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Abstract Compressed sensing (CS) has hroken through the traditional
Nyquist sampling theory in that it is a new technique of signal processing.
According to CS theory, compressed sensing makes full use of sparsity so
that a sparse signal can be reconstructed from very few measurements. It
is well known that the construction of CS matrices is the central problem.
In this paper, we provide one kind of deterministic sensing matrices by de-
scribing a combinatorial design, then we obtain two cases by instantiating
the RIP framework with the obtained design, which the latter one is the
majorization of the former one. At last, we show the better properties than
DeVore’s construction using polynomials over finite fields.
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1. Introduction

The traditional Nyquist sampling theorem points out that in order to
protect from losing information during sampling signals we have to sample
at least two times faster than their bandwidth. However, it is too expen-
sive to increase the sampling rate and it also brings complicated issues to
our work. Therefore, it is high time to replace the conventional sampling
and reconstruction operations with lower rate and keep the veracity about
recovering signals. Meanwhile CS theorem has successfully tackled these
problems. For a discrete signal z, which can be regarded as a vector in
R! with t entries. We want to capture this signal with ¢ large by taking
a small number s of linear measurements. Each linear measurement is to
calculate the inner product v - x of £ with vectors v. Then the s x ¢ matrix
®, which contains these vectors v, is called compressed sensing matrix, and
the information y = ®z, which is extracted from z by ®, is named the
measurement vector. Here arises one question: For a given measurement
vector y, how can we reconstruct the original signal z from y = ®z? Even
though y = ®z is usually ill-posed for s < ¢, Donohol!) and Candés!?) make
the most of sparsity to get that a sparse signal can be reconstructed from
very few measurements. This problem is described as finding the sparsest
solution of linear equations y = &z
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:reliRn' [zllo st.: ®z=y. (1)

This lo-minimization is a combinatorial minimization problem and is nor-
mally NP-hard®). Whereas, CS presents a skillful way to recover sparse
signals with suitable algorithms and the number of measurements s < ¢.

There are basic two ways to reconstruct k-sparse signals. One of
them is pursuing greedy algorithms for lp-minimization (1). Among these
greedy algorithms, there is a famous one called orthogonal matching pur-
suit (OMP)!4l. If the number of measurements s > Dk log(%), where D
is a constant and é € (0,0.36), OMP can recover z from (1) with prob-
ahility surpassing 1 — 26. Namely, we can regard the recovery of sparse
signals as an optimization problem with efficient algorithms available by
choosing a stable sensing matrix. There are two kinds of CS matrices,
one is called random sensing matrices whose entries are randomly drawn
from certain probability distributions, which concludes Gaussian matrices;
Bernoulli matrices; Random partial orthogonal matrices®=7. Another is
named deterministic (compressed) sensing matrices, which successfully ob-
tains a large number of attentions. Then we have another problem: What
kinds of matrices are stable? They must ensure that the salient information
in any k-sparse or compressible signal is not damaged by the dimensionality
reduction from = € R* down to y € R*. For the sake of figuring out this
problem, Candés and Tao!® have introduced a criterion, named restricted
isometry property (RIP).
Definition 1.1.1° Let & he an s x ¢ matrix, if there exists a constant
dx € (0,1), such that for any k-sparse signal = € R!, we have

A=)l zl3< 1@z |2<@+6)z|? (2)

then the matrix ® is said to satisfy the RIP of order k, and the smallest
nonnegative number d in (2) is called restricted isometry constant (RIC)
of order k.

In fact, the value of k is associated with the numbers of s and ¢. Assume
z be a k-sparse signal, where z € R?, and it can be accurately recovered
from s measurements. Then an upper bound of the possible sparsity is

k < Cs/log(t/s), (3)

where C is a constant!!®). Random sensing matrices have achieved the
upper bound of k in (3), which could recover sparse signals with high
prohability!®]. However there are also some drawhacks about random sens-
ing matrices. First of all, random sensing matrices need a lot of storage
space to store their entries. Second, there is no efficient algorithm testing
whether a random sensing matrix could satisfy the RIP, let alone with high
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probability. But the deterministic sensing matrices overcome those draw-
backs.

Definition 1.2.!!1 Let & be a matrix with columns u;, ug, ..., u;, the
coherence of ® is defined as

| (i, uj) | .
p(®) = max ———————, for 1<4,5<¢t. (4)
i#i || i flg - [l u il
As coherence is associated with the RIP, therefore, it is one of essential
ingredients in the deterministic constructions.
Lemma 1.3.['2) Suppose ® is a matrix with coherence . Then ® satisfies
the RIP of order k with éx < u(k — 1), whenever k < 711 + 1.

For an s x t matrix ®, there is a famous Welch bound[*!

PO ;(ft;_% (5)

which means that the deterministic constructions based on coherence can
only obtain sensing matrices with the RIP of order k = O(s'/2).

In recent years, there are some deterministic construction of compressed
sensing matrices, which have been presented. DeVore’s polynomials over
finite fields!!4]; Gao’s algebraic curves/'®l; Amini and Marvasti’s bipolar ma-
trix by BCH codel'®! and its generalization!!”); Bourgain’s additive combina
torics!1?l; Mahdi Cheraghchil!®l uses the notion of minimum L-wise distance
of codes to capture the combinatorial structure of RIP-2 matrices. In this
paper, we obtain two cases of deterministic sensing matrices associated
with finite suhsets of [n] and partial mappings by describing a combina-
torial design and instantiating the RIP framework where the latter one is
majorization of the former one.

2. Notation
Given positive integers m < n, () denote the collection of all m-

subsets of [n], where [n] = {1,2,...,n}. Then the number of () equals
to (1), where

(m) = sy ©)

By convention (§) =1 for all integers n and () = 0 whenever m <0 or
n < m.

Let 1 < d < m < n. Note that the number of d-subsets of [n], which are
contained in a given m-subset of [n], equals to (7). Denote by M(m,n)
the set of all m-pairs (A, f), where A is a m-subset of [n] and f: A — [n] is
a mapping. The pairs are called partial mappings. For (4, f) € M(m,n)
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and (B, g) € M(d,n), the pair (B, g) is called a d-pair of (A4,f) if BC A
and f|g = g, where f|p is the restriction of f on B. If (B, g) is a d-pair of
(A, f), we also say that (4, f) contains (B, g).

3. The construction

In this section we obtain two cases of deterministic sensing matrices as-
sociated with finite subsets of [n] and partial mappings by describing a
combinatorial design and instantiating the RIP framework where the lat-
ter one is majorization of the former one, then let us compare the first
construction with the case of DeVore and prove that the performance of
the given construction is better than that of DeVore for meeting certain
conditions.
Definition 3.1. An (t,d, n)-design is a set system S,---,8; C [n] such
that the size of each set is d, where 1 < i < t.
Definition 3.2. Let D = {S;,---,S;} be an (t,d,n)-design and G =
{T1,-- ,Ts} be an (s,m,n)-design, consider the binary s x ¢ matrix ® in-
duced by D and G where the ith row of ® is supported on T; and the jth
column of @ is supported on S;. We define a;; to denote the elements of
& where

1, #Tics;,
“=Yo, #Ti¢s,

Construction 1119 For 0 < d < m < L], we define d to denote the

d-subsets of [n] and m to denote the m-subsets of [n]. Then we obtain a
binary s x ¢ matrix ®o, whose constant column weight is w,where

Q) () o

Lemma 1 in Appendix tells us that ®o always keeps s < ¢.
Theorem 3.1. Let 0 < d < m < [-'2‘-] and & = 71:@0, then & is a

matrix with coherence u(®) = 11— 4 and satisfies the RIP of order &k with
8 < gm*—%ﬂ’ whenever k < m—n}? +1.

Proof. By the Definition 3.1, we know the number of ones in every column
of g is the same, which means the value of the denominator in (4) is given,
which equals to w = (7). In order to obtain the coherence u of & We
only need to calculate the maximum value of | (ui,u;) |. Meanwhile, let
Py, Py, ..., P, be t distinct columns of ®. For any two distinct columns
P; and P, this also means for any two different m-subsets of [r], which
are denoted by P; and P;. As above-mentioned, we want to know the
maximum value of | (P;, P;) |, which also means we want to know the
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maximum number of d-subsets of [n], which are contained in both P; and
P;. In fact, since the intersection of any two subsets is also a subset of [n],
hence let | P; (\P; |= m—1, then the number of d-subsets of [n] is equal to
the maximum value ("j‘l ) At last, as the definition of coherence, then

m-—1
d m-—d

=25 )
(%)

By the Lemma 1.3, then ® satisfies the RIP of order k with 6z < Mﬂ,
whenever k < —— + 1. This completes the proof. O

w(@) = (

Example 3.1. Let n = 2m and m —d = 2. Then we obtain an s x { matrix
® with

. (Z) - (mgTz)’ t= (TZ) = (2,:) w@) =2,

which satisfies the RIP of order k£ < —g—l +1. In the view of ahove-mentioned,
we know that

_ (m+2)(m+1)
T m(m-1)

t
s
then

t+3s+ V2 + s + 14st
m = N

2(t — s)

® can be used to recover signals exactly with sparsity

k< t+3s+ V2 + 52 + 14st

4(t — s)

Construction 2 For 0 < d < m < n — 1, we define d to denote M(d,n)
and m to denote M(m,n). Denote ¢’ :=t, s’ := s, then we obtain a binary
s’ x t' matrix ®, whose constant column weight is w’,where

o) (@) 0@
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Lemma 2 in Appendix tells us that ®) always keeps s’ < t'.
Theorem 3.2. Let 0 < d<m <n-1and & = \/—1=I-€I>’, then &’ is
w

a matrix with coherence u(®’') = 2= 4 and satisfies the RIP of order &’
m-—d)(k' -1
m

with 8, < ( , whenever k' < m—’f—a + 1.

Proof. By the Definition 3.1, we know the number of ones in every column
of &f is the same, which means the value of the denominator in (4) is given,
which equals to w' = (7). In order to obtain the coherence y of &. We
only need to calculate the maximum value of | (u;,u;) |. Let (A;, fi;) be all
the columns of &', where (4;, fi;) € M(m,n),1 <i< (), 1<j<nm™
For any two different columns (A;,, fi,;,) and (A;,, fi,;,), this also means
for any two different m-pairs of M(m,n). As above-mentioned, we want
to know the maximum value of | ({A;,, fi,j1), (Aiss firsz)) |- That is the
maximum number of (B,g), where (B,g) € M(d,n), which satisfy the
conditions that B C A;,, B C A;, and fi,;,|B = fi,j,l8 = g. Firstly,
we will think about the condition when i; = i, = i. So we just need
to consider the mappings fi;, and f;;,. Let f;;, and f;;, have the same
action on any m — 1 elements of A;, then (A, fi;,) and (4;, fij,) can be
looked as a (m — 1)-pair (C, f’), where C exactly has the above-mentioned
m — 1 elements and fi; |c = fij,lc = f. At this moment, we can get
the maximum number of (B, g), which equals to (™7!). Secondly, we will
consider another condition when i; # i. Then there are at most m — 1
same elements in A; and A;,, not to mention the mappings f;, and
firj,- Hence the maximum number of (B, g) is less than {™7!) under this
condition. As the Definition 1.2, then

(@) = (m"_l> =nod (10)

m m
d
By the Lemma 1.3, then &’ satisfies the RIP of order k' with O <
— ! —
(m dmk 1), whenever k' < m—"_‘la + 1. This completes the proof. O

Example 3.2. Let n = m +d and m — d = 2, then we obtain an s’ x ¢
matrix ® with

o (Z) — @m_2)"? (2::_-22) , t'=nm (:1) = (2m-2)™ (2mm“ 2) :

u@) =2

’
m
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which satisfies the RIP of order &/ < % + 1. In view of above-mentioned,

we know that

t 2
then
1/t
m=§ ?'i‘l,

®’ can be used to recover signals exactly with sparsity

PN

K < V7 + 5"
Next, we will find out some certain conditions when the performance of

Construction 1 is better than that of DeVore.
First of all, let’s retrospect the DeVore’s construction!!4. DeVore presents
a construction of matrices using polynomials over finite fields. Let F, be a
finite field, where p is a prime. Given an integer r, where 0 < r < p, let
P, be the set {f(z)|0(f(z)) < r,z € Fp}. There are p™*! such polynomials.
Any polynomial Q € P,, which is regarded as a mapping of F, to FF,, then
its graph 3(Q) is the set of ordered pairs (z,Q(z)), z € Fp, which is a subset
of F, x IF,. Let & be the hinary matrix with rows indexed with ordering
the elements of F, x F,, lexicographically as (0,1),(0,2),...,(p—1,p~1)
and columns indexed with the polynomials of P, such that ®;*(¢,5) =1 if
and only if Q(i) = 7, where the j-th column is indexed by Q. Then ®¢* is

a p? x p"t1 matrix.

Lemma 3.1.['% Suppose the matrix ®* = -\%;‘I’o*, then ®* satisfies the

RIP with k- = (k* — 1)r/p for any k* < p/r + 1.

As a matter of fact, many experts have studied the properties of DeVore’s
polynomials deterministic matrices. They find that this construction has
some drawbacks. First, the time to compute the matrix itself is long. Sec-
ond, every column exactly has p ones. That means there are more nonzero
entries in the larger matrices, which makes the compressed signals require
a lot of storage space and expands large amounts of costing of transmission
signals. (see [20])

As above-mentioned problems, we consider the performance of com-
pressed sensing matrices by three kinds of parameters, they are a,k, and
%. Here we define a = w/s to denote the sparity of sensing matrices. Given
the value of k, the sensing matrix is better when the value of a is smaller,
which contributes to overcoming the above drawbacks(see (21]), the matrix
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is also better when the value of % is larger, which means this matrix has
more powerfully compressed properties.
By Theorem 3.1 and (7), we get an s x ¢ sensing matrix & with

O

d m

Meanwhile, according to the description of Devore’ construction, we also
have an s* x t* sensing matrix ®* with

t w*
s* =p?, tmz__pr-i-l’ ;T:pr—l, k*Sg a*t =

where 1 < 7 < p and p is a prime.
Theorem 3.3. Given the matrices ® and ®*. Suppose k and k* are
equal to their upper bound values, respectively, which means k = -7#717

and k* = g Let them be equal to each other and then a < a* when

r< —m—db(m _(d)(n)

m d) ’
Proof. As the description of conditions, since k = k*, then ﬁ = g
Since 2* = Il)’ then a* = "},.;1‘1 Comparea = ('7)/(7) and a* = %i

m—d)y{(%
Then we have a < a* when r < ( ( )() ) . So our construction has the
mid
better sparsity of sensing matrices. O

Theorem 3.4. Given the matrices ® and ®*. Let k and k* be equal
to their upper bhound values, respectively, which means k = ﬁ and

k* = g Denote k = k* = m—'fa = g and then % > %:— when

r< min{w,m —d+1},
m
where n >m+d + %
. L . t*
Proof. According to the above description, since % = g and =
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p"~!, then %,r = (#mq)"l. In the meantime, since

o)

(5

(n-m+1l)(n—m+2)----- (n - d)
(d+1)(d+2)----- m

@ | o

_ n—m+1.n—m+2” “n—d

- d+1 d+2 m
n—d,.._

2 (=) ‘4,

where "—7,_1—4 < e < nﬁ—:%"—z < -n—'é%t—l, obviously, then let’s com-

pare (n;ld)'""d and (ZF4)"~! by contrasting their base numbers and

powers, respectively. Let "TTI d > n% and m —d > r— 1, then we have

r < K”_—(Zl(;ul and r < m —d+ 1. Hence we have % > (7—‘-1%4)’"“1 >

m
g—:- when 7 < min {gn—_—%%znl——@,m—d+l}. 0

At the end of this section, we prove that Construction 2 is majorization
of Construction 1. Given the integers 0 < d < m < |3, then by Theorem

3.1 and (7), we can get an s x ¢t sensing matrix & with
() (%)
s = n , t= n s E = m N k S m , a = 9—) = d .
d m s n m—d s n
d d

Meanwhile, by Theorem 3.2 and (9), we also obtain an s’ x t/ matrix ¢’ with

m
' wl_ d
a=7_
n
nd
d

Theorem 3.5. Given the matrices ® and ®'. Let k and ¥’ be equal to
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their upper bound values, respectively, which means k = k' = ﬂ Then
a <a.

Proof. As the ahove-mentioned, denote k = k' = ﬁ Then compare

a=("1)/(3) and o' = (7)/(n*(}})). Obviously, a/a’ = n¢ > 1, so the
matrix ®’ has the better sparsity than ¢. O

Theorem 3.6. Given the matrices ® and ®’. Let k and k&’ be equal to
their upper bound values, respectively, which means k = k' = ﬁ Then

t/s<t'/s'.
Proof. The same as above, denote k = k' = ——. Then compare t/s =

(m)/(d) andt'/s' = (n™(f}))/(n%(g)). Apparently, {(n™(1%))/(n*())}
((&)/(7)) =nm™"¢ > 1, therefore the matrix & is better than & in terms
of compressing signals. O

We find that the latter construction is perfectly better than the former
one. By changing the numbers of d, m, n, we can obtain a family of distinct
sensing matrices.

4. Conclusion

In this paper, we present a new method to construct deterministic com-
pressed sensing matrices by using finite subset and partial mappings. By
meeting some certain conditions, our constructions are better than De-
Vore's method using polynomials over finite fields. We can also use sub-
spaces over finite fields(®? to construct matrices based on this method,
which gives great flexibility and offers more choices for the construction of
sensing matrices. Candés and Tao once suggested that the CS framework
leads to an encryption schemel®!, where a sensing matrix can be used as
an encryption key. This may be highly valuable for the potential use of
sensing matrix in the area of cryptography.

However, We believe that our construction still has much potential. Gen-
erally, binary sensing matrices are not good candidates in CS since all
the entries are nonnegative. Using p-ary BCH codes, some contributions
have been made in the direction to generate nonbinary sensing matrices(!7.
Therefore, constructing nonbinary sensing matrices with algebraic curves is
very interesting. At the same time, Mahdi Cheraghchil'® uses the notion of
minimum L-wise distance of codes to capture the combinatorial structure
of RIP-2 matrices. These methods make great contribution and is worth
studying in the future.

Appendix
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Lemma 1 Given integers 0 < m < n, the sequence (7.7,‘,) is unimodal and
gets its peak at m = | 3.
Proof. According to (6), we know that if m; < mg, then

ETZ]% _ '( n! )' % mz'(n~'—m2)'
n myp\n—my). ni
m2

(m1+1)(m1 +2)...my
(n—ml)(n—ml——1)...(n—-m2+1)

mp +1 my + 2 ma

n—m n-—mp—1 n—me+1"

m;+1 my + 2 m

n—m1<n-m1—1< <n—m2+1'

If mg < [%J, then mg < n — mg + 1, WT%T—T < 1. Hence, when
n
my

where

0 < my <my < |G, we have <1

ma

m;+1

M, ey 1. Hence, when

If my > |G|, then my +1 > n—
n

m
5] < m1 < my < n, we have nl >1.0

m2

Lemma 2 Given integers 0 < m < n, the sequence n'"(,',‘l) is increasing
strictly.
Proof. By (6), if m; < ma, then we have

amy [ T
" (mx) _ 1 9 (m1+1)(my +2)...ma
nmz(n) T opme-m T (n—my)(n—my; —1)...(n—mz +1)
m2
m; +1 my +2 ma

nn—m;) n(n—m; —1) n{n —mg + 1)’

my + 1 my + 2 m
where n(n - m,) < n{n-—my —1) <toes nn—mg+1)

Since my < n, then ma(n + 1) < n(n + 1), my < n? + n — nmy,
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n™
m
—M2 <, Hence, when 0 < m; < my < n, we have I <
n(n —mq + 1) ama ™
ma

1.0
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