. Let G(x) be the number of primes $p \le x$ for which p satisfies the G_4 construction. Then, under the Extended Riemann Hypothesis

$$G(x) \sim \frac{9}{38}\pi(x) \prod_{n=2}^{\infty} \left(1 - \frac{1}{p(p-1)}\right) \sim (0.08856...)\pi(x).$$

3 Conclusion

One can show that, for p > 7 there can be no primitive root α modulo p that satisfies $\alpha + \alpha^{-1} \equiv 1 \pmod{p}$. (Suppose there were: then $\alpha^2 + 1 \equiv \alpha \pmod{p}$ so that $\alpha^3 + \alpha^2 + 1 \equiv \alpha^2 \pmod{p}$ whence $\alpha^3 \equiv -1 \pmod{p}$. Hence $\alpha^6 \equiv 1 \pmod{p}$ — a contradiction for p > 7.) From this, it follows that $x^{p-2} + x - 1$ is never primitive over \mathbb{F}_p for p > 7.

Consider the following: given $1 \le i \le j \le p-2$, let d(i,j) denote the density of primes with a primitive root α satisfying $\alpha^i + \alpha^j \equiv 1 \pmod{p}$. The above comments show that d(1,p-2)=0; Theorem 2 shows that under ERH, $d(1,2)\approx 0.2657$. What can be said about d(i,j) for other prescribed pairs (i,j)? In the case i=j, we have $2\alpha^i \equiv 1 \pmod{p}$ and thus $\alpha^i = \frac{p-1}{2}$. In particular, if (i,p-1)=1 then it is equivalent to ask for the density of primes such that $\frac{p-1}{2}$ is a primitive root modulo p. Since (p-1)/2 is a primitive root modulo p if and only if -2 is a primitive root modulo p, we have, on ERH, that the density of primes is Artin's constant — see [11, p. 2].

When $i \neq j$, it is easy to see that $d(2, \frac{p-1}{2}+1) = d(1,2)$. Therefore, under ERH the trinomial $x^{\frac{p-1}{2}+1} + x^2 - 1$ is primitive over \mathbb{F}_p for infinitely many primes p. More generally, we can show that for p > 3i there does not exist a primitive root α such that $\alpha^{\frac{p-1}{2}+i} + \alpha^{\frac{p-1}{2}+2i} \equiv 1 \pmod{p}$, and thus $d(\frac{p-1}{2}+i,\frac{p-1}{2}+2i) = 0$. Similarly, $d(i,2i+\frac{p-1}{2}) = 0$. Indeed, if $\alpha^i - \alpha^{2i} \equiv 1 \pmod{p}$ for a primitive α , we obtain $\alpha^{3i} \equiv \alpha^{2i} - \alpha^i \equiv -1 \pmod{p}$. Hence if

p > 6i there is no primitive element α such that $\alpha^i + \alpha^{2i + \frac{p-1}{2}} \equiv 1 \pmod{p}$. Using the same arguments as before, we can also show that d(i, p - 1 - i) = 0 for any specified i.

We conclude with two slight adaptations. First, consider the density of primes with a primitive root α satisfying $\alpha^i + \alpha^j \equiv -1 \pmod{p}$. For (i,j) = (1,2) we find that $\alpha^3 = -1$, which is impossible if p > 7. Second, motivated by the results on the irreducibility of polynomials recursively defined by $f_k(x) = xf_{k-1}(x) - f_{k-2}(x)$ for $k \geq 2$, where $f_0(x) = 1$ and $f_1(x) = x \pm 1$ (see [16]), for a given prime p, consider all those primes 2k+1 such that either p is a primitive root modulo 2k+1 or the order of p is k, where k is odd. For primes up to 10^7 we find that the densities are approximately 0.561 (p=2), 0.59 (p=3), and 0.571 (p=5). Whether these densities can be connected with Artin's constant is a matter for future research.

References

- [1] S. D. Cohen and G. L. Mullen, *Primitive elements in finite fields and Costas arrays*, Appl. Algebra Engrg. Comm. Comput. 2 (1991), no. 1, 45-53.
- [2] S. D. Cohen, T. Oliveira e Silva, and T. S. Trudgian. A proof of the conjecture of Cohen and Mullen on sums of primitive roots. Math. Comp., published electronically 30 March, 2015. To appear in print.
- [3] K. Drakakis, A review of Costas arrays, J. Appl. Math. 2006 (2006), 1-32.
- [4] S. W. Golomb, Algebraic constructions for Costas arrays, J. Combin. Theory Ser. A 37 (1984), no. 1, 13-21.
- [5] S. W. Golomb, The T₄ and G₄ constructions for Costas arrays, IEEE Trans. Inform. Theory 38 (1992), no. 4, 1404-1406.
- [6] S. W. Golomb and G. Gong. The status of Costas arrays, IEEE Trans. Inform. Theory, 53 (2007), no. 11, 4260-4265.
- [7] S. W. Golomb and H. Taylor, Constructions and properties of Costas arrays, Proc. IEEE 72 (1984), no. 9, 1143-1163.
- [8] S. W. Golomb and H. Taylor, Two-dimensional synchronization patterns for minimum ambiguity, IEEE Trans. Inform. Theory 28 (1982), no. 4, 600-604.
- [9] H. W. Lenstra, On Artin's conjecture and Euclid's algorithm in global fields, Inventiones math. 42 (1977), 201-224.
- [10] B. M. Phong, Lucas Primitive Roots, Fibonacci Quart. 29 (1991), no. 1, 66-71.

- [11] H. W. Lenstra, Jr and P. Stevenhagen and P. Moree Character sums for primitive root densities, Math. Proc. Cambridge Philos., available on CJO 2014 doi:10.1017/S0305004114000450.
- [12] O. Moreno and J. Sotero, Computational approach to Conjecture A of Golomb, Congr. Numer. 70 (1990), 7-16.
- [13] J. W. Sander. On Fibonacci primitive roots, Fibonacci Quart. 28 (1990), no. 1, 79-80.
- [14] D. Shanks. Fibonacci primitive roots, Fibonacci Quart. 10 (1972), no. 2, 163-181.
- [15] D. Shanks and L. Taylor. An observation on Fibonacci primitive roots, Fibonacci Quart. 11 (1973), no. 2, 159-160.
- [16] Q. Wang. On generalized Lucas sequences, in: Combinatorics and Graphs: The Twentieth Anniversary Conference of IPM, May 15-21, 2009, in: Contemp. Math., vol. 531, Amer. Math. Soc., 2010, pp. 127-14.