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Abstract

Placing degree constraints on the vertices of a path yields the
definitions of uphill and downhill paths. Specifically, we say that a
path 7 = vy, v2,...vk41 is a downhill path if for every 4, 1 < i <k,
deg(vi) > deg(vi+1). Conversely, a path T = uj,u2,...ur+1 is an
uphill path if for every i, 1 < i < k, deg(u:) < deg(ui4+1). The down-
hill domination number of a graph G is defined to be the minimum
cardinality of a set S of vertices such that every vertex in V lieson a
downhill path from some vertex in S. The uphill domination number
is defined as expected. We explore the properties of these invariants
and their relationships with other invariants. We also determine a
Vizing-like result for the downhill (respectively, uphill) domination
numbers of Cartesian products.

Keywords: downhill path, uphill path, downhill domination number, up-
hill domination number, Cartesian product.

1 Introduction

In a graph G = (V, E), the degree of a vertex v is given by deg(v) = |{u:
uv € E}|. The minimum and maximum degrees of vertices in a graph G are

JCMCC 100 (2017), pp. 27-35



denoted 6(G) and A(G), respectively. A graph G is r-regular if deg(v) = r
for every vertex v € V. A path of length k in G is a sequence of distinct
vertices vy, v, ..., Ur41, such that for every i, 1 <4 <k, v;vip; € E.

To these standard definitions above, we introduce the following con-
cepts. We say that a path vy, va,...vk41 is a downhill path if for every
i, 1 <14 <k, deg(vi) > deg(vit1). Similarly, we define an uphill path to
be a path v, vy,...vk4; having the property that for every i, 1 < i < k,
deg(v;) < deg(v;41). For example, in Figure 1, several downhill paths are
given for the same graph. Note that any downhill path can be reversed
to create an uphill path. A downhill path P : u = v),vs,...,044) = v is
called a u-v downhill path and is said to orginate at u and terminate at v.
We say that a vertex v; is downhill from a vertex v; if v; and v; are on P
and j > 4. Similar terminology is used for uphill paths.
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Figure 1: Examples of downhill paths.

We should observe that although the definition of a downhill (uphill)
path is given in terms of the degrees of the vertices on the path, a similar
definition can be given in terms of any function that assigns weights to the
vertices of a graph, as is done in surveying when assigning elevations to the
points of a topographic map, or in thermal imaging, in which the values
assigned to the points in an image are a measure of their heat content.

A vertex u is said to downhill dominate a vertex v if there exists a u-v
downhill path. Note that a vertex downhill dominates itself. A downhill
dominating set, abbreviated DDS, is a set S C V having the property that
every vertex v € V is downhill dominated by some vertex of S, that is, every
vertex v € V lies on a downhill path originating from some vertex in S.
The downhill domination number v4n,(G) equals the minimum cardinality
of a DDS of G. A DDS S having minimum cardinality is called a ¥4, -set.
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An uphill dominating set, abbreviated UDS, is a set S € V having the
property that every vertex v € V lies on a uphill path originating from some
vertex in S. The uphill domination number v,p,(G) equals the minimum
cardinality of a UDS of G. An UDS S having minimum cardinality is called
a Yyup-set.

Klthough the definitions of downhill and uphill paths are similar, some-
what surpisingly, the parameters v4,(G) and v,,(G) are incomparable. To
see this, we note that v4,(G) = 1 = v.p(G) for connected, regular graphs
G, the graph G in Figure 2 has ¥4n(G) < Yup(G), and the graph H in Fig-
ure 2 has ygn(H) > Yup(H). In these figures, the darkened vertices form a
Yup-set and the circled vertices form a yin-set.

£

Figure 2: A graph G with 74,(G) =1 < 2 = ,,(G) and a graph H with
Yup(H) =1 <2 =an(H).

A set S is a dominating set of a graph G if every vertex in V \ §
has a neighbhor in S, and is an independent dominating set if it is both
dominating and independent. The domination number (G) (respectively,
independent domination number i(G)) is the minimum cardinality of a
dominating (respectively, independent dominating) set of G. We note
here that downhill and uphill domination numbers are also incompara-
ble with these standard domination parameters. For instance, let G be
the complete bipartite graph K L%].13] for n > 6. If n is even, then

YG) = 2 > 1 = 94n(G) = Yup(G). On the other hand, for odd n > 7,
YG) =2 < |5] = wn(G) < [ | = "p(G). Additionally, v4n(G) and
Yup(G) are also incomparable w1th i(G). To see this, let H be the graph
formed from the complete bipartite graph K., for 7 > 3 and s > r 4 2,
by deleting an arbitrary edge. In this case, i(H) = 2 < 7 = yan(H) <
s = Yup(H). On the other hand, the graph H given in Figure 2 has
1 = yup(H) < 7an(H) = 2 < 3 = i(H). For more details on domina-
tion, see [1].

Strong and weak domination were defined in [2]. A set S is a strong dom-
inating set (respectively, weak dominating set) if every vertex u € V'\ S has
a neighbor v € S such that deg(v) > deg(u) (respectively, deg(v) < deg(u)).
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For a graph G, the strong domination number vs(G) is the minimum car-
dinality of a strong dominating set of G, and the weak domination num-
ber yw(G) is the minimum cardinality of a weak dominating set of G.
We note that downhill and uphill domination are generalizations of these
concepts, that is, a strong dominating set is also a downhill dominating
set, and a weak dominating set is also an uphill dominating set. Hence,
74 (G) < 15(G) and 7.,5(C) < 1w (G).

In Section 2, we determine properties of downhill/uphill dominating
sets. Among other results, we show that every minimal DDS (respectively,
UDS) is a minimum DDS (respectively, UDS). As we have seen, the down-
hill and uphill domination are incomparable. In fact, we show in Section 3
that for any pair of positive integers d and u, there exists an infinite fam-
ily of graphs G having 4. (G) = d and v,,(G) = u. In Section 4, we
determine a Vizing-type result for the the downhill (respectively, uphill)
domination number of Cartesian products. We then conclude with a list of
open questions.

2 Properties of DDS and UDS

We begin this section with straightforward observations.

Observation 1. For a graph G, a Yan-set contains at least one vertex with
degree A(G), and a vyup-set contains at least one vertex of degree §(G).

Observation 2. If G is a connected graph of order at least 3 and S is a
Yan-set of G, then deg(v) > 2 for everyv € S.

Observation 3. If v is a vertex with deg(v) < 1 in a graph G, then v is
in every UDS of G.

Observation 4. For trees with | leaves, v,,(T) > L.
Our final observation gives examples.

Observation 3.
1. For a connected r-regular graph G, v4,(G) = Yup(G) = 1.
2. For a path Py, ¥4n(Pn) =1 and yup(P,) = 2.

3. For a complete k-partite graph G = K,y n,.... n, where n; < niyy for
1<i<k~1, 1un(G) =n1 and 7,p(G) = nk, if ny # n; otherwise,
7dn(G) = 7up(G) =1.

Unlike standard domination, where a graph can have different sizes of
minimal dominating sets, we next show that any minimal DDS (respec-
tively, UDS) of a graph G is a yan-set (respectively, v,p-set) of G.
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Theorem 6. Every minimal DDS of a graph G is a minimum DDS of G.

Proof. Suppose to the contrary that there exists a minimal DDS, say D,
of G, such that |D| > v4n(G). Among all yun-sets of G, select D’ to be
one that has the maximum number of vertices in common with D, that is,
| D’ N D] is maximized.

Since |D'| < | D, there exists a vertex u € (D\ D’). Thus, u is downhill
dominated by a vertex, say d’, in D’. Then u and all the vertices downhill
from u are downhill dominated by d’. If &’ € D, then D\ {u} is a DDS
with cardinality less than | D], contradicting the minimality of D. Hence
we may assume that d’ ¢ D.

Thus there exists a vertex v € D that downhill dominates d’ and all of
the vertices downhill from d’. Suppose u # v. Then v downhill dominates
u and so, again, D \ {u} is a DDS, contradicting the minimality of D. If
u = v, then since v downhill dominates d’ and d’ downhill dominates u, it
follows that deg(u) = deg(d’). Moreover, u downhill dominates d’ and the
vertices downhill dominated by d’. Thus, D" = (D'\ {d'})U{u} is a yan-set
of G such that |D” n D| > |D' N D|, contradicting our choice of D’. O

An analogous argument shows that any minimal UDS of a graph G is
a yup-set of G.

Theorem 7. Every minimal UDS of a graph G is a minimum UDS of G.

Our next result shows that any minimal DDS (respectively, UDS) of a
graph is an independent set. '

Theorem 8. Any minimal downhill (respectively, uphill) dominating set is
an independent set.

Proof. Assume S is a minimal DDS of G. If two vertices u and v of S are
adjacent, then, without loss of generality, there exists a downhill path from
u through v to all vertices which are downhill from v. Thus, S\ {v} is a
DDS of G, contradicting the minimality of S. Hence, S is an independent
set. An analogous argument holds for a minimal UDS. O

The independence number of G, denoted fo(G), is the maximum number
of vertices in an independent set of vertices of G.

Corollary 9. For any graph G, v4n(G) < Bo(G) and 1u,p(G) < Bo(G).

To see the sharpness of the bounds of Corollary 9, consider the complete
graph K., for which ygn(Kn) = Bo(Kr) = 1, and the complete bipartite
graph K, s, r < s, for which v,p(Krs) = fo(Krs) = s. In fact, we next
show that every possible pair of 74, (G) (respectively, vup(G)) and Bo(G) is
realizable by an infinite number of graphs.
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Theorem 10. Given positive integers a and b such that a < b,

1. there ezists an infinite family of graphs G with v44,(G) = a and
ﬂO(G) = b; and

2. there exists an infinite family of graphs G with v,,(G) = a and
Bo(G) =b.

Proof. Let G be the join K, + bK, where ¢ > a. (See graph G in Figure 3
for an example where @ = ¢ = 2 and b = 4). Then, 74,(G) = a and
Bo(G) =b.

Next we consider the uphill domination number. For a = 1, we let G
be the lexicographic product of the cycle Cy;, and the complete graph K.,
that is, G = Cg[K,] is the graph obtained from a cycle Cy, by replacing
each vertex with a complete graph K., where ¢ > 1, and adding all edges
between the vertices of two copies of K, if and only if they correspond to
adjacent vertices on the cycle. Then, 7,,(G) = a =1 and By(G) = b. For
a > 1, construct G from a cycle Cop—g = vq, v, ..., Usy—a, U1 as follows: For
each v;, 1 < i < a—1, add a copy of K, where ¢ > 2, by identifying
one vertex of the K. with v;. (For example see the graph H in Figure 3,
where a = 3, b= 4, and ¢ = 2). Let v} # v; be a vertex in the copy of K,
containing v;. Then {v},va|1 < i < a— 1} is a y,,-set of G. Also the set
{v;|1 <4 < a-1} unioned with [2"‘—';’“"'—1] independent vertices from the
path v,,va41, ..., 2p—a is @ maximum independent set. Thus, Yup(G) = a
and Bo(G) = b.

Figure 3: A graph G = K, + 4K, with 7dn(G) = 2 and Bp(G) = 4, and a
graph H with v,,(H) = 3 and Go(H) = 4.

3 Realizability

As we noted in the introduction, although their definitions and the proofs
of results involving them are analogous, the parameters vy, (G) and Yup(G)
are incomparable. In fact, next we show that for any pair of positive integers
d and u, there exists an infinite family of graphs having v4,(G) = d and

Yup(G) = u.
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Theorem 11. Given positive integers d and u, there exists infinitely many
graphs G for which v4n (G) = d and 7yp(G) = u.

Proof. Let z.K, denote a complete graph K., for any » > 5, one édge of
which has been subdivided and = denotes the subdivision vertex.

Let d and u be any two positive integers. If d = u = 1, then the graph
G = z.K, has ¥4n (G) = 7up(G) = 1. Hence, we may assume that d+u > 3.
We construct G from a cycle Cyyy of order d + u as follows. To any u of
the vertices on this cycle attach a leaf. To the remaining d vertices on this
cycle attach a copy of z.K, by adding an edge between the vertex on the
cycle and the subdivision vertex z. See Figure 4 for an example, where
d=4and u =3.

Note that every vertex on the cycle Cyy, has degree 3 in G. Also, G
has precisely u vertices of degree 1, and this independent set of vertices U
forms a unique v,p-set of G.

Let D = {v;,v,...,vq} denote any set of d vertices of degree r — 1,
each of which is selected from one the d copies of z.K, that are attached
to d distinct vertices of the cycle. Then D is a vyyp-set of G. O

Figure 4: A graph G having v4.(G) = 4 and v,,(G) = 3. The circled
vertices form a v,p-set and the darkened vertices form a y4n-set.

4 Cartesian Products

The well-known conjecture of Vizing on the domination number of Carte-
sian product graphs claims that for any two graphs G and H, v(GOH) >
Y(G)y(H). We give a Vizing-type result for the downhill and uphill domi-
nation numbers of Cartesian products.

Theorem 12. For any two graphs G and H, v4n(GOH) = v4n (G)van (H).
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Proof. We first show that v4,(GOH) < Ydn (G)Yan(H). Let S; and S,
be a yan-set of G and a yu,-set of H, respectively. Let S = {(u,v)|u €
S) and v € Sy} be a set of vertices in GOH. In order to show that S is a
DDS of GOH, it suffices to show that every element in V(GOH)\S is down-
hill from a vertex in S. Let (z,y) be an arbitrary vertex of V(GOH)\S.
By symmetry, we consider two cases:

Case 1: z € S; andy ¢ S;. Then z is in a ygp-set S; of G and y is
on a downhill path P = (v = vy, vg, ..., ux = y) originating from a vertex
v € Sz in H. Thus, (z,v1), (z,v2),...,(z,v) is a downhill path from (z, v)
to (z,y) in GOH.

Case 2: 2 ¢ S) andy ¢ S;. Thus z is downhill from some vertex, say
u € S1, and y is downhill from some vertex, say v € S;. As before, we
deduce there is a (u,v)-(z,v) downhill path and a (x,v)-(z,y) downhill
path in GOH. Thus, (z,y) is downhill from (u,v) in GOH, implying that
S is a DDS of GOH. Hence, 74.(GOH) < |S| = |5:]|S2|-

Since $ is a DDS of G, Theorem 7 implies that to complete the proof,
it suffices to show that S is a minimal DDS of G. Assume to the contrary
that S is not minimal. Then S\ {(z,y)} is a DDS for GOH, that is, (z, y)
is downhill from some vertex, say (u,v), in S\ {(z,y)}. Let P: (u,v) =
(u1,v1), (u2,v2), ..., (uk, v&) = (z, y) be a (u,v)-(z, y) downhill path. Since
for any (u;,v;) on P, either u;4y = u; and degy(viq1) < degy(v:), or
vit1 = v; and degg(uiy1) < degg(u;), it follows that x is downhill from u
in G and y is downhill from v in H. Recall that u,z € S,. But then S; \{z}
is a DDS of G having cardinality less than v4,(G), a contradiction. Thus,
we conclude that S is a minimal DDS of GOH, and so by Theorem 7, S is
Yan-set of GUH. Hence, van (GOH) = |S| = |51|(S2] = ¥an(G)yan(H). 3

Once again, an analogous argument gives the result for uphill domina-
tion.

Theorem 13. For any two graphs G and H, v,,(GOH) = Yup(G)Yup(H).

5 Open Problems

The concept of downhill and uphill paths may suggest many different av-
enues for future research. We conclude this paper by listing a few open
problems.

1. Characterize the graphs G for which v4,(G) = 1 and those for which

Yup(G) = 1.
2. Investigate the downhill/uphill domination numbers of self-complementary
graphs.
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3. Investigate downhill /uphill domination for other types of graph prod-
ucts and operations.

4. Characterize the non-regular connected graphs G for which v4,(G) =
Yup(G)-

5. Characterize the graphs for which ¥(G) = v4,(G) and those for which
Y(G) = 1up(G)-

6. Determine bounds on the downhill/uphill domination numbers.
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