Some formulas related to residue method *

Su-Dan Wang fand Wuyungaowa

Department of Mathematics, College of Sciences and Technology, Inner Mongolia
University, Hohhot 016021, P. R. China

Abstract

In this paper, with the help of residue method we find some
interesting formulas relate residue and ordinary Bell polynomial-
8 B k(z1,22,...). Further, we prove identities involving some com-
binatorial numbers to demonstrate the application of the formulas.
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1 Introduction and preliminaries

G. P. Egorychev [1] introduced us a new method which transforms
combinatorial sums into integrals. Upon using substitution or residue-
calculus we can simplify these integrals. Today, residue is also one of the
most effective theoretical tools to handle common problems in mathemati-
cal physics, even in engineering. In [2], Christoph Fiirst also demonstrates
the application of residue method that how one can obtain closed forms for
combinatorial sums. That was shown that residue method is quite useful
for studying combinatorics.

In this paper, the formula

3 heres g7 (W) = res g7 (RSB
k=0 .

comes up naturally in an application of residue method.
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Let N,Q,Z,R,C,K, K[[x]] and K((z)) be, respectively, the set of nat-
ural numbers, the set of rational numbers, the set of integers, the set of
real numbers, the set of complex numbers, a field containing the field Q as
a subfield, the ring of formal power series over K and the field of formal
Laurent series over K. A brief introduction about res-operator:

Let f(z) = Y pe _. fuz® € K((z)), then the formal residue res of f(z) is

res (2) = [e™(z) = f1,
where [z7] is the coefficient of z, n € Z. If the generating function f(z) €
K[[z]] for the sequence (fi)r>0 is f(z) = Y poq fiz®, then we have
fe = [z*]f(z) = res flz)z™% 1, k>0.
In [2], several rules for the res-functional have been listed. For f(z), g(x) €

K([=]):
We get f(z) = g(x) if and only if

res flz)z™*1 = res g(z)z*"1, k > 0 (Removal of res). (1)
For o, 8 € K, have
ares f(z)z™ + fres g(@)a~" = res (af(2) + Ba(@)a™, (2

k >0 (Linearity). Let h(t) = Y g, hit* € K((t)) be a delta series, then

i hk(t)rss f(x)z™*"1 = f(h(t)) (Substitution). (3)

=0

Well-known generating functions of the unsigned Stirling numbers of
the first kind §(n, k), the Stirling numbers of second kind S(n, k), the n-
ordered Bell numbers b,,, the Bernoulli polynomials of the first kind B,(z)
and the ordinary Bell polynomials B, j are given as:
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Z Bn,k(xl,.’l:z, .. .)t" = (Z xmtm)k )
m=1

n=k

From (3, 4], we have

2 The main identity

In this section, we obtain some identities by means of the method
residue. We also give a new proof of the conclusion that formula res g(t) =

res g(f(t))f'(t) is equivalent to the Lagrange inversion formula. Our main

identity is as follows:
Theorem 2.1 Let (w,)nen- Suppose we are given a delta senes i) =

Sope fr e ‘k € K((t)), the generating function h(t) = > 7o, hk— € K|[z]] for

the sequence (hi)kz0 and g™ () = (Cpeo 9% wk) e K((t)) withgo=1, 7>
0, then the identity

Z—res g OF@Y T =res g (OR(F)ETT, (4)

k=0
holds for every n > 0.

Proof: By (3), we have

f‘,f"(t)rgs h(e)F ! = h(f(2)),

k=0
then

o0

S Z—:(g(t))'(f(t))k = (9®)h(F®))-

k=0

Since the function (g(t))"(f(t))¥¢~"~! is a formal power series when k >
n+1, then res (g (f(t)*t™1=0, k>n+1 and

( 2 Z—:(g(t))r(f(t))"t‘"-1> _o.

=n+1
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Hence by (1) and (2), we get
res (((t))" (F(&))t~""")

= res (Z fﬁ(g(t))’(f(t))kt'"")

k=0

- ( ) %(g(t))’(f(t))kt‘"“) +rgs( )> %{g(t))’(f(t))kt‘"“)
k=0

t
k=n+1

= res (Z :j—k(g(t))'(f(t))'“t‘"")
k=0

k

n

= Y res (9 (GOt

k=0

= 3 Pres (WO + 3 Bres () (@)Y
k=0 Wk k=n+1 Wk

= 3 Zres (0O ()Y,
k=0

This gives (4).

In the special case, w, = 1 in Theorem 2.1, we obtain
Corollary 2.2 A delta series f(t) = Y po, fit* € K((¢)), the generating
function h(t) = 3202 het* € K[[z]] for the sequence (hx)k>0 and g7 (t) =
(X reo grt*)™ € K((t)) with go =1, 7 > 0, then

i hires g"(8)(F(1))'t "1 =res (RS, n >0, (5)
=0

where

oo oo
gr(t) = (Z gntn)r =1+ Z Pr(Lr)(glyQZ’gIh .. -)tn) go = 1,

n=0 n=1

n
P7(91,92,93,- ) = Y _(1)eBa(91,92,9s,-..), B =13, p. 141},
k=1

when r=1, (5) is equivalent to the identity in Theorem 1.1([5]).
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We also get:

ZZ ( )(glag2ag31 )Bn—i,k(fl:f2’ f31'-')

g () t—-n—l

= Tes T o) ,

Z(_l)k Z -Pi(r)(glvg%g& . ')én—i,k(fh f‘2’ f31 .. ~)
k=0 i=0
gr(t) t—n—l

1+ f(t) ’

1) r
Z (k+1 gp( ) 91192)93, )Bn—tk(flaf21f37 : )

= res

g (t) 1 e
N ORG TS HE

>k Z P (91,902,938, - Y Bn_s(f1, fa, f3, )

k=0 =0

SO nr
-fe)P

Z ZP( 91,92:93, - ) Brik (f1, fo. f3,- )

k=0 ‘z=o

Wg-n-1,

= resg (t)e

For r = 0 in equation (5}, we get

i hyres ( fenkt—"" = res h( F{O) ke

k=0

from Lagrange inversion formula (see [3]) we obtain
res (FO)™" = Zres -1,
where f(f(t)) = f(f(¢)) =1, then

S -k res 41T = - res (FENHE
k=0

k=0
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since n res t—n-lfk = res t="D(f)*, we have
res g(t) = res g(f@))f(2),
where 377 0 hy - k 571 (F(2) 7" = g(2).

3 Combinatorial sums

In this section, we establish some identities involving the binomial coef-
ficient, the unsigned Stirling numbers of the first kind, the Stirling numbers
of the second kind, the n-ordered Bell numbers, the Bernoulli polynomial-
s of the first kind, the ordinary Bell polynomials, and the Riemann Zeta

Function.
Proposition 3.1 For m > 0, » > 1, we have

"i’:" n-k+r—-1\ _ (n+r
mr+r—1/) \mr+r/)’

k=0

when r = 1, (11) comes to p_o" ("7F) = (1)

Proof: Consider

mr

O = =gy 0=

from Theorem 2.2, we obtain

el tmrtk ) gmr .
—_— - - —_— 3R~ —_—
£ 07‘?8 (1 - t)mr+rt Tfs (1 _ t)mr+r+lt s he =1,

Proposition 3.2 Let 7 > 0. Then

> 35 mn(7) s st -1k =3 (7).

k=0 i=0 j=0 k=0

;'=0 klS(n,k) = by, r = 0, where b,, is the n-ordered Bell numbers.
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Proof: Setting g"(t) = €™, f(t) = €' — 1 in (6), we obtain

. 111 o 111
ZZ}:(T); i g 3B ~k(qpgp g

then
n n i (T)lek' L. ) 3 1 LI o
Zzgﬂ(n—_i)!‘S(%,J)S(n—z,k)_a;(k)r kb,

which yields (12). Setting 7 = 0 in (12) gives >_p_, k!S(n, k) = bn.
Similarly, by (7) and (8), we obtain Proposition 3.3 and Proposition

34.

Proposition 3.3 Let r > 0. The following relation holds:

i

S0 S -1tk () S ASm -k = (-1 (09

> (—1)*kIS(n,k) = (-1)", 7 =0. (14)
k=0

Proposition 3.4 For r > 0, we have the following identity

n

ZZZ( —1)* ( ),j‘k'( )S(z 7)S(n —i,k) = Ba(r), (15)

k=0 i=0 j=0

where B,(z) is the Bernoulli polynomials of the first kind.
Proposition 3.5 As » > 0, we have

st (7 ) - (00)

Proof: Let g"(t) = 11—1_t)” f(t) =% , and by (9)

n

n i —t-
3 3 S (- 1)kk(r);Bes(1,1, 1, ) Bacik(l,1,1,..) = Tes t-"-l—l‘l:T =

2’
k=0 i=0 j=0 ( l_g)

>33 oo (1) () = ()

k=0 =0 j=0
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This completes the proof.
Proposition 3.6 Let > 0, we have

ZZZ(,f’_)’z (i_l) §(n — i, k) = (n;ﬂ) (17)

k=0 i=0 j=0

Proof: By ¢"(t) = 725+, f(t) = —log(1 —¢) and (10), we obtain

n n i 11
ZZZ( ]B;](l 1 1 )Bn—zk(11§1§’ )
k=0 i=0 j
1 1
-n—-1__ = .+
STet Ty 1w

then

ZZZ(Q'J (nk!z)! (;:i)g("_i’k)z (n:r)

k=0 {=0 j=0

Hence (17) holds.
Proposition 3.7 For ¢,(s) = Y . j=1J"", we obtain the following identity
relates the Stirling numbers of hoth kinds:

>3 R )35, Baia(G(1), - 22 6D
kn
=Xn:r—§(n+1,n——i+l).

Proof: From (3], we know that the the unsigned Stirling numbers of the
first kind 3(n, k) satisfy

n

(1 +8)(1 + %)...(1 + %) =3 s(n+ 1,k + 1),
k=0
By g7(t) = €™, f(t) = log(1+t)(1+4) ... (1+L) = 3 N Gulodys gy
s21
(10), we have

ip (1 1 1 ¢a(2) Cn
ZZZ(TB ﬁ '2_,)371 ) n—:k((n(l)) () ;)7)

k=0 i=0 j=0

4 t
— -n-—1_rt e il
=rest e (1+t)(1+2)...(1+n),
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