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Abstract

Set-to-Set Broadcasting is an information distribution problem in
a connected graph, G = (V, E), in which a set of vertices A, called
originators distributes messages to a set of vertices B called receivers,
such that by the end of the broadcasting process each receiver has
received the messages of all the originators. This is done by plac-
ing a series of calls among the communication lines of the graph.
Each call takes place between two adjacent vertices, which share all
the messages they have. Gossiping is a private case of set-to-set
broadcasting, where A = B = V. We use F(A4,B,G) to denote
the length of the shortest sequence of calls that completes the set
to set broadcast from a set A of originators to a set B of receivers,
within a connected graph G. F(A, B, G) is also called the cost of an
algorithm. We present bounds on F(A, B,G) for weighted and for
non-weighted graphs.
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1 Introduction

Set to Set Broadcasting is an information distribution problem in a con-
nected graph, in which a set of vertices, say A, called the originators, has
to distribute messages to all vertices of a given set, say B, called the re-
ceivers, such that each vertex in B ultimately receives all the information
held by the vertices in A.

This is done by placing a series of calls among the edges of the graph.
Each call consists of two vertices that share information with each other.
Vertices that receive information may distribute it further, thereby aiding
the originators in transmitting their messages to the receivers. This is
assumed to take place in discrete time units. There are some constraints

on the set to set broadcast:

1. Each call involves two vertices that are adjacent to each other in the

graph.

2. The two vertices share all the information they have, during a call

between them.
3. Each call requires one time unit.
4. A vertex can participate in at most one call at each time unit.

5. At each time unit many calls can be performed in parallel.

Gossiping is an information distribution problem in a connected graph,
in which each vertex in the graph has a piece of information to distribute
to all other vertices in the graph. At the end of the gossip process, each
vertex has all the information of all other vertices. The gossiping problem
is in fact a special case of set-to-set broadcasting, in which A = B =V.

Broadcasting and gossiping have been extensively studied in the past
years. However, in this paper we shall concentrate only on the works in

which the gossip and the set-to-set models are involved.
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Richards and Liestman [5] defined F(A, B,G) to be the length of the
shortest sequence of calls to complete set to set broadcasting. They calcu-
lated F(A, B, K,), where K, is the complete graph on n vertices, namely,

|A|+|B|-|ANB| -1, if0<|ANB|<2

F(A B, K,) =
( : {|A|+|B|—3, if|ANB| =3

They also showed that F(A, B,K,) < |A| +|B|—4 for |[ANB| > 4 and
conjectured that F(A, B, K,) = |A| + |B| — 4. Li, Zhang and Xu [4] later
confirmed this conjecture. Lee and Chang (3] studied F(A, B,T), where T
is a tree.

In this paper we compute F(A, B,G) for set-to-set broadcasting and
for gossiping on any weighted or non-weighted graph that is simple and
connected.

In the following theorem we provide an upper bound for F(A,B,G),
where G is a connected weighted graph. The definition of W, W', d and D

are in the next section.

Theorem 1.1. Let G be a connected weighted graph. Let AB = |AU B|
and Eop = EA4UFEpR. Then,

W'(T4) — D + W'(Tg), if AB=0 and AB # ¢
W'(T,) +d + W(Ts), if AB=0 and Eap = ¢
W'(T4) — D + W(T), if AB=1 and Eap # ¢
FAB,C) < | W'(T,) + W'(Tg), if AB=1 and Eap = ¢
W/(Ta) + W'(Tg) —w(wv), ifAB>2,Eap#¢
{v,w} SANB
and uwv € E(Tap)
| W/(Ta) + W'(Tg), ifAB>2 and Eap = ¢

The theorem holds for non-weighted graphs, as well, which can be
represented as weighted graphs, in which the weight of each edge is 1,
W'(A) = |E'(A)|, W!(B) = |E'(B)| and w(uv) = 1.

11



2 Definitions and Notation

In this section we present definitions and notation that are used in what
follows. As usual, R* shall denote the set of all positive real numbers.
Let G = (V, E) be a connected undirected graph.

1. For a vertex a € V define N(a) = {v € V|av € E}.

2. For each u,v € V define dg(u,v) or d(u,v) (if there is no question
about G) as the length of the shortest path from u to v in G.

3. The diameter of G, denoted diam(G), is maz{d(u,v)|u,v € V'}.
4. For each u,v € V define Py, = (Vi Eyp) as the path from u to v.

5. Define the union of two graphs H = (W}, E,), G = (V,, E3) to be
HuG=(WuV,, E,UE,).

6. The graph G = (V, E) is called an edge-weighted graph if there is a
function w : E — R*, called a weight function such that for each
zy € E, w(zy) = dy(z,y), where dy(z,y) is the minimum weighted
path between z and y.

(a) For each x € V, define W(z) = Zyen@)w(zy).
Notice: Since G is connected and not the trivial graph on one

vertex, the functions w and W are well defined.
(b) The weight of G, denoted W/(G) = T.cp(cyw(e).

(¢) For u,v € V, define P(u,v) a path between u and v and define
the weight of a path to be W/(P) = Xece(p) We).

Observation 2.1. If G is not a weighted graph then W'(P) is
the length of the path P,

7. Let S be a set, S C V. Denote by GP(G, S) the number of calls
needed to complete a gossip process among the members of S in the

graph G.

12



8. Let Sbeaset, SC V and let w: E — R* be a weight function on
E. Denote by GP,(G,S) the total cost associated with a complete
gossip process among the members of S in the graph G, where the
total cost is the sum of the weights of the edges that participated in
the gossip.

Note: If an edge is used k times, where k is a positive integer, in the

gossip scheme, the edge weight is included k times in the total cost.

9. Let A,B C V, where A is the set of originators and B is the set
of receivers. Define F(A, B,G) to be the minimum number of calls
needed to accomplish set-to-set broadcasting from A to B.

For a connected weighted graph G = (V, E) with a weight function
w : E = R*, define F,, (A, B,G), accordingly.

10. Let G = (V, E) be a connected edge weighted graph. Let A,B C V,
where A is the set of originators and B is the set of receivers. Define
a tree Ty = (Va,E4), where AC V4 CV, E4 C E. Define Tg =
(VB, EB), accordingly.

Given two trees T4 = (V4, E4) and Tg = (V, EB),

(2) Let = € V4, y € Vp such that dy(z,y) = min{dw(u,v)ju €
Va,v € Vg}. Denote d,,(z,y) as d. Notice that the path that
connects x to y with weight dy(z,y) isin G\ (T4 U Tg).

(b) Let = € Vja, y € Vg such that D,(z,y) = maz{dy(u,v)lu €
Va,v € Vg AVwz € E(P,,),wz € EoN Eg}. Denote Dy(z,y)
as D.

(c) For = € Vy, T; is the tree T4 rooted at z and for y € Vg, T}, is
the tree Tg rooted at y.

For other graph theoretical definitions one may look at [6].



3 Gossiping in a Weighted Graph

Let G = (V, E), |V| = n, be a connected weighted graph. In this section we
provide lower and upper bounds for gossiping in weighted graphs. We de-
scribe a process GW for gossiping between the vertices of V', which provides
the upper bound for GP,(G, V).

Following is a lemma that presents a lower bound for gossiping in a

weighted graph G.

Lemma 3.1. Let G = (V,E), |V| = n, be a connected weighted graph with
a weight function w : E — R*. Let T be a minimum weighted spanning
tree of G. Then,

GPy(G,V) 2 2W'(T) — maz{w(e)|e € E(T)}.

Proof. Each optimal algorithm for gossiping in a weighted (or non-weighted)
graph executes at least n — 1 calls. After the first n — 1 calls, exactly two
vertices T and y have all the information. The set of the first n —1 calls uses
a set of edges, say S, where for each vertex v € V there is a vertex u € V
such that uv € §;. Thus, T; = (V,S)) is a connected graph, specifically, a
spanning tree. It is obvious that if T} is a minimum spanning tree, the sum
of weights of the edges of S} is minimal. As noted, after the first n—1 calls,
exactly two vertices have all the information, meaning that the remaining
n—2 vertices do not have all the information. Thus, at least n—2 additional
calls are needed to accomplish gossiping in G using a set of n — 2 edges, say
Sz. For each vertex v € V'\ {z,y} there is a vertex u € V such that uv € Ss
and T3 = (V, S2 U {zy}) is a spanning tree. Therefore, the minimal weight
of such a set Sy is the sum of weights of a set of edges forming a minimum
spanning tree, say T, excluding the edge with the highest maximal weight.
Thus, GPy(G,V) 2 2W'(T) — maz{w(e)|le € E(T)}.

O

Following is an algorithm GW for gossiping in a weighted graph G.
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1. Find a minimum weighted spanning tree of G, T = (V, E’) (use either
the Kruskal algorithm or the Prim algorithm (1]).

2. Find an edge, ¢’ = uv € E’' such that w(e’) = maz{w(e)le € E'}.

3. Let T, and T, be the two trees rooted at u and v respectively, obtained
by deleting €’ from T. Then,
3.1 Each vertex in Ty, and T, (except the roots) calls its parent. The
transmission in each of the trees T, and T, is from the lowest level
towards the roots u and v (bottom up). Thus each edge in T, and T,

is used only once.
3.2 u calls v.

3.3 Each vertex in T, and T, (except the leaves) calls its children.
The transmission in each of the trees T, and T, is from the roots u
and v towards the leaves (top down). Thus each edge in T, and T}, is

used only once.

The cost of the gossiping process, GW, obtained by the algorithm in G

is:

GP,(G,V) < 2W'(T) — w(w), (1)

where phase 3.1 contributes W/(T") —w(uv), phase 3.2 contributes w(uv)
and phase 3.3 contributes W/(T') — w(uv).

The algorithm complexity is:

phase 1 - O(|E|log {V|) (Kruskal algorithm) or O(|E]+|V'|log |V|) (Prim
algorithm).

phase 2 - O(|E|).

phase 3 - O(|V| + | E|).

Thus, the complexity of the algorithm is O(]E|log|V|) or O(|E| +
[V]log V).
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Lemma 3.2. Let G = (V,E) be a connected weighted graph. Then,
GP,(G,V) =2W'(T) — w(uv).

Proof. The proof of the lemma is obtained combining both the upper bound
obtained by the algorithm in (1) and the lower bound obtained in Lemma
3.1. O

Corollary 3.1. If G is a non-weighted graph, then GP(G,V) = 2n — 3.

Proof. Since we assume that the weight of each edge is 1, the result follows
from Lemma 3.2, where W'(T) = n — 1. O

4 Set-to-Set Broadcast Algorithm in Weighted
Graphs

In this section we give lower bounds for the set-to-set broadcasting problem
and describe set-to-set broadcasting algorithm on a weighted graph yielding
the results of Theorem 1.1,

We start by establishing a lower bound for the cost of the set-to-set
broadcasting process in a weighted connected graph.

Denote by min(v) = min{w(vu)jvu € E(G)}.

Lemma 4.1. Let G = (V, E) be a connected weighted graph. Let A, BC V.
Then, F(A, B,G) 2 ¥ ,e(auBy\(anp) Min(v).

Proof. Each vertex in A must participate in at least one call in order to send
its message. Each vertex in B must participate in at least one call in order to
receive the messages. The cost of a call involving vertex v € (AUB)\(ANB)

is at least min(v). O

Remark 4.1. Notice that applying Lemma 4.1 with Theorem 1.1 on the
complete non-weighted graph K,, we obtain the results of the complete

graph.
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We now derive a lower bound for the cost of the set-to-set broadcasting

in a non-weighted connected graph.

Lemma 4.2. Let G = (V,E) be a non-weighted connected graph. Let
A,B CV and A is the set of originators while B is the set of receivers.
|A]+|B|-1, #f|AnB|{=0

|A|+|B| -2, if|AnBj=1

|A|+|B|-3, i|AnB|=2,3

|A|+|B|—4, if|[AnB|>4

Then, F(A,B,G) >

Proof. The lower bound is a lower bound for the case where all calls are
possible, i.e. G is the complete graph. In case where G is not the complete
graph, the number of calls needed to complete the set-to-set broadcast

might increase and thus the lower bound increases.
a

We now present an algorithm for finding minimal spanning trees of a
subset of V' possibly with additional vertices.

Let G = (V,E) be a weighted graph and let A C V. Define a tree
Ta = (Va,Ea), where AC V4 CV, E4 C E. We describe an algorithm
that finds a tree T4 for a given graph G = (V,E) and aset AC V.

1. Find a minimal spanning tree, T = (Vr, ET), of G (use either the
Kruskal algorithm or the Prim algorithm(1]).

2. Define a set of trees T; = (V;, E;), for 0 < i < k, where Tp = T and
Ty = (Vk, Ex) is a tree such that for each v € Vi where d(v) = 1, it
follows that v € A. In other words, all the leaves in the tree T} are
members in A.

For each j, 1 < j < k, define Ay = {z € Vj_,\ Ald(z) = 1}, Bj—1 =
{zu € Ej_,|z € Aj_1} and Tj = (V;, E;), where V; = V1 \ 4,
and E; = E;_;\ Bj_1. In other words, Tj is the tree that is obtained

from T;_; by removing all leaves in Tj_; that are not in A.
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3. j=1IfT; # Ty,
(a) obtain T; from T},
(b) 7=7+1

4. Return Tj.

The algorithm complexity is as follows:

phase 1 - O(|E|log |V]) (Kruskal algorithm) or O(|E|+|V|log |V|) (Prim
algorithm).

phases 2,3 - O(|E|).

Thus, the complexity of the algorithm is O(|E|log|V|) or O(|E| +
[V1log V).

Next, we present an algorithm for set-to-set broadcasting in a weighted

connected graph, which applies the proof to theorem 1.1.

1. If there are two trees T4 = (Va4,E,) and Tp = (Vp, Eg) such that
EsNEp # ¢, then find two trees T4 and Tp with minimal W/(T4 U
Tg) and D. Let x € V4, y € Vp such that D = D, (z,y).

Otherwise, find two trees T4 and Tp with minimal W/(T, UTg) and
d. Let z € V4, y € Vg such that d = dy(z,y). (Notice that if
VanVp # ¢ and z =y, then d = 0).

2. Each vertex in T, except the root z, calls its parent. The transmis-

sion is from the lowest level towards the root = (bottom up).
3. Ifx #y, z calls y.

4. Each vertex in Ty, calls its children. The transmission is from the root

y towards the lowest level (top down).

4.1 Proof of Theorem 1.1

Proof. case 1: |[ANB|=0and E4NEp # ¢. Let z € A, y € B such that
Ty € E4 N Epg and let d(z,y) = D. First, all the vertices in A transmits
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their messages via the edges of T4 to z, where y is the last vertex that calls
z. This phase costs W/(T4). Then y broadcasts all the messages to all the
vertices in B using the edges of T \ {zy}, which costs W/(Tg) — D. Thus,
F(A,B,G) S W/(T4)— D+ W'(Tg).

case 2: |[ANB|=0and E4NEp =¢. Let x € Ta, y € T such that
d(z,y) = d. = € A receives all the messages of the vertices in A. This phase
costs W/(Ta). Then z calls y € B. Finally, all the messages are transmitted
to all the vertices in B, which costs W/(T'g). Thus, F(A, B,G) < W/(Ts)+
d+ W'(Tg).

case 3: |[ANB|=1and EANEp # ¢. Let zy € EANEp, wherez € A,
y € AN B and d(z,y) = D. First, all the vertices in A\ {y} transmit their
messages via T4 to z. This phase costs W/(T4) — D. Then, z calls y, which
costs D, and y broadcasts all the messages to all the vertices in B via Tp,
which costs W/(Tg). Thus, F(A,B,G) < W/(T4) — D+ W'(TB).

case 4: |[ANB| =1 and E4 N Eg = ¢. Notice that if |[ANB| =1 and
EsNEg=¢, ANB = {z =y} and therefore d = 0. A vertexzx € ANB
receives all the messages of the vertices in A. This phase costs W/(T,).
Then, all the messages are transmitted from z to all the vertices in B,
which costs W/(Tg). Thus, F(A,B,G) < W/(T4x) + W/(TB).

case 5: |ANB| > 2 and {z,y} C ANB and zy € E(T4)NE(Tg). First,
all the vertices in A \ {y} transmit their messages to z, using the edges of
Ta. This phase costs W/(T4) — w(zy). Then, z calls y, which costs w(zy).
Finally, y broadcasts all the messages to all the vertices in B using the edges
of Tg, which costs W/(Tg). Thus, F(A, B,G) < W/(T4)+W'(Tg)—w(zy).

case 6: [ANB|>2and E4NEp = ¢. A vertex z € AN B receives
all the messages of the vertices in A. This phase costs W/(T4). Then, all
the messages are transmitted from z to all the vertices in B, which costs
W'(Tg). Thus, F(A, B,G) < W/(T4) + W/(T). ]

The following figures illustrate examples of case 2, described ahove.
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Figure 1: This example demonstrates case 2, where choosing z,y such that
z =y and d = 0, minimizes the total cost. W/(T4) =1 and W/(T) = 3.
E4 = {ajas}, but there are two options for Eg namely, Eg = {b1b2}
or Eg = {ajbj,a;1b}. On one hand, choosing Eg = {b1bs}, = = a,,
y = by and d = 2. The total cost of the set-to-set broadcast is w(ajaz)
+ w(bib2) + w(ayb) = 1+3+1 = 5. On the other hand, choosing
Ep = {b1a,, bza1}, minimizes the total cost of the set-to-set broadcast to
w(aiaz)+w(a1br)+w(aibs) = 1+2+1 = 4. Here, |ANB| =0, EAsNEp = ¢

and £ = y = a; and therefore d = 0.
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Figure 2: This example demonstrates case 2, where d 3 0 and V4 U Vg #
AUB, but AUB C V4UVp. Ey = {ai1a2}, Eg = {b1v,bav}, W/(T4) =2
and W/(Tg) = 2. The total cost of the set-to-set broadcast is w(ajaz) +
w(byv)+w(bev)+w(ayv) = 2+1+1+1 = 5. Here, |[ANB| =0, E4ANEp = ¢,

r=a;,y=vandd=1.

Figure 3: This example demonstrates case 2, where d # 0 and VU Vg =
AUB. E4 = {a1a2}, Ep = {bjv,bov}. w(T4) = 2, w(Tg) = 4. If
we use Ep the total cost will be w(aiaz) + w(byv) + w(bav) + w(a1v) =
2424243 =09, but if we use Eg = {b1b2}, the total cost will be
w(aiaz) + w(bibe) + w(a1b) =2+5+1=8.

In the next proposition we show that applying our set-to-set broadcast-
ing algorithm to a complete non-weighted graph yields the result of [5] and

[4). In this case T4 contains only vertices from A and Tp contains only

2]



vertices from B and thus |E(T,)| = |4] — 1 and |E(T)| = |B| — 1.

4.2 Set-to-set broadcasting in complete bipartite graph

Theorem 4.1. Let G = (XUY,E), XNY = ¢ be a complete bipartite
graph and let A,B C X UY. Then, F(A,B,G) = |A| + |B| —i — j, where
0, fAABCXorABCY

1=

1, otherwise
0, fAnB=¢

J=4 2 #fwe(AnNB)NX and3uec(ANB)NY
1, otherwise

Note that the case where i = 0 and j = 2 is not possible.

Proof. 1.i=j=0.
Lower bound. A)B C X or ABCY and ANB = ¢. Assume
W.L.O.G. that A, B C X. Then, at least |A| calls are needed in order
to transfer all the messages from X to Y and at least |B| calls are
needed in order to transfer all the messages from Y to the vertices of
B C X. Therefore, at least |A| + |{B] calls are needed to complete a

set-to-set broadcast from A to B.

Upper bound. Assume W.L.O.G. that A, B C X. Then both T4 and
T are trees that contain exactly one common vertex v, v € Y and
all the other vertices are in A,B C X. Then, W/(T4) = |A| and
W'(Tg) = |B|,|ANB| =0 and E4 N Eg = ¢. By Theorem 1.1 it
follows that F((A, B,G) < W/(T4) + d + W'(Tg). Since the graph is
a complete bipartite graph, v = £ = y and thus, d = 0. Therefore
our algorithm performs |A| + |B| = |4| + |B| — i — j calls in order to

complete the set-to-set broadcast.

2.i=0and j=1.
Lower bound. 3v € (ANB)N X or Ju € (ANB)NY, but not both.
Assume W.L.O.G. that 3v € (ANB) N X. Then, |A| calls are needed
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to transfer the messages of the vertices of A to Y. Let v be the last
vertex that calls a vertex in Y; then v may know all the messages of
A, and then at least |[B| — 1 more calls are needed to complete the

set-to-set broadcast from A to B.

Upper bound. Assume W.L.O.G. that A,B C X. Then both T4
and T are trees that contain exactly one common vertex v, v € Y,
and all other vertices are in A,B € X. Since j = 1 there exists
one common vertex u, ©u € X. Then, uv € E4 N Ep and therefore
EsNEg # ¢. W/ (T4) = |A| and W/(T) = |B|, and according to
Theorem 1.1, if |[AN B| = 1, F(A,B,G) < W/(Ta) — D+ W'(TB),
and if [AN B| > 2, F(A,B,G) < W(Ta) — w(uv) + W/(Tg). Since
the graph is a complete non-weighted bipartite graph, u = z, v =1y,
D =1 and w(uw) = 1. Therefore our algorithm performs |A| 4+ |B| —
1 = |A|+|B|—%—j calls in order to complete the set-to-set broadcast.

.i=1land j=0.

Lower bound. ANB =¢,but Jac AC Xand Ibe BC Y or
Jae ACY and 3be BC X. Assume W.L.O.G. that 3Ja € AC X
and 3b € B C Y. Then, after |A] calls, b € B C Y knows all the
messages of A, and therefore at least | B| — 1 more calls are needed to
complete the set-to-set broadcast.

Upper bound. W/(T4) = |A| -1, W/(TB) =|B| -1, |ANnB| =0, and
EANEg = ¢. By Theorem 1.1, F(A,B,G) < W/(T4)— D+ W'(TB).
Since the graph is a complete bipartite graph and 7 = 1, there exist
z€ACXandye BCYorthereexisstc ACY andye BC X.
Therefore, D = 1, and our algorithm performs |A]| + |B| — 1 = |A| +

|B| — i — j calls in order to complete the set-to-set broadcast.

.i=1landj=1.

Lower bound. v € (ANB)NX or 3u € (AN B)NY, but not
both. Assume W.L.O.G. that v € (AN B) N X. After |A]| calls, all
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the messages of A have been transmitted to the vertices of Y. Let
y € (ANB)NY be a vertex such that the last call is from v to
y. It is possible that v knows all the messages of the vertices in A,
and therefore | B| — 2 more calls are needed to complete the set-to-set
broadcast from A to B.

Upper bound. W'(Ty) = |A] -1, W/(Tg) =|B| -1, |AN B| # 0 and
EsNEpg = ¢. According to theorem 1.1 F(A,B,G) < W/(Ts) +
W'(Tg). Since the graph is a complete bipartite graph and i = 1,
thereexist t € AC X andye€ BC Y orthereexist z € ACY
and y € B C X. Therefore, our algorithm performs |A| + |B| -2 =
|A| 4 |B| — i — j calls in order to complete the set to set broadcast.

5.i=1land j =2

Lower bound. v € (ANB)NX and Ju € (ANB)NY. Then, |A| -1
calls are needed in order to obtain two vertices v and u that have all
the messages of A (the last call should be between v and u). Then,
|B| — 2 calls are needed to complete the set-to-set broadcast.
Upper bound. W/(T4) =|A| -1, W/(Tg) =|B|-1,|ANB| > 2 and
E4sNEpg = ¢. According to Theorem 1.1, F(4,B,G) < W/(T,) —
w(uv) + W'(Tg). Since the graph is a complete bipartite graph, i = 1
and j = 2, there exist u € (ANB)C X andv e (ANB)CY, and
w(uv) = 1. Therefore, our algorithm performs |A| =1+ |B|-1-1 =
|A|+|B|—3 = |A|+|B|—i—j calls in order to complete the set-to-set
broadcast.

O
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