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Abstract

For a poset P = (V(P), <p), the strict semibound graph of P is
the graph ssb(P) on V (ssb(P)) = V(P) for which vertices u and v of
ssb(P) are adjacent if and only if u # v and there exists an element
z € V(P) distinct from u and v such that £ <p u,v or u,v <p z. We
prove that a poset P is connected if and only if the induced subgraph
(max(P))esu(p) is connected. We also characterize posets whose strict
semibound graphs are triangle-free.
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1 Introduction

In this paper we consider finite undirected simple graphs and finite posets.
Throughout this paper, we use the graphs and posets terminology and no-
tation introduced in [23] and [17].

In particular, given a graph G and a subset S C V(G) of the set V(G)
of vertices of G, we denote by {S)¢ the induced subgraph of G on S. Given
a graph G and a vertex v € V(G), we set Ng(v) = {u : wv € E(G)}.

Given a finite poset P = (V(P),<p), <p is a partial order relation on
V(P), and we denote by P4 the dual poset of P. For any = € V(P), we set
Up(z) = {y € V(P) : z <p y}, Up(z) = Up(z) — {z}, Lr(z) = {y €
V(P) : y<pz} and Lp(z) = Lp(zx) — {z}. We denote by max(P) (resp.
by min(P)) the set of all maximal (resp. minimal) elements of P, and we
set mid(P) = V(P) — (max(P) U min(P)).
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In the paper we use the following definition.

Definition 1.1 Assume that P = (V(P),<p) is a finite poset.

() The comparability graph of P is the graph com(P) on V(com(P)) =
V(P) for which distinct vertices u and v of com(P) are adjacent if and
only if u <pv orv <pu.

(b) The strict semibound graph of P (ssb-graph, for short) is the graph
ssb(P), with the set of vertices V(ssb(P)) = V(P) for which vertices
u and v of ssb(P) are adjacent if and only if u # v and there exists
an element x € V(P) distinct from u and v such that £ <p u,v or
u,v <p z. We say that a graph G is a strict semibound graph if there
erists a poset whose strict semibound graph is isomorphic to G.

In general we consider a food web as an acyclic digraph F' whose vertices
are species with an arc u — v whenever species u feeds on species v. Cohen
[3] introduced a competition graph G on a food web F such that the vertices
of G are the vertices of F' and there is an edge from the species u to the
species v if and only if for some species w, there are arcs u » w and v = w.
Cohen studied food webs in terms of competition graphs. Dutton, Brigham
6], Lundgren, Maybee [12] and Roberts [14] researched competition graphs
as pure mathematical studies. Scott [16], Lundgren [11] and Cable, Jones,
Lundgren, Seager (2] studied competition-common enemy graphs and niche
graphs in the point of view of mathematics, whose graphs were also intro-
duced for research on food webs.

Posets are reflexive, antisymmetric and transitive digraphs. McMorris,
Zaslavsky [13] and Bergstrand, Jones (1] dealt with upper bound graphs and
double bound graphs on posets, which correspond to competition graphs
and competition-common enemy graphs, respectively. McMorris, Zaslavsky
(13] and Diny [4] introduced the concept of strict-upper-bound graphs and
strict-double-bound graphs, which correspond to competition graphs and
competition-commeon enemy graphs on acyclic digraphs, respectively. Strict
semibound graphs correspond to niche graphs on acyclic digraphs. Era,
Ogawa, Tsuchiya [7], (8] dealt with semibound graphs, which correspond to
niche graphs.

In this paper we consider properties of strict semibound graphs. In the
present article, we examine the structure of strict semibound graphs as a
way to study partially ordered sets. In Section 2, we characterize a poset P
such that ssb(P) is a connected graph.



Except of the tools and techniques mentioned above, finite posets P are
usually studied in the literature in terms of the Hasse graph H(P) and the
Hasse quiver H(P) associated to P. This type of technique is successfully
used in the study of matrix representations and K-linear representations
of finite posets P, see (5], [9], [18], [19] for details. Recently, the geometry
and the structure of finite posets P are successfully studied in terms of
edge-bipartite graphs Ap and the Coxeter (complex) spectrum speccp C
S! associated with P using the Coxeter spectral analysis technique, where
S! = {z € C: |z| = 1} is the unit circle, see [10], [15], {20], [21], and [22] for
more details and applications.

2 Connected posets
In this section we use the following definition.

Definition 2.1

(a¢) Given a finite poset P = (V(P),<p) and elements a,b € V(P), a
sequence of elements a = ¢1,¢3, ..,c1 = b is called an a-b comparable
path if c; is comparable with ¢;4q fori=1,2,..,l - 1.

(b) Given a finite poset P = (V(P),<p) and a,b € V(P), a and b are
connected if there exists an a-b comparable path.

(c) A finite poset P = (V(P),<p)is connected if each pair of elements
a,b € V(P) is connected.

Note that a finite poset P is connected if and only if the comparability
graph com(P) of P is connected. If a finite poset P is disconnected, then
ssb(P) is disconnected.

For strict semibound graphs of connected posets, we obtain the following
results.

Theorem 2.2 Let P = (V(P), <p) be a finite poset and ssb(P) is the strict
semibound graph of P. Then the following are equivalent.

1. A poset P is connected, that is, the comparability graph com(P) is
connected.

2. The induced subgraph (max(P))y(py is a connected graph.

3. The induced subgraph (min(P))yy(py is @ connected graph.
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Proof. First we show that the condition 1 implies the condition 2. For each
pair o, a’ € max(P), there exists an a-a’ comparable path o = ¢;, ¢3, ..., ¢; =
o', because P is connected. For an a-o/ comparable path a = ¢;,c3, ...,¢; =
o', we obtain a minimal a-a' comparable path a = ¢; = wy,ws, ..., Wm =
¢ = o such that wy = ¢; = o and wiy) = c,, where k; = max{j : ¢;
is comparable with w;}. Then wym = ¢ = o’ and w; (¢ = 1,2,...,m) is
not comparable with w; for ¢ + 1 < k. Since w; = a € max(P), we, <p
wWar-1, War41 for each 2r. Since wy, = a’ € max(P), upper bounds of wy, do
not exist other than w,,. Thus m is not even.

For each w;, there exists a maximal element a; such that w; <p ¢;. If
w; € max(P), o; = w;. Then ag,_; and ay,-4) have a common lower bound
wor, because wor <p wyr_) <p azr—1 and war <p wory; <p agr+1. Thus
a2r—1 and a2ry are adjacent in ssb(P). Since {a = w; = o4, 03,05, ...,am =
wm = o'} C max(P) and ay,1 and ag,4; are adjacent in ssb(P), a sequence
o = 1,a3,05,...,am = &' is an a-o’ walk in (max(P))sp(p). So a and o
are connected in (max(P))qp( py and (max(P)).p) is & connected graph.
Similarly if a poset P is connected, then (min(P)) g p) is connected. There-
fore the condition 1 implies the conditions 2 and 3.

Next we show that the condition 2 implies the condition 1. We assume
that the induced subgraph (max(P))sp(p) is connected. For u,v € V(P),
we show u and v are connected in P. We consider the following cases.
Case (a): u,v € max(P).

Since (max(P)), p) is connected, there exists a path u = ), 09, ...,0y =
v of (max(P))ssb( Py 'i‘hus there exist y; € V(P) — max(P) such that y; <p
Qi iy fori =1,2,...,1-1. So a sequence u = oy, y1,a2, 92, ..., a_1,Yl-1, 0 =
v is a u-v comparable path of P.

Case (b): u € max(P) and v € V(P) — max(P).

Then there exists an element oy € max(P) such that v <p a;. As is the
case with Case (a), there exists a u-o; comparable path u = ay, Y1, 2, Y2
»++ss @U—1, Yi-1, . Thus there exists a u-v comparable path © = ay, y;, a2,
Y2 5.0 Q-1 Y11, O, 0.

Case (c): u € V(P) — max(P) and v € max(P).

Similar to Case (b).

Case (d): u,v € V(P) — max(P).

Then there exist elements oy, a; € max(P) such that v <p a; and v <p
a; and there exists an a)-a; comparable path a;,yy, a2,¥2, ..., 0u_1, Yi-1,04.
Thus there exists a u-v comparable path u, o1, y;, Q2 Y2y veey QU_1, YI—1, O, V.

Therefore for each pair u,v € V(P), u and v are connected and a poset
P is connected.

Similarly, the condition 3 implies the condition 1. O



Corollary 2.3 Let P = (V(P),<p) be a finite poset. Then ssb(P) is a
connected graph if and only if P is connected and mid(P) # 0.

Proof. If mid(P) # @, then for all z € mid(P), there exist &« € max(P) and
B € min(P) such that 8 <p z <p a. So z is adjacent to & maximal element
a and a minimal element B in ssb(P), because 8 <p z,a and z,8 <p a.

By Theorem 2.2, for a connected poset P, any maximal elements are
connected and any minimal elements are connected in ssb(P). Therefore
any elements of ssb(P) are connected and ssb(P) is a connected graph.

If a poset P is disconnected, then ssb(P) is disconnected. If mid(P) = @,
then V(P) = max(P) U min(P). For a € max(P) and 8 € min(P), « and B
are not adjacent in ssb(P), because Uy (a) = @ and Lp(8) = 8. So ssb(P)
is disconnected. [J

A clique of a graph G is the vertex set of a maximal complete subgraph
of G. Let @ = {@1,Q2, ..., Q:} be the family of all cliques of G noting that
for each uv € E(G), there exists Q; € Q such that u,v € Q;. The clique
graph of G is the graph CL(G) on V(CL(G)) = Q for which vertices Q; and
Q); are adjacent if and only if Q; N Q; # 0. We obtain the following result.

Theorem 2.4 For a graph G with no isolated vertices, GUCL(G) is a strict
semibound graph.

Proof. Let Q@ = {Q1,Qz2, ..., @} be the family of all cliques of G. We make
a poset P such that V(P) = V(G)U{a1,02,...,a}, z <p o for € Q; and
w <p w for all w € V(P). Then max(P) = {1, az, ..., o}, min(P) = V(G),
mid(P) = @ and ssb(P) is (max(P))sp(py Y (min(P))sp(py-

For z,y € V(G), z is adjacent to y in G if and only if z is adjacent to
y in ssb(P), because there exists a clique Q; € Q such that z,y € Q; if and
only if there exists an element o; € max(P) such that x,y <p ;. So the
graph G is isomorphic to the induced subgraph (min(P)),(p) of ssb(P).

For vertices a;,a; € {a1, a2, ...,oq} and corresponding cliques Q;,Q; €
Q, o; is adjacent to a; in ssb(P) if and only if Q; N Q; # @, because there
exists a minimal element z such that z <p a;, o; if and only if z € @Q: N Q.
So the induced subgraph (max(P))sp) Of ssb(P) is isomorphic to CL(G).

Therefore ssb(P) is isomorphic to GUCL(G), and GUCL(G) is a strict
semibound graph. O
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3 Triangle-free strict semibound graphs

Next we consider triangle-free strict semibound graphs. In this section we
use the following definition.

Definition 3.1

(a) Let T, be a total ordered set with n > 1 vertices such that V(T,) =
{z: : 1<i<n}andz;<p,z; for1<i<j<n

(b) Let Zym (1 <1 < m < 1+1) be a poset such that V(Z,,,) = {5
1<i<}u{e; : 1<j<m},
Bi <z, ci,aiq1 for 1 <i<l-1,
ﬂl SZz'm a zfm = l;
B SZ,,,,, oo ifm=1+1, and
w <Lz, w for allw € V(Z;n).

(c) Let Z, (I > 1) be a poset Zi; adding a relation S <z+ 1. Then

+ —
Zl,l = Zl,l.

For triangle-free strict semibound graphs, we obtain a following result.
Then let C; be a cycle with [ vertices and P, be a path with r vertices.

Theorem 3.2 Let P = (V(P), <p) be a connected finite poset, where |V (P)| >
2. Then the following are equivalent:

1. The strict semibound graph ssb(P) is a triangle-free graph,

2. The poset P is isomorphic to Ts, Zy1, Zi 14y, the dual poset fol 41 for
121, 0orZY forr>2andr#3,

3. The strict semibound graph ssb(P) is isomorphic to Ps, U P, P, U
Py forl>10r C.UC, forr > 4.

Proof. First we show that the condition 1 implies the condition 2. We
assume that ssb(P) is a triangle-free graph.
Case (a): mid(P) # 9.

For z € mid(P), there exist 8 € min(P) and « € max(P) such that
B <pz <pa lfUp(B)—{z,a} # 0, then for w € U5 (B) — {z,a}, z,a and
w have a common lower bound 8 and ({z, c, w})en(pyis @ triangle, which is
a contradiction. So Up (8) —{z,a} = 0. Similarly L3 () — {z, 8} = 0. Since
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P is connected, mid(P) = {z}, min(P) = {8} and max(P) = {a}. Thus P
is isomorphic to T3.
Case (b): mid(P) = 0.

Since ssb(P) is triangle-free, |Lp(a)| < 2 for o € max(P) and |Up (B)| <
2 for B € min(P). Since P is connected, the comparability graph com(P)
of P is a connected graph. For a € max(P), Neoypy(a) = Lp(a) and
degcom(P)(a) = |L1_’(a)l For # € min(P), Ncom(P) B) = U}: (B) and degt:(:\m(}:') B =
|Ug (B)I- So for all x € V(com(P)), degeom(p)(z) < 2.

Case (b)-1: degcom(p)(z) = 2 for all z € V(com(P)).

Then com(P) is isomorphic to a cycle with even vertices and com(P) is a
bipartite graph with partite sets max(P) and min(P). Then | max(P)| > 2,
and |min(P)| > 2. Let z1,%32,...,%2r, Z1 be the cycle of com(P) and z; €
max(P). Since r; € max(P) and z; is adjacent to z), 2 € min(P) and
zo <p z;. Since o € min(P) and z3 is adjacent to z,, 3 € max(P)
and zo <p z3 and so on. Thus z;,z3, ..., Tor~1 € max(P), z2,24,...,T2r €
min(P), z2; <p T2i-1,Z2i+1 for 1 <i <7 —1and z3, <p Tar_1,%1. Then P
is isomorphic to Z7,. Since ssb(Zg': 3) is C3UC3 and ssb(P) is a triangle-free
graph, 7 # 3. And r # 1, because com(Z},) is P; which has degree one
vertices. Therefore » > 2 and r # 3.

Case (b)-2: There exists a vertex whose degree is zero.

Then P is disconnected or {V(P)| = 1, which is a contradiction.
Case (b)-3: There exists a degree one vertex.

Since for all z € V(com(P)), degcom(p)(z) < 2 and com(P) is connected,
then there exist exactly two vertices whose degrees are one. Thus com(P)
is isomorphic to a path z;, 9, ..., ;.

Case (b)-3-1: z; € max(P).

Then z; € max(P) for every odd i and x; € min(P) for every even 7. In
the case t is even, say t = 2l, z; € min{P) and P is isomorphic to Z;;. In
the case t is odd, say t = 2] + 1, z; € max(P) and P is isomorphic to Z; ;1.
Case (b)-3-2: z; € min(P).

Then z; € min(P) for every odd i and z; € max(P) for every even ¢. In
the case t is even, say t = 2[, z; € max(P) and P is isomorphic to Z;;. In
the case t is odd, say t = 2l + 1, z; € min(P) and P is isomorphic to the
dual of Zj;41.

Therefore the condition 1 implies the condition 2.

The strict semibound graph ssb(T3) of T3 is isomorphic to P3, ssb(Z;)
= PLU R, ssb(Z;141) = ssb(Z;f,_H) & PUP,4,, and ssb(Z{2) = Pub.
For r > 4, ssb(Z}},) = C, UC,. So the condition 2 implies the condition 3.
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Forr>4and!>1, P, BUP, PUP,, and C, UC, have no triangles.
So the condition 3 implies the condition 1. O

4 Complete graphs without some edges

Since maximal elements of a poset are not adjacent to minimal elements
of a poset in strict semibound graphs, a complete graph K,(n > 2) is not
an strict semibound graph. Given a finite poset P = (V(P),<p) with n
elements and | max(P)| = |min(P)| = 1, ssb(P) is isomorphic to K,, — e,
which is a complete graph without one edge. We consider nearly complete
graphs and obtain the following results. Given a graph G and a subgraph H
of G, the graph G — E(H) is the graph with the vertex set V(G — E(H)) =
V(G) and the edge set E(G — E(H)) = E(G) — E(H).

Proposition 4.1 Forl,m > 1 and n > 0, Kiym4n — E(Ki ) is an strict
semibound graph.

Proof. Let P be a poset such that V(P) = {a; : 1 <i < {}U{B;
1<j<m}uUf{w : 1<k<n}, B <pwe<paforl <ic<lI,
1<j<mandl <k < n, and for all z € V(P), z <p z. For each
maximal element o;, Lp(c;) = min(P)Umid(P). For each minimal element
Bj, Up (8;) = max(P)Umid(P). In ssb(P), o; is adjacent to ay for a;, oy €
max(P), B; is adjacent to B; for B, 8y € min(P), wy is adjacent to wy for
wg, wir € Mid(P), ¢; is adjacent to wy for a; € max(P) and wy;, € mid(P),
and f; is adjacent to wy for 8; € min(P) and wy € mid(P). For any pair
of a maximal element o; and a minimal element Bj, a; is not adjacent to
B;, because Up (o) = 0 and Lp(8;) = 0. Therefore ssb(P) is isomorphic to
Kirmin — E(Kl,m)' o

Corollary 4.2 Graphs Py, Kn —e (n > 2) and K, UK, (I,m > 1) are
strict semibound graphs. O
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