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Abstract

In this paper, we use a recent result of Bryant, Horsley, and Pet-
tersson in [1] to give an alternate and simpler proof of results on
neighborhood graphs in maximum packings of 2K, with triples, some
of which were only recently obtained.

In any partial triple system (V, B) of 2K, the neighborhood of
a vertex v is the subgraph induced by {{z,y} | {v,z,y} € B}. In
results by Colbourn and Rosa (n = 0,1 (mod 3)) and Chaffee and
Rodger (1 = 2 (mod 3)), a complete characterization of the possible
neighborhoods in a maximum packing of 2K, is provided. In both
papers, the authors make use of difference methods, as well as a pull-
up technique which is used to modify the neighborhood of a vertex;
yet neither approach seems to readily obtain the other result. Here,
a simpler unified proof is presented proving both results primarily by
using the aforementioned result in {1}.

1 Introduction

A (partial) A-fold triple system is an ordered pair (V, B) where V is a n-
element set and B is a multiset of 3-element subsets of V' called blocks such
that each 2-element subset of V appears in (at most) A blocks of B. The
blocks of B are also called triples.

A K3-decomposition of a graph G is a partition of E(G) into sets, each
of which induces a graph isomorphic to K3. For the purposes of this paper,
a packing of a graph G is a IK-decomposition of a subgraph H of G. If
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(V. B) is a (partial) triple system, define the multiset of edges E(B) =
{{z.y}. {x, 2}, {v. 2} | {v.y.2} € B}. If (V,B) is a packing of AK,,, then
the leave of the packing is defined to be the multiset of edges L = E(AK,)\
E(B). It will cause no confusion to also refer to the leave as being the
subgraph induced by E(AK,) \ E(B). In particular, in the special case
where L = {{a,b},{a,b}}, L is expressed as the 2-cycle (a,b). A vertex v
is said to be in the leave if there is some edge in the leave that is incident
with v. A maximum packing is a packing such that among all packings the
number of edges in its leave is as small as possible. It is straightforward
to see that a (partial) A-fold triple system on n vertices is equivalent to a
Kj-decomposition (packing) of AK,.

In any partial triple system (V, B) of 2/,,, the neighborhood of a vertex
v € V is the graph induced by {{z,y} | {v,z,y} € B}. If (V,B) is a
maximum packing of 2K, then the neighborhood of each vertex is a 2-
regular (or quadratic) graph on either n — 1 or n — 2 vertices. It will cause
no confusion to also refer to the neighborhood as a set of cycles, each being
a component of the neighhorhood.

When the vertex v is not in the leave of the maximum packing, the
neighborhood graph is 2-regular on n — 1 vertices. If the vertex v is in the
leave, the neighborhood graph is 2-regular on n — 2 vertices. A natural
question is to ask for which 2-regular graphs Q on n -~ 1 or n — 2 vertices
is there a maximum packing of 2K, such that the neighborhood of some
vertex is Q. This question was answered by Colbourn and Rosa, and Chaffee
and Rodger, respectively. in two papers culminating in the following two
theoremns.

Theorem 1. [3] Suppose n = 0 or 1 (mod 3). A 2-regular graph Q on
n =1 wvertices is the neighborhood of a vertex in a 2-fold triple system on n

vertices if and only if (n. Q) € {(6.C2U Cs),(7,C3 U C3)}.

Theorem 2. {2] Let n = 2 (mod 3) with n > 2, and let Q be a 2-regular
multigraph on either n — 2 or n— 1 vertices. Then there ezxists a mazimum
packing of 2K, with leave a 2-cycle such that the neighborhood graph of
some vertex is Q if and only if (n,Q) # (5,Co U Cy).

Surprisingly, it does not seem that the techniques used in either paper
can he used to readily obtain the other result, even if one “allows” extreme
cases (such as the case when each cycle in the neighborhood has length
two) to be handled using alternate methods. In this paper, a new, simpler,
and unified proof that obtains hoth results is provided (see Theorem 10).
However, this new proof relies heavily on the following major result, namely
a recent and quite powerful result due to Bryant, Horsley, and Pettersson
(see Theorem 5). In Section 2, we will state some well-known lemmas that
are useful in handling extreme cases of Theorem 10. In Section 3, we state
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the theorem of Bryant, Horsley, and Pettersson, and use it to establish three
key lemmas that will provide the basis for the proof of our main theorem.
Finally, in Section 4, we will provide the new proof of our main theorem.

2 Basic Lemmas

In this section, we state two well-known theorems, one being on idempotent
quasigroups and the other on maximum partial triple systems. We will use
these lemmas to handle extreme cases of our main theorem (specifically the
cases where n = 1 or 5 (mod 6) and @ contains only 2-cycles).

Lemma 3. (6] There erists an idempotent quasigroup of order n for all
n# 2.

The second lemma is more extensive than what appears below; however,
what appears below is sufficient for our purposes.

Lemma 4. |4 The leave of a mazimum partial triple system of AK, is
[. @ if A =2andn=0.1(mod3),
2. a2-cycle if \ =2 and n =2 (mod 3),
2. a Ky ana '—";—4 independent edges if A =1 and n =4 (mod 6), and

4. al-factor if A\ =1 and n =2 (mod 6).

3 Useful Decomposition

In this section, we first state a powerful cycle-decomposition theorem be-
fore using it to establish three key lemmas used in the proof of our main
theoren. In addition to being useful in this paper, it should be noted that
the following result solved the Alspach conjecture.

Theorem 5. [1f

1. Let n be odd. There exists o decomnposition of K., into cycles of lengths
my,....my if and only if

(a) 3<m; <n for1<i<tand
(b) Zicymi = (5).

2. Let n be even. There exists a decomposition of K,, into cycles of
lengths my,...,m, and a 1-factor if and only if

(o) 3<m; <n for1 <i<tand
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(b) Z:-_-lnl,‘ = ('2!) — ’_2’

This result provides the hbackhone of the proof technique used in this
paper, establishing that I, minus the edges of a certain set of cycles and
possibly a 1-factor can be decomposed into triples.

We don’t need the full power of this result for our theorem, since we
will never choose more than three cycle lengths for any particular case.
However, while older and more hasic results can be used in many of the
cases, we don’t. know of any other result that provides us the necessary tools
to complete all of the cases in the proof of the theorem. (For instance, we
know of no other result that establishes that K, can be decomposed into a
1-factor, a Hamilton cycle. a near Hamilton cycle, and triples.)

In addition to needing Theorem 5 to prove Lemmas 7, 8, and 9, the
following result due to Petersen on the decomposition of even regular graphs
into 2-factors is also needed.

Lemma 6. [5] Let H be any 2k-regular multigraph. There erists a 2-
factorization of H (into k 2-factors).

We now prove three lemmas that will be used extensively in the proof
of Theorem 10,

Lemma 7. Let Q be a 2-regular graph on n vertices, and suppose that
there exist Ny-decompositions of K,, — Gy and K, — Gy where G, U G5 is
2k-regular (on n vertices). G| conlains a Hamilton cycle, and Gy contains
either a Hamilton cycle or a 1-factor. Then there exists a decomposition of
2K, into triples and k 2-factors. one of which is Q.

Proof. Since @Q is a 2-regular graph on n vertices, it can be expressed as a
set of cycles (some possibly having length 2); hence, let Q = {co, . .. 1Cy—1}
where for each i € Z,, ¢; = (ci1.....¢;y,) has length l;. Let (Z,,B;) be a
K3-decomposition of I, — G,. where G; contains the Hamilton cycle H;
which is named so that H, = (¢ ,. < e2€0J61Clly e 1 Cllyse ey Cqmllyen ey
Cy—1.1,.,)- Let (Z,,, By) be a K'y-decomposition of K,, —G5. If G5 contains a
Hamilton cycle, name it Hy = ((:(H,co,l‘,,clvl,cl,ll,...,cq_l,l,cq_l,[‘,_l,vl,
ooy Upoaay) where vy, ..., Up-a.9, are arbitrarily named. Otherwise Gg
contains a 1-factor F: name the vertices so that g of the edges in F} are in
{{eircir }liez,).

Let H{ be the 2-factor induced by (E(Hy) U {{ci1,cin,} |1 € Zg}) \
{{cir,.civ1,1} | i € Z,} reducing the sum in the subscript modulo q. Then
H} = Q. The graph induced by E(G,) U E(G,) — E(H}) is 2k — 2 regular,
so by Lemma 6, it can be decomposed into k —1 2-factors, say Dy, ... Dx_o.
Then (Z,,. By U B2 U H{ Uiez, _, D,) is the required decomposition. O
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Lemma 8. Let Q be a 2-reqular graph on n + 1 vertices with a cycle of
length at least 4 or 5 when n is odd or even respectively. Suppose that there
exist K3-decompositions of K,, — G, and K,, — G, where G1UG,, is 4-regular
(on n vertices), G contains a Hamilton cycle, and G2 contains a Hamilton
cycle if n is odd and a 1-factor if n is even. Then, there exists a mazimum
packing of 2K,, o with leave a 2-cycle on the vertez set Z, U {001,002} such
that the neighborhood of the verter ooy is Q.

Proof. Let Q = {co,...,cq—1} Where for each i € Zy, ¢; = (ci1,---,¢i,) has
length l;, ¢j i € Z,, unless (j, k) = (0,3), co,3 = 002, and lp > 4 or 5 when
n is odd or even respectively. Using an argument similar to Lemma 7, let
(Z.,, By) be a K3-decomposition of K,, ~ G, where G contains the Hamil-
ton cycle Hy named so that Hy = (¢9,1,€0,2,C0,4,€0,55 - - 1€0,l01€1,15 - - - s CL 11 »
oy Cqmlly -2 Cqo1 ., ) (SO Co 3 == 00g IS omitted). Let (Z,, B2) be a K3-
decomposition of K, - Gs. If G5 contains a Hamilton cycle, name it Hy =
(00,2, €0.45€0,11 €001 C1.1+ €11, 5 €2,1,C2,05 -+ -1 Cq—1,1,Cg—1,04_1: V15 - - +» Un—z(q+1))
where vy, ..., 0,_9(y+1) exclude ¢p3 = ooz and are otherwise arbitrarily
named. Otherwise G, contains the 1-factor Fy; name the vertices so that
{co.2:c0.4} is an edge in Fy and ¢ of the remaining edges in F are in
{{cin,cir,} | 1 € Zy} (note that co.q # o, because G2 contains a 1-factor
so 1 is even so Iy > 5 by assumption). Finally, observe that the edge
{co.2,c0,4} appears in both G| and Ga.

Let H| be the graph induced by (E(H1) U {{ci1,¢cin.} | i € Zg}) \
{{cis..civ1.1} | i € Z,} reducing the sum in the subscript modulo g. Let
H} be the graph induced by (G, UG2) \ E(H}). Then H] and Hj are each
2-regular spanning subgraphs of K, and the set of cycles formed by the
components in H! contains the cycles ¢1,...,¢,—1 and the cycle ¢ where
¢l is formed from ¢y by deleting the edges {cy2,¢co,3} and {co,3,c0,4} and
adding the edge {cp2. ¢4} . Note that the edge {co,2, co.4} appears in both
E(HY{) and E(H3).

Then (%, U {>c;. 52} (By U B2 U {{00i.a;,b:} | {ai,b;} € E(H{),1 <
i <23\ {{oci, coa.cou} | € {1,2}}) U {{oo1,002,¢0,} | i € {2,4}}) is the
required maximum packing (with leave {co,2,co,4)). a

Lemma 9. Let Q be a 2-regular graph on n + 1 vertices with a cycle of
length at least 4. Suppose that there erist K3-decompositions of Kn — Gy
and K,, — G, where G, and Gy are near-Hamilton cycles. Then there exists
a Ks-decomposition of 2K, 1o on the vertex set Z, U {00,002} such that
the neighborhood of the verter ooy is Q.

Proof. Let Q = {cy.....cq-1} where for each i € Zy, ¢; = (Ciny--rCity)s
cjk € Z, unless (j,k) = (0.2), cp2 = 00z, and lp > 4. Let (Z,, By)
be a Kj-decomposition of K, - Gy (50 cg2 = 00z is not in the ver-
tex set), where Gy is the near-Hamilton cycle Hy, named so that H; =
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(60,3,60‘4, €055+ -+ 3CO0GsCl s+ v ClidyyereyCymllyee- ,Cq..l,[q_,) (SO co,1 is omit-
ted). Let (Z,,, B2) e a K3-decomposition of K,, —G,, where G is the near-
Hamilton cycle Hy = (co,1,¢0.44-€1,1: €104 5 - - - 1€g=1,1sCq=1,l4_1s V1 -+ + s Un—1—-2q)
where vy,...,v,_1-2 omit ¢y 3 and are otherwise arbitrarily named. Note
that co.3 # co., since ly > 4. Note that cp; has degree 2 in Hy and degree
0in H), ¢p3 has degree 2 in Hy and degree 0 in H, and every other vertex
in Z,, has degree 2 in both H; and H,.

Let H| be the graph induced by (E(H)) U {{ci1,¢cit,} | i € Zg}) \
({{ein, civia} 11 € Z,} U {{co.€4=14,-, }}) reducing the sum in the sub-
script modulo ¢ (and noting that {c,_1,_,,¢0,1} is not an edge and hence
not removed). Note that in the graph induced by Hj, every vertex in Z,
has degree 2 except co,; and cg3, both of which have degree 1. Let H;
be the graph induced by (E(H,) U E(H2)) \ H|. Note that in the graph
induced by Hj, every vertex in Z,, has degree 2 except co,1 and cg 3, both
of which have degree 1. The set of cycles formed by the components in H]}
contains the cycles ¢, ..., ¢,—; and ¢, where ¢, is formed from ¢ by deleting
the edges {co.1,¢0.2} and {co.2,c0.4}-

Then (Z,,U {001, 002}. BiUByU {{o0;,ai,b;} | {a:,b;} € E(H!),1<i<
2} U {{oo1, 000, ¢} | i € {1.3}}) is the required K3-decomposition. O

4 Main Result

We now state and prove our main theorem, the results of which appear in
(2] and [3].

Theorem 10. 1. Letn # 2, and let Q be a 2-regular multigraph on n—1
vertices. Then there exists a maximum packing of 2K, (possibly the
leave is empty) such that the neighborhood graph of some verter is Q
if and only if (n, Q) ¢ {(5.C2 U C3), (6,C2 U C3), (7,C3 U C3)}.

)

Let n.= 2 (mod 3) with n > 2, and let Q be a 2-regular multigraph
onn—2 vertices. Then there erists a mazimum packing of 2K, such
that the neighborhood graph of some vertex is Q.

Proof. If (n,Q) € {(5,Ca U Cy), (6,C2UC3),(7,C3U C3)} and there exists
a maximum packing of 2/, such that the leave of some vertex v is Q, then
deleting the triples containing v leaves the graph -K_2V2 I, T(;\/2 Ka, or
K3V, Ky when n == 5.6 or 7 respectively. In each case, any triple that
contains mixed cdges contains 2 mixed edges and 1 pure edge. But in
each case, there are more than twice as many mixed edges as pure edges
remaining. Hence these cases are not possible.

To prove the sufficiency, we will first handle two extreme cases (Case
1) followed hy 14 main cases. While there are a large number of cases,
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most follow from the lemmas in Section 3 or from similar ideas. Let @ be
a 2-regular multigraph on either n — 2 or n — 1 vertices (with the size of Q
specified in each case) such that (n, Q) € {(5,C2UC3), (6,C2UC3),(7,C3U
Cs)}.

Case 1: Let n =1 or 5 (inod 6), let Q consist entirely of 2-cycles (so if
n =5 (mod 6), |Q] = n—1), and let (n,Q) # (5, C2UC,) (since this case is
not possible). n = 1is trivial. So forn > 5,let n = 6/+1+e€ with ! > 1 and
€ € {0,4}. Let V = {001} U (Zy4z % Zz) By Lemma 3, let (Z3144,0) be
an idempotent quasigroup (! > 1, so 3!+ § > 3, and hence this quasigroup
exists). By Lemma 4, there exists a max1mum packing (Zai+4 % {1}, B1) of
2K 3+ with leave ¢ where ¢ is a 2-cycle if € = 4 and ¢ = @ otherwise. Then

{ool}UZgh x Zy, B U {{(,0), (b,0), (a0b,1)}, {(a,0), (b,0),(boa,1)} |
0<a<b<.3l-1+2}u{{ool (a,0),(a, 1)}, {oc1,(a,0),(a,1)} | a €
Z3i+5}) is the required decomposition with leave c.

Case 2: Suppose |Q] = n —2 and n = 5 (mod 6). We construct the
maximum packing on the vertex set Z,,— U {003, 002} where the neighbor-
hood of 00y is Q = {¢y, ..., Cy—1}, the g-cycles being defined on the vertex
set Z, _o; so the leave of the maximum packing will be (c01,002).

In this case, n — 2 = 0 (mod 3) and > 3 so ((";2)) —(n—2)=0(mod
3) and > O respectively. Thus, for k € {1,2}, by Theorem 5 let (Z,_2, Bk)
be a Kj-decomposition of K,_» — Hy, where H; and H, are Hamilton
cycles. Then by Lemma 7, there exists a K3-decomposition (Z,—_2, B) of
2K, — (H{ U Hj) where H{ and H} are 2-regular graphs and H] = Q.

Then (Z.,,_gu{ool,oo2}, BU{{OO-,', a;, bl} | {ai, bl} € E(Htl), 1< < 2})
is the required maximum packing.

Case 3: Suppose |Q| = n — 2 and n = 2 (mod 6). We construct the
maximum packing on the vertex set Z,,_o U {oo;, 002} where the neighbor-
hood of 0oy is Q = {co,...,cq-1}, the g-cycles heing defined on the vertex
set Z,,..2: s0 the leave of tl)e maximum packing will be {00y, 002).

In this case. #n — 2 = 0 (imod 6) and > 6 so ((";2)) (n—2) - "T‘Z
and ((";2)) ’-".‘22' are both divisible by 3 and > 0. So hy Theorem 5, let
(Z, 3, B,) be a K3-decomposition of K,,_5 — (H; UF;) and let (Z,_2, B2)
be a K3z-decomposition of K,,_» — F» where H; is a Hamilton cycle and
Fy and F5 are 1-factors. By Lemma 7, there exists a K3-decomposition
(Z—2,B) of 2K,,_o — (H{U H}) where H] and H) are 2-regular graphs and
Hi=Q.

Then (Z,,_oU{o0y, 002}, BU{{0o0:,a:,b;} | {ai, b:} € E(H]),1 <i<2})
is the required maximuwm packing.

Case 4: Suppose || =n —1, n =5 (mod 6), and that Q has a cycle of
length at least 4.

In this case, n—2 = 0 (mod 3) and > 3 so ("3?) - (n—2) =0 (mod 3)
and > 0 respectively. Thus, for k € {1,2}, by Theorem 5, let (Z,—2, Bx) be
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a K3-decomposition of K,,_, — Hy, where H; and H, are Hamilton cycles.
Then by Lemma 8, the required maximum packing exists.

Case 5: Suppose that |Q| =n — 1, n =5 (mod 6) and that Q contains
a 3-cycle.

We construct the maximum packing on the vertex set Z,_4 U {o0; |
1 < j < 4} where the neighborhood of 00, is Q = {co,...,cq-1}, where
cp = (002,003,004), and the q — 1 other cycles are defined on the vertex
set Z,_4 with the length of ¢; being odd (since n — 1 is even here, and Q
contains a 3-cycle, @ must contain some other cycle of odd length). We
will construct the maximum packing so that the leave will be (c0g,¢;,2),
where ¢; 2 is defined below.

For each i € Z, \ {0}, let ¢; = (¢i1,...,ciz,) Where l; is the length
of ¢;. In this case, n —4 = 1 (mod 6) and thus ((";4)) — 3(n — 4) and
((";4)) — (n — 4 - 1) are both divisible by 3. Further, Q cannot con-
tain a 3-cycle in this case if n = 5, so we have that n — 4 > 7, so
both quantities are also nonnegative. So by Theorem 5, let (Zy~4, By)
be a K3-decomposition of K,,_y — (H; U H3 U Hy) and let (Zs—4, B2) be
a K3-decomposition of K,_y4 — Hy where Hy, Hs, and H; are Hamilton
cycles and H, is a near-Hamilton cycle with H; and H, named as follows:
Let Hy = {eva,... NS WA PR 2 MO PG I P ’C‘I_lvlq—l)’ Let Hs be
defined by Hy = ((3]‘1.(.'].“.(52.[,62‘[._,,...,Cq_l,l,c‘l_l.["_x,vl,...,Un_3_2q)
where vy,.... 0, 3.9, exclude ¢, and are otherwise arbitrarily named
(note that ¢ 2 is omitted from Ho altogether since ¢; was assumed to have
had odd length and hence ¢ » # ¢,).

Let Hy = (E(H) U {{eincin} |1 € Z \ {0} \ ({{eat civrn} | i €
Z,\ (0,0 ~ 1}} U {{c1s, 01} Let H = (E(Hy) U B(H;)) \ H,.
Then Hj and Hj induce 2-regular spanning subgraphs of K,_4 and K,_s
respectively, the set of cycles formed by the components in H} being Q\ ¢o.
Let H} = E(H3) and Hj = E(H,).

Let ({oc; | 1 < j < 4}, B3) be a K3-decomposition of 2K, (where the
neighborhood of ooy is the 3-cycle (002,003, 004)).

Then (Z,, -4 U {o0; | 1 < j <4}, BiUByU B3 U {{o0;, a:,b;} | {ai,b;} €
H]} is the required packing.

Case 6: Suppose [Q] =n —1, n =2 (mod 6), and that Q has a cycle of
length at least 5. n # 2 so n > 8 and hence, n — 2 = 0 (inod 3) and > 6
50 ((";2)) = (n - 2) =0 (mod 3) and > 0 respectively. By Theorem 5 let
(Z,,-2, By) be a Kj-decomposition of K,_, — (H; U Fy) and (Z,,—3, B3) be
a Ky-decomposition of K, .5 ~ F» where H| is a Hamilton cycle and F; and
1% are 1-factors. Then by Lemma 8, the required decomposition exists.

Case 7: Suppose that [Qf = n--1, n = 2 (mod 6) (with n # 2) and that
Q contains a 3-cycle.

First suppose n = 8. Let B = {{0, 0cy,1}, {0, 001,1}, {001, 2,3},
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{001,2,3}, {c01,4,5}, {o01,4, 6}, {c01, 5, 6},{0,2,4}, {0, 2,5}, {0, 3,4},
{0,3,5},{1,2,4},{1,2,6},{1,3,5},{1,3,6},{1,4,5},{2,5,6},{3,4,6}}. In
B, the neighborhood of 00; is CoUC2UC3. Finally, the neighborhood of co;
in (B \ {{001 , 1, 0}, {OC[ , 2, 3}{0, 2, 5}, {1, 3, 5}}) U {{0, 001, 2}, {001, 1, 3},
{0, 1, 5}, {2, 3, 5}} is 04 U C;;.

For n > 8, we construct the maximum packing on the vertex set Z,_4U
{o0j | 1 € j < 4} where the neighborhood of ooy is Q@ = {co,...,¢q-1},
where ¢y = (002,003,004), and the ¢ — 1 other-cycles are defined on the
vertex set Z, _4. We will construct the maximum packing so that the leave
will be (003, a), where « is defined helow.

For each i € (Z, \ {0}), let ¢; = (ciy1,...,¢iy;) Where [; is the length
of ¢i. In this case, n — 4 = 4 (mod 6) and > 10 and thus ((";4)) -
(n—d) =254 —(n—4—1) and ("3¥) — (n — 4) — 25* are both di-
visible by 3 and nonuegative. So by Theorem 5, let (Z,_4,B1) be a
K3-decomposition of K,_, — (Hy U H3 U F}) and let (Z,_4,B2) be a
K3-decomposition of I,,_4 -- (Hy U F3) where H; and H; are Hamil-
ton cycles, H; is a near-Hamilton cycle with arbitrarily named vertex
a € Z,—4 omitted, Fy and F, are 1-factors, and H; and H, are named
as follows: Let Hy = (¢i1y- e €10, €215« 5C2 g0+ -1 Cqm1,1s--+3Cqmlilgr)
Let Hy = (€1.1,€1,0,,€2.1, €2y« - 1 Cq=1,1yCq=1,l,_ 11 V15 - + - , Un—2—2¢) Where
U1y ...y Uno2.2¢ are arbitrarily named.

Let Hi = (E(H1) U {{ein.cin} | i € Zgp) \ {{ein,civ1n} | § € Zo}
reducing the subscript modulo ¢g. Let Hj = (E(H,) U E(H3)) \ H. Then
H} and Hj each induce 2-regular spanning subgraphs of K,,_4, the set of
cycles formed by the components in Hj being Q \ ¢o. Let H; = E(H3) and
H = E(Fy) U E(F).

Let ({oc; | 1 £ j < 4}, B;) he a K3-decomposition of 2K, (where the
neighborhood of 00; is the 3-cycle (002, 003,004)).

Then (Zp-a U {OOj [1<ji< 4},31 UByUB3zU {{ooi,ai,b,-} | {ai,b,-} €
H!}) is the required decomposition.

Case 8: Suppose n = 0 (mod 6) and that Q has a 2-cycle.

We construct the maximum packing on the vertex set Z,,_3 U {{o0;} |
1 < j < 3} where the neighborhood of 0oy is Q@ = {co,...,¢~1}, Where
co = (002,003), and the ¢ - 1 other-cycles are defined on the vertex set
Zn—3-

For each i € Z,\ {0}, let ¢; = (ei1,...,ciy,) where [; is the length of ;.
Note that 1 # 6, since then Q == C2 U C3, and we assumed that (n,Q) #
(6,CyUCy). In this case, n --3 = 3 (mod 6) and thus ((";3)) —2(n—-23) and
((";3)) —(n-- 3) are hoth divisible by 3, and since n—3 > 9, both quantities
are nonnegative. So by Theorem 5, let (Z,,—3, B1) be a K3-decomposition of
K,_3—(H,UHy) and let (Z,,_3, B2) be a K3-decomposition of K,,_3 — Hz
where H,, Hy. and H3 are Hamilton cycles.
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Then by Lemma 7, there exists a K3-decomposition (Z,_3, B) of 2K,,_3—
(H{U H; U Hj) where H{, Hj, and Hj are 2-regular graphs and H} = Q.

Let ({{oo;} | 1 < j < 3}, Bs) be a K3-decomposition of 2K3 (where the
neighborhood of 0o, is the 2-cycle (002, 003)).

Then (Z,,_3U{{oo;} | 1 £ j £ 3}, BijUB2UB3U{{00;,a:,b:} | {ai, b;} €
H}) is the required decomposition.

Case 9: Suppose n = 0 (mod 6) and that Q has no cycles of length 2
(and hence one of length at least 4).

First, suppose n = 6. Define B = {{o01, 5,0}, {001,5,1}, {001,0,2},
{oc1,1,8}. {oc1.2.3}, {5,0,3},{5.1,2},{5,2,3},{0,1,2},{0,1,3}}. Then
the neighborhood of oc, is Cs.

Otherwise for » > 12, we construct the maximum packing on the vertex
set Zn_2 U {{o0;} | 1 < j < 2} where the neighborhood of 00 is Q =
{Co,... ,Cq__;}.

Foreachi € Zg, let ¢; = (¢i1,...,¢iy,) where l; is the length of ¢;, lp > 4,
Cjx € Zy_y for all (j,k) # (0,2) and ¢p2 = 00p. In this case, n — 2 = 4
(mod 6) and thus (*;?) — 252 — (n—2-3) and (?*5?) — 252 — 1 are both
divisible by 3, and since n — 2 > 10, both quantities are nonnegative. So by
Theorem 5, let (Z,,_3, By) be a K3-decomposition of K,_, — (H; U F}) and
by Lemma 4, let (Z,,—2, B2) be a K3-decomposition of K,_5 — Hy where
Hyis a n — 5 cycle, Hy consists of a K 3 and (112%)———4 independent edges,
Fy is a 1-factor, and Hy and H, named as follows: If Iy = 4, let H; =

(c1a.... NG WIS IS ISP I U5 DI Cq—l‘l.,_x) (SO that Co,1,€0,3, and
Co,q are omitted) and ifly > 5, let Hy = (c0,.4,C0.5:- - -+ Co.lg» C1,15 - - - » C1,0y 5 C2.1,
ey C2lgs e Cqm11s- - - Cy1d, ., 1) (SO that cg 1, ¢ 3, and Cq—1,l,-, are omit-

ted). If Iy = 4, let Hy he defined to contain the edges {c; ,ci s} for each
i € Zy\ {0} as well as the edges {co.4, co,1}, {co,4, 0,3}, and {co 4,¢1,2} (note
that ¢; 9 # ¢4, since all cycles have length greater than 2 and note that
¢n,4 is the vertex of degree 3 in Hs) and finally ";223‘—2 arbitrarily named
edges. If Iy > 5, let Hy be defined to contain the edges {c;1,ciy,} for
each i € Z, as well as the edges {(:,,_”q_,,cq_”,’_l_l} and {cg-11,_,,C1,2}
(note that ¢y.2 # ¢1, since all cycles have length greater than 2 and note
that ¢,y ,_, is the vertex of degree 3 in Hs) and finally 3'—22‘1"—2 arbitrarily
named edges.

Note that in each case U!Z| E(¢;) U E(ch) C E(H:) U E(Ha) where d,
is formed from ¢y by removing the edges {co,1,c0,2} and {co3,co2}. Let
Hj = U{Z!'E(c;) U E(ch) and let H} = (E(H,) U E(Hy)) \ H). Then every
vertex has degree 2 in H{ and Hj except ¢g,; and cg 3 both of which have
degree 1 in hoth H{ and Hj.

Then (Z, .2 U {{OC,} | 1<ji< 2},Bl UByuU {{oo,»,ai,b,»} | {a,-,b,-} S
H{} U {{ooj, 2.0} | 1 € {1,3}}) is the required decomposition.

Case 10: Suppose n = 3 (mod 6) and that Q has a 2-cycle.
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We construct the maximum packing on the vertex set Zn_3 U {{co;} |
1 < j < 3} where the neighborhood of ooy is Q = {co,...,cq-1}, Where

= (007,003), and the q — 1 other-cycles are defined on the vertex set
Zn—:!'

For each i € Z, \ {0} (if n = 3, no such i exists), let ¢; = (¢i,1,-- -, ¢it)
where {; is the length of ¢;. In this case, n — 3 = 0 (mod 6) and thus
((""3)) — (n - 3) = 253 s divisible by 3, and since n — 3 = 0 or > 6, the
quantity is nonnegative. So hy Theorem 5, for k € {1,2}, let (Z,-3, Bx) be
a K3-decomposition of K, _3 — (Hy U F) where Hy and Hy are Hamilton
cycles and F} and F; are 1-factors.

Then by Lemma 7, there exists a K3-decomposition (Z,,—3, B) of 2K,,_3—
(H} U Hy U H}) where H{, Hj, and Hj are 2-regular graphs and Hj = Q.

Let ({{o0,} |1 <j < 3},B3) bea K;,- decomposition of 2K (where the
neighhorhood of o0, is the 2-cycle (002, 003)).

Then (Z, -3U{{cc,} | 1 < j <3}, BUB3U{{o0;,ai,bi} | {as,b:} € H]}
is the required decomposition.

Case 11: Suppose 1 = 3 (inod 6) and that Q has a cycle of length at
least 4.

In this case, n —2 = 1 (mod 6) and > 7 (if n = 3, Q can’t have a cycle of
length at least 4) so ((";2)) —(n—2-1) =0 (mod 3) and > 0 respectively.
Thus, for k € {1,2}, by Theorem 5, let (Z,_2, Bx) be a K3-decomposition
of K, _o— Hj., where H; and H, are near-Hamilton cycles. Then by Lemma
9, the required maximum packing exists.

Case 12: Suppose 1 = 4 (mod 6) and that Q has a 3-cycle.

We construct the maximum packing on the vertex set Zn_4 U {{00;} |
1 < j < 4} where the neighborhood of ooy is Q = {co,...,cq-1}, Where
co = (002,003.004), and the ¢ — 1 other-cycles are defined on the vertex set
Zn—4-

For each i € Z, \ {0} (if n = 4, no such 1 exists), let ¢ = (Cij1y---1Cify)
where [; is the length of ¢;. In this case, n — 4 = 0 (mod 6) and thus
hoth ((" 4)) (n —4) — 254 and ((" M) —2(n - 4) - 224 are divisible
hy 3, .\n(l since n — 4 = 0 or > 6, hoth quantities are nonnegatwe So
by Theorem 5. let (Z,,. 4. B1) be a Ky-decomposition of Kn_4 — (H, U F)
and let (Z,,. 4. B3) be a Ky-decomposition of K,,_4 — (Hz U H3 U Fy) where
H,, Hy, and Hy are Hamilton cycles and Fy and F5 are 1-factors.

Then by Lemma 7. there exists a K3-decomposition (Z,—4, B) of 2K,,_4—
(Hj U Hy U Hj U H}) where H{, Hj, H; and Hj are 2-regular graphs and
Hi=Q.

Let ({{o0;} | 1 < j < 4}, B3) be a K3-decomposition of 2K4 (where the
neighborhood of co; is the 3-cycle (002,003, 004)).

Then (Z,,,_;l U {{OC,} | 1< ] < 4},B U Bg U {{oo,-,a,-,bi} I {ai,bi} S
H!,1 < j <4} is the required decomposition.
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Case 13: Suppose n = 4 (mod 6) and that Q has a cycle of length at
least 5.

We construct the maximum packing on the vertex set Z,_p U {{00,} |
1 £ j £ 2} where the neighborhood of o0y is Q = {co, . .. yCq—1}

Foreachi € Z,, let ¢; = (¢i1,...,ciy,) wherel; is the length of ¢;, lp > 5,
Cjk € Zy -2 for all (j, k) # (0,2), and ¢g,2 = 005. In this case, n—2 = 2 (mod
6) and thus ((*5?) 252 _(n-2-2) and (("59) =252 are both divisible by
3, and since n—2 > 8, hoth quantities are nonnegative. So by Theorem 5, let
(Zy, -2, By) be a K3-decomposition of K,,_3—(H;UF)) and by Lemma 4, let
(Zy, -2, B2) be a I3-decomposition of K,,_o —(F>) where H, is a n—4 cycle,
Fy and F, are 1-factors, and H, and F, are named as follows: Let H; =
(60'4,00.5, AERELS R AT & WS RIPINRY & B NP ¢, 7 PUNA 1C2,001- -1 Cq=1,11++ - Cq—l,l,,_l) (SO
that co; and ¢o3 are omitted). Let F, be defined to contain the edges
{cinicia,} for each i € Z, as well as the edge {co,3,c0,4} and finally ";22‘1-_—2
arbitrarily named edges.

Note that U2} E(¢;) U E(ch) € E(H;)U E(H,) where ¢ is formed from
co by removing the edges {cy,1,co.2} and {co3,co,2}. Let H] = U=} E(c;)U
E(cy) and let Hj = (E(H,)U E(H2))\ H{. Then every vertex has degree 2
in H} and Hj except ¢p,; and ¢g 3 both of which have degree 1 in both Hj
and Hj.

Then (Z,,-2 U {{oo;} | 1 < j < 2}, By U By U {{00;,a;,b;} | {ai, b:} €
Hi} U {{o01,009.¢c0,4} | I € {1,3}}) is the required decomposition.

Case 14: Suppose n =1 (mod 6) and that Q has a 3-cycle.

We construct the maximum packing on the vertex set Z,_4 U {{o0;} |
1 < j < 4} where the neighborhood of 00, is Q = {co,...,cq-1}, where
¢y = (009,003.004), and the ¢ — 1 other cycles are defined on the vertex set
Zu—‘l-

For each i € Z,\ {0}, let ¢; = (¢i1,...,ciy,) where [; is the length of c;.
n # 1clearly, and if n = 7, Q = C3UCj in this case, which is impossible, so
we have n > 13. In this case, n ~ 4 = 3 (mod 6) and thus ((";4)) —2(n—4)
is divisible hy 3, and since n —- 4 > 9, the quantity is nonnegative. So by
Theorem 5, let (Z,,..4. B|) be a Kj-decomposition of K,_4 — (Hy U Hj)
and let (Z,_,. B2) be a Ky-decomposition of K,_4 — (Hs U H,) where
Hy, Hy. H3, and Hy are Hamilton cycles.

Then by Lemma 7, there exists a K3-decomposition (Zn-4,B) of 2K, _4—
(H{ U Hy U Hy U Hj) where |, Hj, H}, and H} are 2-regular graphs and
H =Q.

Let ({{o0;} |1 £ j < 4}, B3) be a K3-decomposition of 24 (where the
neighborhood of co; is the 3-cycle (002, 003, 004)).

Then (Z,,—4 U {{o0;} | 1 £ j < 4}, BU B3 U {{00;,a;,b:} | {ai, b:} €
H!,1< j < 4} is the required decomposition.

Case 15: Suppose n = 1 (mmod 6) and that Q has a cycle of length at
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least 4.

In this case, n—2 = 5 (imod 6) and > 5 (if n = 1, Q can’t have a cycle of
length at least 4) so (("'2‘2)) —(n—=2-1) =0 (mod 3) and > 0 respectively.
Thus, for k& € {1,2}, by Theorem 5, let (Z,—2, Bx) be a K3-decomposition
of K, _o--Hj., where H, and Hj are near-Hamilton cycles. Then by Lemma
9, the required decomposition exists.

Note that this covers all the cases since Q must contain an odd cycle
when n = 2 (mod 6) and |Q| = n — 1, Q cannot contain all 3-cycles when
n = 0 (mod 3), and Q cannot consist entirely of even cycles when n = 4
{mod 6). O
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