A New Construction for
Decompositions of MK, into LE Graphs

Derek W. Hein

ABSTRACT. In this paper, we revisit LE graphs, find the minimum
A for decomposition of AK,, into these graphs, and show that for
all viable values of A, the necessary conditions are sufficient for LE-
decompositions using cyclic decompositions from base graphs.

1. Introduction

Decompositions of graphs into subgraphs is a well-known classi-
cal problem; for an excellent survey on graph decompositions, see [1].
Recently, several people including Chan [2], El-Zanati, Lapchinda,
Tangsupphathawat and Wannasit [3], Hein [4], Hurd (8], Sarvate [5,
6, 7], Winter [9, 10] and Zhang [11] have worked on decomposing
MK, into multigraphs. In fact, Sarvate, Winter and Zhang (9] found
decompositions of AK, into so—called LE graphs. A new construction
for such decompositions is given in the sequel.

2. Preliminaries

For simplicity of notation, we adopt the “alphabetic labeling”
used in [4, 5, 6, 7, 9, 10, 11]:

DEFINITION 1. An LE graph [a,b,¢] on V = {a,b,c} is a graph
with 4 edges where the frequencies of edges {a,b} and {b,c} are 1
and 8 (respectively).

a b ]
— e

2000 Mathematics Subject Classification. Primary 05C51.

Key words and phrases. Cyclic graph decompositions, LE graph.

I thank Southern Utah University for granting me a sabbatical leave in 2014, and
Professor Dinesh Sarvate for his mentorship.

JCMCC 100 (2017), pp. 37-43



DEFINITION 2. For positive integers n > 3 and A > 3, an LE-
decomposition of AK,, (denoted LE(n, )\)) is a collection of LE graphs
such that the multiunion of their edge sets contains \ copies of all
edges in a K.

One of the powerful techniques to construct combinatorial de-
signs is based on difference sets and difference families; see Stin-
son [12] for details. This technique is modified to achieve our de-
compositions of AK,, — in general, we exhibit the base graphs, which
can be developed to obtain the decomposition.

EXAMPLE 1. Considering the set of points to be V = Z3, the LE
base graph [0, 1, 2] (when developed modulo 3) constitutes an LE(3,4).
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We note that special attention is needed with the base graphs

containing the “dummy element” oc; the non—co elements are devel-
oped, while oo is simply rewritten each time.

EXAMPLE 2. Considering the set of points to be V = Z3 U {00},
the LE base graphs [0,1,00] and [00,0,1] (when developed modulo 3)
constitute an LE(4,4).
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3. LE-Decompositions

We first address the minimum values of X in an LE(n, A). Recall
that A > 3.

THEOREM 3.1. Let n > 3. The minimum values of \ for which
an LE(n, \) erists are A =3 whenn = 0,1 (mod 8) and A = 4 when
n#0,1 (mod 8).

PROOF. Since there are )‘"(—;'11 edges in a AK,, and 4 edges in
an LE graph, we must have that An(n—1) = 0 (mod 8) (where A > 3
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and n > 3) for LE-decompositions. The result follows from cases on
n (mod 8). [ |

We are now in a position to prove the main results of the paper.
We first remark that an LE graph has 3 vertices; that is, we consider
n > 3. Also, necessarily A > 3. We note that we use difference sets
to achieve our decompositions of AK,. In general, we exhibit the
base graphs, which can be developed (modulo either n or n — 1) to
obtain the decomposition. We also note that the frequency of the
edges is fixed by position, as per the LE graph.

THEOREM 3.2. The minimum number copies of K, (as given in
Theorem 3.1) can be decomposed into graphs of the LE-type.

PROOF. Let n > 3. We proceed by cases on n (mod 8).

If n = 8t (for t > 1), we consider the set V as Zg_j U {c0}. The
number of graphs required for LE(8t,3) is gs—‘)%&;ll = 3t(8t — 1).
Thus, we need 3t base graphs (modulo 8¢ — 1). Then, the differences
we must achieve (modulo 8t — 1) are 1,2,...,4t — 1. For the first
three base graphs, use [1,0,00}, [0,1,4t] and [0,1,4t — 1]. We also
use the 3t — 3 base graphs [0,2,4¢ — 1], [0,2,4t — 2], [0,2,4t — 3],
[0,3,4t—3], [0,3,4t—4], [0,3,4t—5],. .., [0,t,2t+3], [0,¢,2t+2] and
[0,¢,2t + 1] if necessary. Hence, LE(8t, 3) exists.

If n =8+ 1 (for t > 1), we consider the set V as Zgt11. The
number of graphs required for LE(8t+1, 3) is 1(%)_@1 = 3t(8¢t+1).
Thus, we need 3t base graphs (modulo 8¢+ 1). Then, the differences
we must achieve (modulo 8t + 1) are 1,2,...,4t. We use the base
graphs [0, 1,4t + 1], [0, 1, 4¢], [0,1,4t — 1], [0,2,4t - 1], [0,2,4t — 2],
[0,2,4t - 3],...,[0,¢,2¢ + 3], [0,¢,2t + 2] and [0,¢,2t + 1]. Hence,
LE(8t + 1, 3) exists.

If n = 8t + 2 (for t > 1), we consider the set V as Zg;41 U {o0}.
The number of graphs required for LE(8¢ + 2,4) is ﬂﬂﬂ%@t—"ﬂ =
(4t + 1)(8t + 1). Thus, we need 4t + 1 base graphs (modulo 8¢ + 1).
Then, the differences we must achieve (modulo 8t+1) are 1,2,...,4t.
For the first five base graphs, use [1,0, o0], [0, 0, 1], [0,2,4], [0, 3, 6]
and [0, 4,8). We also use the 4t — 4 base graphs [0,5,10},...,[0,4t —
3,8t —6], 0,4t — 2,8t —4], [0,4t— 1,8t —2] and [0, 4¢, 8] if necessary.
Hence, LE(8t + 2,4) exists.

If n = 8¢+ 3 (for t > 0), we consider the set V as Zg;43. The
number of graphs required for LE(8t + 3,4) is Msx&—"@ = (4t +
1)(8t + 3). Thus, we need 4t + 1 base graphs (modulo 8t + 3). Then,
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the differences we must achieve (modulo 8t + 3) are 1,2,...,4¢ + 1.
We use the base graphs [0, 1,2], [0,2,4],...,[0,4¢t + 1,8t +2]. Hence,
LE(8t + 3,4) exists.

If n = 8t+4 (for t > 0), we consider the set V as Zg; 3U{co}. The
number of graphs required for LE(8t + 4,4) is Msxit"'—s) = (4t +
2)(8t + 3). Thus, we need 4t + 2 base graphs (modulo 8t +3). Then,
the differences we must achieve (modulo 8t + 3) are 1,2,...,4¢ + 1.
For the first two base graphs, we use [1,0,00] and [00,0,1]. We
also use the 4t base graphs [0,2,4], [0,3,6],...,[0,4t + 1,8t + 2] if
necessary. Hence, LE(8t + 4, 4) exists.

If n =8t +5 (for t > 0), we consider the set V as Zg;45. The
number of graphs required for LE(8t + 5, 4) is MSMM = (4t +
2)(8t + 5). Thus, we need 4¢ + 2 base graphs (modulo 8 +5). Then,
the differences we must achieve (modulo 8¢ + 5) are 1,2,...,4t + 2.
We use the base graphs [0,1,2], [0,2,4],...,[0,4t +2, 8t +4]. Hence,
LE(8t + 5, 4) exists.

Ifn = 8t+6 (for t > 0), we consider the set V as Zg;45U{c0}. The
number of graphs required for LE(8t + 6,4) is M%ﬂﬁl = (4t +
3)(8t+5). Thus, we need 4t + 3 base graphs (modulo 8t +5). Then,
the differences we must achieve (modulo 8¢ + 5) are 1,2,...,4t + 2.
For the first three base graphs, we use [1,0, o0], [00,0, 1] and [0, 2, 4].
We also use the 4t base graphs [0,3,6], [0,4,8],...,[0,4t + 2,8t + 4]
if necessary. Hence, LE(8t + 6, 4) exists.

If n =8t +7 (for t > 0), we consider the set V as Zg;,7. The
number of graphs required for LE(8¢ + 7,4) is M%M = (4t +
3)(8¢ + 7). Thus, we need 4t + 3 base graphs (modulo 8¢ + 7). Then,
the differences we must achieve (modulo 8t+7) are 1,2, ... ,4¢t+3. We
use the base graphs (0, 1,2], [0,2,4],.. ., [0, 4t + 3, 8t + 6] if necessary.
Hence, LE(8t + 7, 4) exists. [ |

We now address the sufficiency of existence of LE(n, \).

THEOREM 3.3. Letn > 3 and A > 3. For LE(n, )\), the necessary
conditions for n are that n = 0,1 (mod 8) when A = 1,3 (mod 4)
and n = 0,1 (mod 4) when A = 2 (mod 4). There is no condition
for n when A =0 (mod 4).

PROOF. Similar to the proof of Theorem 3.1, but by cases on A
(mod 8). [ |

LEMMA 3.1. There exzists an LE(n,3) for the necessary n > 3.



PRrROOF. From Theorem 3.3, the necessary condition is n = 0,1
(mod 8). In these cases, LE(n, 3) exists from Theorem 3.2. [ |

LEMMA 3.2. There ezists an LE(n,4) for any n > 3.

PRrOOF. From Theorem 3.3, there is no condition for n. We
consider cases when n > 3 is odd or even.

If n =2t+1 (for t > 1), we consider the set V as Zat+1. The
number of graphs required for LE(2t + 1,4) is i(i’t_-!-sll(gl =t(2t+1).
Thus, we need ¢t base graphs (modulo 2t 4+ 1). The differences we
must achieve (modulo 2¢ + 1) are 1,2,...,t. We use the base graphs
[0,1,2), [0,2,4],...,[0,¢,2t]. Hence, LE(2t + 1, 4) exists.

If n = 2t (for t > 2), we consider the set V as Zg;_1 U {o0}.
The number of graphs required for LE(2t, 4) is ﬁ%z—t_—ll =t(2t-1).
Thus, we need t base graphs (modulo 2t — 1). The differences we
must achieve (modulo 2¢ — 1) are 1,2,...,t — 1. For the first two
base graphs, we use [1,0,00] and [00,0,1]. We also use the ¢t — 2
base graphs [0,2,4], [0,3,6],...,[0,t — 1,2t — 2] if necessary. Hence,
LE(2t,4) exists. [ |

LEMMA 3.3. There does not ezist an LE(n,5).

PRoOF. The only edge frequencies in an LE graph are 1 and 3.
The only way to write A = 5 as a sum of 1s and 3s (that includes a
‘3")is as 5 = 3+ 1+ 1. In an LE(n,5), the number of times each
edge needs to occur triply is half the number of times it should occur
singly. However, as there are equal numbers of single edges and triple
edges in an LE graph, such a decomposition is not possible. ]

LEMMA 3.4. There exists an LE(n,6) for necessary n > 3.

Proor. From Theorem 3.3, the necessary condition is n = 0,1
(mod 4).

If n = 4t (for t > 1), we consider the set V' as Zy_; U {oo}. The
number of graphs required for LE(4t, 6) is ?Iﬁxgi:_ll = 3t(4t - 1).
Thus, we need 3t base graphs (modulo 4t — 1). The differences we
must achieve (modulo 4t — 1) are 1,2,...,2t — 1. For the first three
base graphs, use [0,1,2] and [1,0, o0} twice. For the last 3t — 3 base
graphs, use [0,2,4], [0,2,2t + 1] twice, [0,3,6], [0,3,2t + 1] twice,
...,[0,t,2t] and [0,t,2t + 1] twice, if necessary. Hence, LE(4t,6)
exists.

If n = 4t + 1 (for t > 1), we consider the set V as Zyz+1. The

number of graphs required for LE(4t+ 1, 6) is —6—(‘“—+le@ = 3t(4t+1).
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Thus, we need 3t base graphs (modulo 4t + 1). The differences we
must achieve (modulo 4¢+1) are 1,2, ...,2t. We use the base graphs
[0,1,2], [0,1,2t+ 1] twice, [0,2,4], [0, 2,2t + 1] twice, ..., [0,t,2t] and
[0,¢,2t + 1] twice. Hence, LE(4t + 1, 6) exists. [ |

LEMMA 3.5. There ezists an LE(n,9) for necessary n > 3.

PROOF. From Theorem 3.3, the necessary condition is n = 0,1
(mod 8).

If n = 8t (for t > 1), we consider the set V' as Zg—; U {oo}. The
number of graphs required for LE(8t,9) is %ﬁ = 9¢t(8¢t — 1).
Thus, we need 9t base graphs (modulo 8t — 1). The differences we
must achieve (modulo 8t—1) are 1,2, ...,4t—1. For the first nine base
graphs, use [0,1,2] twice, [1,0,00], [0,2,4] twice, [2,0,00], [0,3,6]
twice and [3,0, co]. For the last 9t —9 base graphs, use [0,4, 8] twice,
[0,4,4t + 3], [0,5,10] twice, [0,5,4t + 4], [0,6,12] twice, [0,6,4t +
5),...,[0,3t—2,6t—4] twice, [0,3t—2,6t—1], [0,3t 1,6t — 2] twice,
[0,3t — 1,6t], [0,3¢,6t] twice and [0, 3¢, 6t + 1] if necessary. Hence,
LE(8t,9) exists.

If n=8t+1 (for t > 1), we consider the set V as Zg;,1. The
number of graphs required for LE(8t+1,9) is 9-(&—"'811@1 = 0t(8t+1).
Thus, we need 9¢ base graphs (modulo 8t + 1). The differences we
must achieve (modulo 8t+1) are 1,2,...,4t. We use the base graphs
[0,1,2] twice, [0,1,4¢ + 1], [0,2,4] twice, [0,2,4t + 2], (0,3, 6] twice,
[0,3,4¢ + 3],...,[0,3t — 2,6t — 4] twice, [0,3t — 2,6t — 1], [0,3t —
1,6t —2] twice, [0,3t— 1, 6¢], [0, 3¢, 6t] twice and [0, 3t, 6¢ + 1]. Hence,
LE(8t + 1,9) exists. |

THEOREM 3.4. An LE(n,)) egzists for all A > 3 (ezcept A = 5,
according to Lemma 3.3) and necessary n > 3.

PROOF. We proceed by cases on A (mod 4).

For A =0 (mod 4) (so that A = 4t for ¢ > 1), by taking ¢ copies
of an LE(n,4) (given in Lemma 3.2), we have an LE(n, 4t).

For A=1 (mod 4) (so that A\=4t + 1 =4(t —2) + 9 for t > 2),
we first take an LE(n,9) (given in Lemma 3.5). (This givesus A = 9
thus far.) We then adjoin this to ¢t — 2 copies of an LE(n, 4) (given
in Lemma 3.2) if necessary. Hence, we have an LE(n, 4t + 1).

For A=2 (mod 4) (so that A\=4t+2=4(t - 1)+ 6 for t > 1),
we first take an LE(n, 6) (given in Lemma 3.4). (This gives us A = 6
thus far.) We then adjoin this to ¢ — 1 copies of an LE(n, 4) (given
in Lemma 3.2) if necessary. Hence, we have an LE(n, 4t + 2).
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For A = 3 (mod 4) (so that A = 4t + 3 for t > 0), we first take
an LE(n,3) (given in Lemma 3.1). (This gives us A = 3 thus far.)
We then adjoin this to ¢ copies of an LE(n,4) (given in Lemma 3.2)
if necessary. Hence, we have an LE(n, 4t + 3). |

4. Conclusion

We have revisited LE graphs, found the minimum X for decompo-
sition of AK,, into these graphs, and showed that for all viable values
of A, the necessary conditions are sufficient for LE-decompositions.

References

[1] P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-Designs,
J. Combin. Designs 16 (2008), 373~410.

[2) H. Chan and D. G. Sarvate, Stanton graph decompositions, Bulletin of the ICA
64 (2012), 21-29.

[3] S. El-Zanati, W. Lapchinda, P. Tangsupphathawat and W. Wannasit, The spec-
trum for the Stanton 3-cycle, Bulletin of the ICA 69 (2013), 79-88.

[4) D. W. Hein, Generalized Stanton-type graphs, J. Combin. Math. Combin. Com-
put., submitted.

[5] D. W. Hein and D. G. Sarvate, Decompositions of AKy, into LEO and ELO graphs,
J. Combin. Math. Combin. Comput., submitted.

[6] D. W. Hein and D. G. Sarvate, Decompositions of AKy into S(4,3)’s, J. Combin.
Math. Combin. Comput. 94 (2016), to appear.

[7] D. W. Hein and D. G. Sarvate, Decompositions of AK, using Stanton-type graphs,
J. Combin. Math. Combin. Comput. 80 (2014), 185-195.

(8] S. P. Hurd and D. G. Sarvate, Graph decompositions of K (v, A) into modified tri-
angles using Langford and Skolem sequences, J. Combin. Math. Combin. Comput.
(2013), accepted.

[9] D. G. Sarvate, P. A. Winter and L. Zhang, A fundamental theorem of multigraph
decomposition of a AKm,n, J. Combin. Math. Combin. Comput., accepted.

(10] D. G. Sarvate, P. A. Winter and L. Zhang, Decomposition of a AKm,n into graphs
on four vertices and five edges, J. Combin. Math. Combin. Comput., submitted.

[11] D. G. Sarvate and L. Zhang, Decompositions of AK» into LOE and OLE graphs,
J. Combin. Math. Combin. Comput., submitted.

[12] D. R. Stinson, Combinatorial designs: constructions and analysis, Springer, New
York, 2004.

SOUTHERN UTAH UNIVERSITY, DEPT. OF MATH., CEDAR CITY, UT, 84720
E-mail address: hein@suu.edu

43



