The T, and G4 constructions of Costas arrays

Tim Trudgian and Qiang Wang*
April 9, 2015

Abstract

We examine two particular constructions of Costas arrays known as the
Taylor variant of the Lempel construction, or the Tj construction, and the
variant of the Golomb construction, or the G4 construction. We connect
these with Fibonacci primitive roots, and show that under the Extended
Riemann Hypothesis the T4 and G4 constructions are valid infinitely often.

1 Introduction

A Costas array is an N x N array of dots with the properties that one dot appears
in each row and column, and that no two of the N{(N — 1)/2 line segments
connecting dots have the same slope and length. It is clear that a permutation
fof{1,2,...,N}, from the columns to the rows (i.e. to each column z we assign
exactly one row f(z)), gives a Costas array if and only if for  # y and k # 0
such that 1 < z,y,z + k,y + k < N, then f(z + k) — f(z) # fly + k) — f(¥).

The rich history of Costas arrays can be found in the survey papers of
Golomb and Taylor {8, 7], Drakakis (3], Golomb and Gong [6]. Let us briefly
recall some known constructions on Costas arrays. In the following, p is taken
to be a prime and ¢ a prime power. The known general constructions for N x N
Costas arrays are the Welch construction for N=p—1and N = p — 2, the
Lempel construction for N = ¢ —2, and the Golomb construction for N = ¢—2,
N = g — 3. Moreover, if ¢ = 2%, k > 3, the Golomb construction works for
N = q — 4. The validity of the Welch and Lempel constructions is proved by
Golomb in [4]. The Golomb constructions for N = g—3 and N = 2* — 4 depend
on the existence of (not necessarily distinct) primitive elements o and g in Fq
such that o« + 8 = 1. This existence was proved by Moreno and Sotero in [12].
(Cohen and Mullen give a proof with less computational checking in [1}; more
recently, Cohen, Oliveira e Silva, and Trudgian proved [2] that, for all ¢ > 61,
every non-zero element in F, can be written as a linear combination of two
primitive roots of F,.)
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Among these algebraic constructions over finite fields, there are the T vari-
ant of the Lempel construction for N = g — 4 when there is a primitive element
a in F, such that a® +a = 1, and the G, variant of the Golomb construction for
N = g — 4 when there are two primitive elements o and 8 such that a + 8 =1
and a? + 8-! = 1. Through the study of primitive elements of finite fields,
Golomb proved in [5) that ¢ must be 4, 5 or 9, or a prime p = +1 (mod 10) in
order for the Ty construction to apply. Note that this is not a sufficient con-
dition (for example p = 29). In the same paper, Golomb also proved that the
values of ¢ such that the G4 construction occurs are precisely ¢ = 4,5,9, and
those primes p for which the 7} construction occurs and which satisfy either
p=1 (mod 20) or p=9 (mod 20).

In this paper, we connect the T4 and G4 constructions with the concept
of Fibonacci primitive roots. We show, in Theorems 2 and 3, that under the
Extended Riemann Hypothesis (ERH) there are infinitely many primes such
that T4 and G4 can apply. We conclude with some observations and questions
about trinomials of primitive roots.

2 Fibonacci primitive roots

The T4 construction requires a primitive root a such that
+a=1. (1)

To investigate the nature of solutions to (1) we recall the notion of a Fibonacci
primitive root, or FPR. We say that g is a FPR modulo p if g = g+1 (mod p).
Shanks and Taylor [15] proved a similar statement to that which we give below.

Lemma 1. If g is a FPR modulo p, then g — 1 is a primitive root modulo P
that satisfies (1), and vice versa.

Proof. 1t is clear that g satisfies g2 = g+ 1 (mod p) if and only if g — 1 satisfies
(1): all that remains is to check that g and g — 1 are primitive. Suppose first
that g is a FPR modulo p. Then, since g(g — 1) =1 = g?~!, we have

(g-1)"=gr ! (mod p),

Note that, as n increases from 1 to p — 1, g?~"~! generates Fp, since g is
primitive. Hence g — 1 is a primitive root modulo p. The converse is similarly
proved. O

Let F(z) denote the number of primes p < z that have at least one FPR.
Shanks [14] conjectured that under ERH, F(z) ~ Cr(z), where n(z) is the
prime counting function, and where C = 0.2657.... Lenstra [9] proved Shanks’
conjecture; see also Sander [13]. We therefore have

Theorem 2. Let T(x) be the number of primes p < z for which p satisfies the
Ty construction. Then, under the Extended Riemann Hypothesis

T(z) ~ %w(z) II (1 - zFl—-ﬁ) ~ (0.2657.. )m(z).

p=2
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Unconditionally, it seems difficult to show that there are infinitely many
primes that have a FPR.

Phong [10] has proved some results about a slightly more general class of
primitive roots. For our purposes, [10, Cor. 3] implies that if p = 1,9 (mod 10)
such that (p — 1) is prime then there exists (exactly) one FPR modulo p. This
does not appear, at least to the authors, to make the problem any easier!

We turn now to the G4 construction, which requires two primitive roots o, 8
such that

a+fB=1 o*+p1=1

Since we require that p = 1,9 (mod 20) we are compelled to ask: how many of
these primes have a FPR? We can follow the methods used in [9, §8], and also
examine Shanks’s discussion in [14, p. 167]. Since we are now only concerned
with p = 1,9 (mod 20) we find that the asymptotic density should be 54,

where A = [72, (1 - RPITIT) ~ 0.3739558138 is Artin’s constant. This leads
us to

Theorem 3. Let G(z) be the number of primes p < z for which p satisfies the
G, construction. Then, under the Extended Riemann Hypothesis

G(z) ~ %ﬂ(x) II (1 - ;(;1_—13) ~ (0.08856 .. .)7(z).

p=2

3 Conclusion

One can show that, for p > 7 there can be no primitive root & modulo p that
satisfies a + a~! =1 (mod p). (Suppose there were: then a® + 1 = o (mod p)
so that o® + a® + 1 = o? (mod p) whence o® = —1 (mod p). Hence of =1
(mod p) — a contradiction for p > 7.) From this, it follows that 2P~2 + — 1
is never primitive over F, for p > 7.

Consider the following: given 1 < i < j < p — 2, let d(¢,7) denote the
density of primes with a primitive root « satisfying o' + o/ =1 (mod p). The
above comments show that d(1,p — 2) = 0; Theorem 2 shows that under ERH,
d(1,2) ~ 0.2657. What can be said about d(%, j) for other prescribed pairs (z, j)?
In the case i = j, we have 20* = 1 (mod p) and thus &' = 251, In particular,
if (i,p — 1) = 1 then it is equivalent to ask for the density of primes such that
%l is a primitive root modulo p. Since (p—1)/2 is a primitive root modulo p if
and only if —2 is a primitive root modulo p, we have, on ERH, that the density
of primes is Artin’s constant — see [11, p. 2}.

When i # j, it is easy to see that d(2,23* + 1) = d(1,2). Therefore,
under ERH the trinomial 227+ + 22 — 1 is primitive over F, for infinitely
many primes p. More generally, we can show that for p > 3¢ there does not
exist a primitive root o such that o7+ 4 o®7+2% = 1 (mod p), and thus
d(252 +i,B5% + 2i) = 0. Similarly, d(i,2i + &) = 0. Indeed, if o’ — o* =
(mod p) for a primitive o, we obtain o = a* — o' = ~1 (mod p). Hence if
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p > 61 there is no primitive element o such that o + o2**F = 1 (mod p).
Using the same arguments as before, we can also show that d(i,p— 1 —i) = 0
for any specified i.

We conclude with two slight adaptations. First, consider the density of
primes with a primitive root « satisfying o + o/ = -1 (mod p). For (4,5) =
(1,2) we find that o® = —1, which is impossible if p > 7. Second, motivated by
the results on the irreducibility of polynomials recursively defined by fi(z) =
Tfe-1(z) — fe-2(z) for k > 2, where fo(z) =1 and fi(z) = z + 1 (see [16]), for
a given prime p, consider all those primes 2k + 1 such that either p is a primitive
root modulo 2k + 1 or the order of p is k, where & is odd. For primes up to 107
we find that the densities are approximately 0.561 (p = 2), 0.59 (» = 3), and
0.571 (p = 5). Whether these densities can be connected with Artin’s constant
is a matter for future research.
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