Preservers of Upper Ideals of
Matrices: Tournaments; Primitivity*!

LeRoy B. Beasley

Department of Mathematics and Statistics, Utah State University
Logan, Utah 84322-3900, USA
email: leroy.b.beasley@aggiemail.usu.edu

Abstract

Let M denote the set of matrices 6ver some semiring. An upper
ideal of matrices in M is a set U such that if A € U and B is any
matrix in M, then A+ B € U. We investigate linear operators
that strongly preserve certain upper ideals (that is, linear operators
on M with the property that X € U if and only if T(X) € U).
We then characterize linear operators that strongly preserve sets of
tournament matrices and sets of primitive matrices. Specifically we
show that if T strongly preserves the set of regular tournaments when
n is odd or nearly regular tournaments when n is even, then for some
permutation matrix, P, T(X) = P*X P for all matrices X with zero
main diagonal, or T(X) = P*X*P for all matrices X with zero main
diagonal. Similar results are shown for linear operators that strongly
preserve the set of primitive matrices whose exponent is k& for some
values of k, and for those that strongly preserve the set of nearly
reducible primitive matrices.

1 Introduction

The study of the invariants of maps has been an ongoing topic of research for
centuries. The eigenvalue-eigenvector problem is one of the most basic and
fundamental of these. The study of invariants of linear transformations
on matrix spaces began over a century ago. This research involved two
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basic types of questions. First: what are the invariant sets given a linear
transformation (the eigenvalue-eigenvector problem)? And second: given a
set or function what are the linear transformations that leave that set or
function invariant? When the transformations are between sets of matrices,
that study was begun by Frobenius in 1897 [14] when he classified linear
operators that preserve the determinant function. Since that time much
research has been published on preserver problems. See [20, 16] for an
excellent survey.

Recently, the study of linear operators on matrix spaces over sets which
are not fields has become established. In particular, the study of linear
transformations on spaces of (0, 1)-matrices. This study is related to maps
on directed or undirected graphs and bipartite graphs, and so has impor-
tance in combinatorics, computing, etc. The underlying set of scalars in
this case is usually Boolean in that addition acts much like union of sets
and multiplication much like intersection.

Unlike the investigation of preservers of sets of matrices over fields, pre-
servers of sets of Boolean matrices usually require more hypothesis than to
just assume that a transformation preserves the set. Defining a transforma-
tion to be O at O and the image of all other matrices to be a fixed element in
the specified set produces a transformation that preserves that set. Clearly
this transformation is not very interesting. Thus, an additional hypothesis
is needed. This additional hypothesis is commonly that the transformation
is bijective. Another condition also used, and the one we are using in this
article, is that the transformation “strongly” preserves the set, that is the
image of an element in the set is in the set, while the image of an element
not in the set is not in the set. This condition appears not only in research
on matrices over discrete semirings, but also in research on preservers over
real and complex matrices, See for example [18] and [23].

Examples of research on strong preservers of matrices over antinegative
semirings are many. In addition to the chapter in [20] on miscellaneous
problems, recent examples include strong preservers of term rank k [2, 3],
regular matrices [5, 12], idempotent matrices (7], nilpotent matrices {17, 22),
etc. A search in MathSciNet with an input of ANYWHERE="“strongly
pres*” and MSC= “15* or 05*” produces 45 articles appearing in the last
25 years.

For basic facts and definitions of linear algebraic concepts we refer the
reader to Horn and Johnson, [15].

56



2 Semirings, Semimodules, Upper Ideals and
Preservers

In this section, the specific definitions and sets that we investigate are given.

2.1 Semirings and Semimodules

A semiring is a system, (S, +, x), where S is a nonempty set, (S, +) is an
Abelian monoid (identity 0), (S, x) is a monoid (identity 1), x distributes
over +, and O0xs = sx0 = 0 for all s € S. Usually S denotes the system
and X is denoted by juxtaposition. If (S, x) is Abelian then we say S is
commutative. If 0 is the only element of S that has an additive inverse then
S is antinegative. Note that all rings with unity are semirings, but none
are antinegative. Algebraic terms like unit and zero divisor are defined for
semirings as if S were a ring.

In this paper, unless specified differently, we will assume that S is com-
mutative, antinegative and with no zero divisors. These semirings occur
frequently in combinatorics. They include the nonnegative members of any
real ring containing 1, including the nonnegative reals, the nonnegative in-
tegers, etc., the fuzzy scalars ([0,1],+ = max,x = min)), and Boolean
semirings, families of sets with + = union and x = intersection. including
especially the binary Boolean semiring {{8,U}, + = U, x = N}, equivalent
to B = ({0,1},+ = max, X = min). Note that B has arithmetic the same
as real arithmetic except that 1 4+1 =1.

A semimodule over S is a triple (K, +, o), where K is a nonempty set,
(K, +) is an Abelian monoid (identity O) and e is a scalar product. Recall
that e is a scalar product if for all ¢, € Sand K,L € K: ae K € K ;
ae(BeK)=(af)eK;0eK =0;16K =K; (a+B)eK =aeK +eK;
and ae (K + L) = ce K+ aeL. Thus, a semimodule satisfies all the
properties of a vector space that do not require additive inverses. As with
semirings, K will denote the system and e is denoted by juxtaposition.

Let M., (S) denote the set of all m x n matrices with entries in S.
Clearly M, »(S) is a semimodule over S where all operations are defined as
if S were a field. If m = n we use the notation M,(S). Some semimodules
of interest also include: Ms.o)(S) the set of matrices in M,(S) with all
diagonal entries zero; and UT ' (S), the matrices in My(S) which are upper
triangular, S, (S), the set of all nxn symmetric matrices over S; and s (S),
the set of all n x n symmetric matrices over S with zero main diagonal.

We let J,... denote the m x n matrix of all ones, O, », the m X n matrix
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of all zeros, and I, the n x n identity matrix. The subscripts are suppressed
unless there is possibility of confusion and write J, O, I respectively.. The
matrix E; j in M, »(S) is the m x n matrix with exactly one nonzero entry,
that being a one in the (¢,7) position. We call E;; a cell. The weight of
matrix A, |A|, is the number of nonzero entries in A. So the weight of the
matrix A is the minimum number of cells whose algebraic sum is A.

Let A, B € M,,(S). We say that A dominates B if a; ; = 0 implies that
b;,; = 0. This is denoted by A J Bor BC A.

Let A be a matrix. A line of A is a row or column of A. A line matriz
is a matrix all of whose entries lie on a single line. A full line matriz is a
matrix whose nonzero entries are all on one line and no other line matrix
dominates it. Two cells are collinear if they are dominated by a line matrix.
The term rank of A, tr(A), is the least number of lines that contain all the
nonzero entries of A.

If R; denotes the full line matrix in M,,(B) or MS,O)(IB) consisting all
the cells in row ¢ and C; denotes the full line matrix in M,,(B) or MDY (B)
consisting all the cells in column i, then the double star centered on i is the
matrix in S,(S) or S,(,o)(S) which is the sum R; + C;.

Let § C M n(S). The span of S, (S), is the set of all linear combina-
tions (algebraic sums) of elements of S.

Let K be a subsemimodule of M, »(S). A base element of K is an
element v of K such that v ¢ (K \ {v}). Note that the set of base elements
define a basis of K.

Example 1 The following table gives the structure of the base elements of
several semimodules of interest.

K base_elements
Mm,A(S) Ei;

MQ(s) Eiji#j
Sn(S) EiiorDyj=Ei; +Ej;i#j

s (S) D;j=E;+E;;i#j
UT,(S) Ei;i<i

Primarily, we are interested only in subsemimodules that have base ele-
ments whose entries are only zeros and ones. However, there are semimod-
ules that do not, for example, if K = (5,(S) U a ¢ UT,,(S)) then the base
elements are either digons, D; ;, or weighted upper triangular cells, ae E; ;.
So there are subsemimodules whose base elements are not matrices with
only zero or one entries.
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Let S be a subset of semimodule K. We say that S separates base
elements if, given any two distinct base elements, E and F’, there is some
N e K suchthat N+ E € Sand N+ F ¢ S. In this case we say that §
separates E from F.

2.2 Upper Ideals

Preservers of upper ideals of matrices were first investigated by Beasley and
Pullman in [8]. They considered only upper ideals in M, »(B). Here we
consider the generalization to any of the above mentioned semimodules.

Definition 2 Let K be a semimodule over S and let U be a subset of K. U
is said to be an upper ideal of K if for every AcUd and X € K, A+ X € U.

Example 3

a If K = Mp, o(S) and U is the set of all matrices of term rank at least
k, then U is an upper ideal since by adding any matriz to another of
fized term rank does not decrease its term rank.

b IfK = s (S) and U 1is the set of all symmetric primitive matrices
of exponent at most k then U is an upper ideal.

¢ If K = UT,(S) and U is the subset of matrices having the first row
all nonzero, then U is an upper ideal.

Note that it is easy to show that the upper ideal in Example 3a separates
base elements (cells). The upper ideal in Example 3c does not separate hase
elements, and while the one in Example 3b does, it is not so easily shown.

Let S be any subset of X and define Us to be the upper ideal generated
by S, that is, Us = {A € K : AL B for all B € S}, that is., Us is the set
of all elements of X not dominated by an element of S The fact that Us is
indeed an upper ideal in X, unless J € S, is easily proven, see (8, Lemma
3.5a].

2.3 Preservers
Let K be a semimodule over S. A mapping ¥ : KX — K is a linear operator
if for any o, B € Sand A,B € K, ¥(aA+BB) =a¥(A)+pY¥(B). If Sisa

subset of K we say that ¥ preserves S whenever X € S implies ¥(X) € S.
Further, ¥ strongly preserves S whenever X € S if and only if ¥(X) € S.
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The following Theorem is easily proved for any finite semimodule XK.
(See: http://en.wikipedia.org/wiki/Bijection.)

Theorem 4 Let K be a finite semimodule and U : K — K be a linear
operator. Then the following conditions are equivalent:

(a) W is bijective;
(b) ¥ is surjective;

(c) ¥ is injective;

The following lemma (for the Boolean case) can be found in (8, Lemma
3.5]. A similar field type theorem involving groups may be found in [13].
The proof is included here for completeness.

Lemma 5 Let K denote a finite semimodule over S, U : K — K be a linear
operator and let S C K. Then, if U strongly preserves S, then U strongly
preserves Us.

Proof. Let A € Ug, so that some element of S dominates A. Then there
is some B € K such that A+ B € S. Since ¥ strongly preserves S,
¥(A) + ¥(B) € S. That is ¥(A) is dominated by some element of S, and
consequently, V(A) & Us.

Note that since ¥ strongly preserves S, ¥¢ strongly preserves S for any
d. In particular for d such that ¥ = © is idempotent (this must happen
since K is finite).

Now suppose that A € Us and U(A) ¢ Us so that T(A) +Y € S for
some Y. Let Z = U?~1(Y). Then, ¥4~ 1(¥(A)+Y) = ©(A)+Z € S. Now,
©(6(A) + Z) € S since © strongly preserves S. That is ©%(A) + o(2) =
©(A4) + ©(Z) = ©(A+ Z) € S. Since © strongly preserves S, we must
have that A+ Z € S, and hence A ¢ Us, a contradiction. Thus, ¥ strongly
preserves Us. ]

Lemma 6 Let K denote a semimodule over S, ¥ : K — K be a linear
operator and let U be an upper ideal of K. If ¥ strongly preserves U and
N € K separates base elements E from F (N+ Ec€U and N+ F ¢ U )
then ¥(N + E) is not dominated by ¥(N + F).

Proof. Since N+ F ¢ U, N + F does not dominate any member of &. Thus,

¥(N + F) cannot dominate any member of & and ¥(N + E) is a member
of U. [}
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The following lemma is a generalization of Lemma 3.3 from (8], which
was proven for K = M, »(B).

Lemma 7 Let K denote a finite semimodule over S, ¥ : K — K be a linear
operator and let U be an upper ideal of K. If U strongly preserves U and U
separates base elements, then U is bijective on the set of all base elements.

Proof. Suppose that ¥(X) = O for some X € K. Then, there exists a base
element E C X such that ¥(E) = O. Let F be any other base element,
and let N € K separate £ from F,sothat N+ EcUand N+ F gU.
Then, ¥(N + E) = ¥(N)+Y(E)=¥(N)CE(N)+Y(F) =Y(N+F), a
contradiction by Lemma 6.

Since K is finite, there is some power of ¥ which is idempotent. Let
¥¢ = © be idempotent.

Let E and F be base elements with E # F. Suppose that E C ©(F),
so that ©(E) C ©%(F), and let N separate E from F. Then, since © is
idempotent and linear, O(N + F) = ©(N) + ©(F) = O(N) + ©63(F) 3
O(N) + ©(E) = ©(N + E). This is a contradiction by Lemma 6 since
U, and hence ©, strongly preserves Y. Thus, ©(F) = F, and similarly
O(E) =

Now suppose that W(E) = ¥(F), and hence that ©(E) = ©(F), for base
elements E and F. Then E = ©(F) = ©(F) = F, so that ¥ is injective
on the set of base elements. By Theorem 4 ¥ is bijective on the set of hase
elements. ]

Corollary 7.1 LetS be finite, K be any one of the semimodules Mm n(S),

(o)(S) Sa(S), S,(‘o)(S), or UT(S), and U be an upper ideal of K that
separates base elements. If ¥ : K — K strongly preserves U, then ¥ is
bijective on K.

Proof. Since S is antinegative and in each semimodule, each element of K is
uniquely representable as an algebraic sum of base elements, ¥ is bijective
on all of K. ]

The following lemma appeared in 8] for the case that K = My »(B).

Lemma 8 Let S be any commutative, antinegative semiring without zero
divisors and let K be a semimodule. Let T : K — K be a bijective linear
operator.
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1. If K = Mpmna(S) and T maps pairs of collinear cells to pairs of
collinear cells, then T is a (P, Q)-operator.

2. IfK = M,(,o) (S) and T maps pairs of collinear cells to pairs of collinear
cells, then T is a (P, Pt)-operator.

3. If K = 8,(S) and T maps pairs of base elements dominated by a
double star to pairs of base elements dominated by a double star, then
T is a (P, P*)-operator.

4. IfK = s (S) and T maps pairs of digons dominated by a double star
to pairs of digons dominated by o double star, then T is a (P, P')-
operator.

Proof. Since in each case, cells are mapped to cells, so by linearlty, the
image of a weighted cell is that same weighting on the cell that is the image
of the unweighted cell. Thus, the arguments for arbitrary semirings are
exactly the same as for the Boolean case. The proof of (1) is that found in
(8, Lemma 3.4] by noting that a “2-claw” used in [8] is a pair of collinear
cells in this article. The proof of (2) follows from (1) by the fact that a
(P, Q)-operator maps nondiagonal cells to nondiagonal cells requires that
Q = P*. We will give a proof of (3). The proof of (4) is parallel.

Any sum of a pair of base elements dominated by a double star is either
of the form E; ;+ D; ; or D; j + D; . for some i, j, k. If T maps pairs of base
elements dominated by a double star to pairs of base elements dominated
by a double star, the T maps double stars to double stars. Now, if T
maps the double star dominating E;; to the double star dominating Ej ;,
define 0 : {1,2,...,n} ={1,2,...,n} by 6(i) = j. For T(E:;) = Ex s and
T'(Ej,; = Ep1, we must have (i) = k and o(j) = I so that T(E; ;) = Ex,.
Then, since T is bijective, o is a permutation. Let P be the permutation
matrix corresponding to ¢~! and we must have that T(Ei;) = Exy =
EsG)0(jy = PE;;Pt. Since T is linear we have T(X) = PXP! for any
Xek. u

The above lemma makes characterizations of strong preservers of some
ideals easy.
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3 Applications

In this section, we only consider the Boolean case, specifically we let S =
B. The reasoning behind this is that the applications we consider do not
depend upon the nature of nonzero entries in a matrix, only on the fact that
they are zero or nonzero. For example, an irreducible matrix is irreducible
even when any nonzero entry is replace by any other nonzero member of S.
A basic reference for the topics in this section is Brualdi and Ryser, [11].

3.1 Strong Preservers of sets of Tournament Matrices

A tournament on n vertices is a directed graph which is an orientation of
the complete simple loopless undirected graph. That is a tournament is a
loopless digraph in which any two distinct vertices are connected by exactly
one arc. See Moon, {19], for more details on tournaments.

Let 7,, denote the set of all tournament digraphs on n vertices. Let A(T)
be the adjacency matrix of the tournament T'. Then, A(T) is a (0, 1)-matrix
such that A(T) + A(T)t + I = J, where I denotes the identity matrix, J
the matrix of all ones and the arithmetic is real. Now, M is a tournament
matrix if M has a zero diagonal and m; ; # 0 if and only if m;; = 0. So a
tournament matrix is the adjacency matrix of a tournament digraph.

The outdegree of a vertex in a directed graph is the number of arcs
originating at that vertex. The outdegree sequence is an n-vector such that
the it* component is the outdegree of the i** vertex. Given a tournament
M, the score sequence, s = (s1,82,...,n), of T is the outdegree sequence
of a tournament T’ equivalent to T (that is, whose only difference from T
is a relabeling of the vertices) such that the outdegree sequence of T is s
and sy > s3>+ 2 Sp.

Let T be the set of all tournaments in 7;, whose score sequence is s.

A tournament is regular if each vertex has outdegree equal to the in-
degree. A regular tournament matrix is one in which each row sum and
each column sum are equal. Necessarily, the row sum, column sum, inde-
gree and out degree mentioned must be "T“, and it follows that n must
be odd. In the case n is even we say that a tournament is nearly regular
if every vertex has indegree and out degree differing by one. So a nearly
regular tournament matrix is a matrix where each row sum differs from its
column sum by one. Necessarily, in a nearly regular tournament there are
2 vertices with out degree 3 and 3 vertices with outdegree -";—2 Simi-
larly, a nearly regular tournament matrix has § rows with row sum 2 and

2 rows with row sum 222 (The same statements hold for indegrees and
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column sums.) That is the set of regular tournaments is 7reg = 75 Where
s = (271, a=l ., 221) and the set of all nearly regular tournaments is
Tareg = Ts where s = (3,%,...,3,252, 252 . 2=2) (2 of the compo-

nents are 3 and % are %32).

Let Us; = Uz, for any score sequence s, that is U is the set of matrices
not dominated by a tournament with score sequence s.

Lemma 9 Let ¥ : MO (B) —» M,(,O)(IB). If ¥ strongly preserves Ty then
V¥ is bijective on MS,O)(IB).

Proof. By Lemma 5 VU strongly preserves U;. By Corollary 7.1, we only
need show that U; separates base elements (off diagonal cells).

Suppose that E and F are off diagonal cells. Then there is some element,
say C, of 75 that dominates F' but not E. Then, C + E is not even a
tournament and is not dominated by any tournament, thus, C + E € U,.
But, C+ F =C € T; and hence, C + F ¢ U,, so C separates F from F.
Thus U, separates cells. ]

Let Uz denote the set of all matrices that are not dominated by a
regular tournament. Let Unreg denote the set of all matrices that are not
dominated by a nearly regular tournament. That is, Ureg = Ur,,, and

Unreg = Ur,,.,- By Lemma 9, if ¥ : MS,O)(IB) — M) (B) strongly preserves
Ureg Oor Unreg, T is bijective. In [1, Theorem 3.6], Beasley, Brown and
Guterman show that if n > 3 and ¥ is a surjective operator that preserves
regular tournaments if n is odd, or nearly regular tournaments if  is even,

then T is a (P, P*)-operator.

Theorem 10 Let ¥ : M,(lo)(IB) - MQ (B) be a linear operator. Then ¥
strongly preserves reqular tournaments if n is odd or nearly regular tourna-
ments if n is even if and only if ¥ is a (P, Pt)-operator.

Proof. By Lemma 9, ¥ is bijective. By (1, Theorem 3.6], ¥ a (P, Pt)-
operator.

Suppose that T is a (P, P*) operator. Then, T, considered as a mapping
on the set of directed graphs, is a vertex permutation. Thus, tournaments
are mapped to tournaments and the row sums (score sequence) is just the
permuted row sums of the preimage. [ ]



It is believed by the author that any operator that strongly preserves
7T, for any degree sequence is a (P, P*)-operator. The approach would be to
show that collinear cells are mapped to collinear cells. This would require
a case by case investigation.

3.2 Strong Preservers of sets of Primitive Matrices

Let A € M, (B). Then, A is primitive if some power of A has all nonzero
entries. The ezponent of a primitive matrix is the smallest power that
gives a, strictly nonnegative matrix, so if A* has all nonzero entries and A
has a zero entry for every I < k, then the exponent of A is k, exp(A) = k.
For notational convenience, we say that the exponent of a non-primitive
matrix is zero. Let & = {A € M, (B)lexp(A4) = k}. So & is the set of
non-primitive matrices, and further, & = {J}.

In [6] strong preservers of the set of all primitive matrices were character-
ized, in [9], the preservers of the index of imprimitivity were characterized,
and in [4], the strong preservers of &2, En2_2n41 and &,2.2,42 Were char-
acterized. We now extend those results, investigating the strong preservers
of & for any k such that &, # 0.

Example 11 Consider the matriz

011 . 101
111110
111110
111110
111 - 111
111 .- 110,

Note that the exponent of = is 3, and, if any zero is changed to a I the
resulting matriz has exponent 2. Let U be the set of all matrices in M, (B)
which are not dominated by any element of £3, U = Ug,. Then, = € &
and hence not in U, and given any two base elements, E and F, of My (B),
there is some permutation, P, such that P(E)P* + F = P(E)P* € &3 and
hence not in U and P(E)P+ E 3 P(E)P* and hence, has exponent 2, and
is not dominated by any member of £3. That is P(E)P*+ E € U. ThusU
separates base elements of My (B)
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Example 12 Consider the matriz

(01 1 -~ 110 1
01 1 .. 00
=01 1 1100
01 1 1100
11 1 1110
11 1 1111
(001 1 -~ 100 0|

Note that the exponent of U is 4, and, if any zero is changed to a 1 the
resulting matriz has exponent 2 or 3. Let U be the set of all matrices in
Mn(B) which are not dominated by any element of &, U = Ug,. Then,
VU € & and hence not in U, and given any two base elements, E and F, of
Mn(B), there is some permutation, P, such that P(¥)P' + F = P(U)P' €
&4 and hence not inU and P(¥)P*+E 1 P(V)P* and hence, has exponent
2 or 3, and is not dominated by any member of £4. That is P(V)P*+E c U.
Thus U separates base elements of M, (B)

Lemma 13 Let3 <k <2n—2 andletUd C My (B) be the upper ideal of all
matrices which are not dominated by any element of £;. Then U separates
base elements of M, (B)

Proof. By the above examples we may assume that k > 5. Let E and F be
two base elements of M, (B) (cells).

Case 1. E and F are both diagonal cells.

Suppose that n < k < 2n—2,s0 k = 2n—1—d. Let A be chosen so that
A is primitive, has d nonzero diagonal entries and A J F while A 2 E.
Then, A + E has exponent at most 2n — 1 — (d+1) < k, and any matrix
that dominates A + E also has exponent at most k — 1. Thus, A+ Eel.
Since A+ F=Ae€ &, A+F¢U.

Now suppose that 5 < k < n — 1 and suppose that £ = E, . and



F=F,,. If kiseven, k =21, let

[0 1 0 01 1
0 01 00 0
a_|0 00 10 -0
“ 11 00 0 0 - 0
1 00 0 0 - 0
R R
Ifkisodd, k=2l -1, let
F0 1 0 o1 . 17
001 00 . 0
1 0 0 10 0
A= 100 - 00 0
100 00 0
100 - 00 -+ 1]

In each case, in the digraph of A, there are n — ! digons and an l-cycle
meeting at vertex 1, a loop at vertex n and when k is odd, the arc (1 —1,1).

Now, A + E = A € &, whereas the exponent of A+ F is k — 1, and
hence A+ E € U while A+ F ¢ U. So, U separates F from E.

Case 2. F is a diagonal cell and E is not. As in case 1, we can find a
primitive matrix with exponent k& which dominates E but not F' and the
exponent of A + F is strictly less than k, so that U separates E from F.

Case 3. F and F are off diagonal cells. Then, there is some element of
&k, say N, with maximal number of nonzero entries that dominates F but
not E. Then, since N € &, and N+ F=N, N+ F ¢U. Since N+ E
has more nonzero entries that N, no member of £ dominates N + E and
hence N + E € U, we have that N separates E from F. |

Lemma 14 Let k > 2n — 2 and let U C MO (B) be the upper ideal of all
matrices which are not dominated by any element of Ex. Then U separates

base elements of MS,O)(]B)
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Proof. The proof is parallel to the proof of Lemma 13 noting that two diag-
onal cells cannot be separated and, thus, the condition that K = M (B)
is necessary. [ ]

Lemma 15 Let 3 < k < 2n—2 be a positive integer such that £ # 0, and
U : My (B) = Mn(B) be a linear operator. If U strongly preserves & then
U is bijective on M,(B).

Proof. Let U be the upper ideal of all matrices which are not dominated
by any element of £;. Then, by Lemma 13, U separates base elements, and
by Corollary 7.1, ¥ is bijective on M, (B). [ |

Lemma 16 Let VU : Mﬁ.o)(]B) - MS,O)(IB) be a linear operator. Let k >
2n — 2 be a positive integer such that & # 0. If U strongly preserves &

then U is bijective on Mg;o)(IB).

Proof. Let U be the upper ideal of all matrices which are not dominated
by any element of £x. Then, by Lemma 14, U separates base elements, and
by Corollary 7.1, ¥ is bijective on MS?)(IB). u

A matrix, A € M,,(B) is reducible if there exists a permutation matrix

such that PAP! = [ ﬁ; fl)s ] where A; and Aj; are nonvacuous square

matrices, otherwise, A is irreducible. An easy observation is that all prim-
itive matrices are irreducible. An irreducible matrix is nearly reducible if
changing any nonzero entry in the matrix to a zero results in a reducible
matrix.

Let NRP,, denote the set of all nxn nearly reducible, primitive matrices
in M,(B). Several authors have studied this set [10, 21]. Some easily
established facts are: (See (21, Lemma 2.1})

a) if A € NRP,, then all diagonal entries of A are zero;

b) no cycle in the digraph of A has a chord;

¢) if n < 3 then NRP, = 0.

Recall that |A| denotes the number of nonzero entries in A. We use the
term digon to denote a sum of two symmetric off diagonal cells (E; ; +E; ;).



Further, a mapping of the form X — PXP! where P is apermutation
matrix is called a permutational similarity.

Proposition 17 Let E, F,G be off diagonal cells in Mp(B) and n 2 4.
Then, there exists A € NRP,, such that |A|=n+1and AJE+F+Gif
and only if E, F, and G are non collinear, and if n is odd, E+ F +G does
not dominate a digon.

Proof. Suppose that A € NRP,, and |A| = n+ 1. If A has three collinear
cells, then some row or column of A has only zero entries, and hence is
reducible, a contradiction. Thus E, F, and G are non collinear. Suppose
that A dominates a digon and n is odd. Then, since A consists of the sum
of two cycles and no cycle has a chord, A is the sum of a digon (2-cycle)
and an (n — 1)-cycle. But since n is odd, the greatest common divisor of 2
and n — 1 is 2, not 1, and hence A is not primitive, a contradiction.

Now, suppose that E, F, and G are non collinear, and if n is odd, E +
F + G does not dominate a digon. Up to permutational similarity and/or
transpose, there are nine possibilities for a choice of three off diagonal cells:

E\1 2, Ev 3, Ey 4; (Collinear)

E, 2, E3,1, Ey 3; (Dominates a digon)
E1 2, E31, E3,4; (Dominates a digon)
E\ 2, E32,E34;

E 2, E32, By 3;

Ey 2, Es2, Eys;

E 2, E23, E34;

Ey 2, E23, Ey5;

- B2, E3,4, Es6.

© o N e e W N

If n is even, case 1 does not apply. In n is odd cases 1-3 do not apply.
In all other cases a choice of n — 2 cells can be made so that E+ F + G
plus the sum of those n — 2 cells is nearly reducible and primitive. As the
demonstration of this is routine and can be easily shown using digraphs,
the proof is left to the reader. [ ]
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Lemma 18 Let n > 4 and U C MO (B) be the upper ideal of all matrices
which are not dominated by any element of NRP,,. Then U separates base

elements of MY (B)

Proof. The proof is parallel to the proof of Lemma 13 noting that two
diagonal cells cannot be separated and thus the condition that K = MY (B)
is necessary. [ |

Lemma 19 Let ¥ : MY (B) — M,(lo)(IB) be a linear operator, and n > 4.
If ¥ strongly preserves NRP,, then VU is bijective on M,(,o)(IB).

Proof. Let U be the upper ideal of all matrices which are not dominated
by any element of NRP,,. Then, by Lemma 18, I separates base elements,
and by Corollary 7.1, ¥ is bijective on MS;O)(]B). [ ]

In [4] the strong preservers of the sets of primitive matrices of exponent
k were characterized for certain values of k. These characterizations require
the definition of a transformation from the set of diagonal matrices to the
set of all matrices. Let A, denote the subset of M,,(S) consisting of the
diagonal matrices. A diagonal transformation is a linear mapping R : A,, —
M (S). Further, if X is a subset of K, let X° denote the complement of
the set X in K. Let Dg, donate the set of all matrices dominated by some
element of &.

Theorem 20 (4] Letn > 3.

® Let T : Mp(B) — M,(B) be a linear operator. Then T strongly
preserves & if and only if T is a (P, Pt)-operator.

o Let T : Mn,(B) - M,(B) be a linear operator. Then T strongly
preserves Eq2_ony) 0T Epa_onyy when n > 5 if and only if T is the
sum of a (P, P*)-operator on MY (B) plus a diagonal transformation
which is nonsingular and maps nonzero matrices to matrices in Dsg, .
That is, T(X) = P(X o (J\I))P*+ R(X o I) for all X € M,(B), or
T(X) = P(Xo(J\I))!P* + R(X o) for all X € M,(B), where R is
any diagonal transformation on M, (B) such that R((X o I)\ {O}) €
Dg, .

We now consider other specific exponents, and characterize the linear
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operators that strongly preserve the set of primitive matrices with that
exponent.

Theorem 21 Letn > 4 and T : M,(B) - M, (B) be a linear operator.
Then T strongly preserves Eyn_2 if and only if T is a sum of a (P, PY)-
operator on Mgo)(IB) and any bijection on A,

Proof. By Lemma 15 T is bijective. If A € £3,—2 and A has precisely
n + 1 nonzero entries, then A is the sum of a diagonal cell and a full cycle
permutation matrix. Now, suppose that the image of an off diagonal cell is
a diagonal cell, say, without loss of generality, that T(Ey2) = E1,1. Let S
be the set of all matrices in M,,(B) which is the sum of a diagonal cell and
a matrix C such that E; 5 + C is a full cycle permutation matrix. Then,
|S| =n-(n—2)!. Let 7 denote the set of all matrices of the form Ey,; + G
where G is a full cycle permutation matrix. Then |7| = (n — 1)l. The
image of each member of S is in 7, but since T is bijective we must have
that |S| < |T| or n(n — 2)! < (n —1)!, a contradiction. Thus T' maps off
diagonal cells to off diagonal cells and diagonal cells to diagonal cells.

By Lemma 8(2) if T maps pairs of off diagonal collinear cells to off diag-

onal collinear cells then T is a (P, Pt)-operator on MDD (B). Suppose that
T does not map some pair of off diagonal collinear cells (E, F), to off diag-
onal collinear cells, then without loss of generality, by applying a (P, P?)-
operator, we may assume that (E, F) is (£1,2, E1,3). Further, the possible
choices for (T'(E), T(F)) are (E1,2, E2,3), (E1,2, E3,4), or (E1,2, E21). In the
first two cases there is a full cycle matrix dominating the image of E + F
and hence the inverse image of that cycle plus a diagonal cell must be in
Esn—2, a contradiction since no element of &,,_» with n + 1 nonzero entries
dominates both a diagonal cell and two collinear off diagonal cells. Thus,
T(E12) = E12 and T(E13) = E;y. Let T(Ey4) = E. . Then, either
Ey 2+ E,, or Eo 1 + E, , is dominated by a full cycle, and hence as above,
we arrive at a contradiction. Thus T maps pairs of off diagonal collinear
cells to off diagonal collinear cells, and hence, T is a (P, Pt)-operator on
MO (B). That is T is a sum of a (P, P*)-operator on Ms,o)(B) and, since
T is bijective, any bijection on A,.

For the converse, note that primitive matrices of exponent 2n — 2 are of
two types. The first type has a sero main diagonal. The second type has a
nonzero diagonal and each consists of a full cycle matrix with exactly one
nonzero entry on the main diagonal. For the first type, a bijection on A,
does not change the marix and a (P, P*)-operator on M (B) preserves
primitive matrixces and their exponent. For matrices of the second type, a
(P, Pt)-operator on MQ (B) maps a full cycle matrix to a full cycle matrix
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and any bijection on A, maps a diagonal with exactly one nonzero entry
to a diagonal with exactly one nonzero entry. Thus, a (P, P*)-operator on
MS,O)(IB) plus any bijection on A, preserves primitive matrices of exponent
2n—2. ]

Based on the above, we make the following conjecture:

Conjecture 22 Forn and k at least 3, if T : Mp(B) = M, (B) is a linear
operator that strongly preserves £, and €, # @, then eitherk < 2n—2 and T
is a (P, P*)-operator on M) (B) plus a bijection on A, ork > 2n—2 and T

is the sum of a (P, P)-operator on M (B) plus a diagonal transformation,
R: A, = Mn(B) such that R(Apn \ O) C (Dg,)° .

We return now to considering nearly reducible primitive matrices. Let
K=J\I

Theorem 23 Let n > 4. Then, T : M,(B) = M, (B) strongly preserves
NRPy, if and only if T is a sum of a (P, P*)-operator on M (B) and a
nonsingular diagonal transformation that maps nonzero diagonal matrices
to matrices in (Daxrp,)¢. That is, there exists a permutation matriz P such
that T(X) = P*(X oK)+ R(X oI) where R is any diagonal transformation
on Mn(B) such that X oI = O or R(X o I) € (Dnrp, ).

Proof. Suppose T : Mp(B) — M,(B) strongly preserves NRP,. Then
T is the sum of two transformations, T = T, + T} where T, = T(X o K)
and T3 (X) = T(X o). Since any matrix in N'RP,, has all diagonal entries
zero, and T strongly preserves N'RP,, we have that T, maps Mf;o)(lB) to
M%o)(IB), is bijective by Lemma 19, and strongly preserves NRP,. By
Lemma 8(2) we only need show that T' maps off diagonal collinear cells to
off diagonal collinear cells in order to show that T, is a (P, P%)-operator.

If n is even, then the sum of any three non collinear cells together with
a proper choice of n — 2 other cells is in RP,, while no matrix with three
collinear cells is dominated by an element of NRP,,. Thus, every strong
preserver of NRP,, maps collinear cells to collinear cells.

If n is odd and T, maps three collinear cells to non collinear cells, then
if the image of the sum of these three cells does not dominate a digon the
image of some matrix not in NRP,, is in N RP,, a contradiction. Suppose
that T, maps three collinear cells to three cells which dominate a digon.
Then there are two cells whose image is a digon. These two collinear cells
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can be added to n — 1 off diagonal cells to give an element of N RPy, but
their image dominates a digon and hence, by Proposition 17, cannot be in
NRP,,, a contradiction.

Thus, whether n is even or odd, T, maps off diagonal collinear cells to
off diagonal collinear cells, and hence, is a (P, P*)-operator.

Now, if X oI # O then X is not nearly reducible, and any matrix
that dominates X cannot be in NRP,. Thus, T(X) is not dominated by
any member of N RP,,. It follows that T1(X o I) is not dominated by any
member of NRP,, unless X oI = 0.

Thus T(X) = To(X o K) + Ty(X o I) is a sum of a (P, P*)-operator
on MS,O)(]B) and a nonsingular diagonal transformation that maps nonzero
diagonal matrices to matrices in (Dyrp,,)°. |

4 Strong preservers of sets of primitive ma-
trices in M,,(S)

The fact that the primitivity of a matrix and its exponent do not depend
on the nature of the nonzero entries, only on the fact that they are nonzero,
gives that any linear operator T : My(S) — M, (S) preserves some prop-
erty of primitive matrices if and only if T : Mn(B) — M, (B) preserves that
property of primitive matrices. Thus we state without proof the following
theorems that will be a summary of the results of this paper on primitive
matrices:

Theorem 24 Let n > 4, S be an antinegative semiring without zero di-
visors, and T : Myn(S) = Mn(S) be a linear operator. Then T strongly
preserves Exn_o if and only if there is a permutation matriz P € Mx(S),
a matriz B € My(S) with all nonzero entries, and a bijective operator
R: A, — A, such that either T(X) = P((X o K)o B)P*+ R({X oI)o B)
for all X € Mn(S) or T(X) = P((X 0o K)o B)*P* + R((X o I) o B) for all
X € My(S)

Theorem 25 Let n > 4, S be an antinegative semiring with no zero di-
visors, and T : Mp(S) = Mn(S) be a linear operator. Then, T strongly
preserves N'RP,, if and only if there is a permutation matriz P € Mn(S),
a matric B € My(S) with all nonzero entries, and a operator R:A,—
M (S) with R(A, \ O) C (NRP,)° such that either T(X) = P((X o K)o
B)P' + R((X oI)o B) for all X € Ma(S) or T(X) = P((X o K)o B)'P*+

73



R((X oI)o B) for all X € M,(S).

References

[1]

[2]

31

[4]

(5]

(6]

[7)

(8]

(9]

[10]

L. B. Beasley, D. E. Brown and A. E. Guterman, Preserving regular
tournaments and term rank-1. Linear Algebra and its Applications,
431(2009), 926-936.

L. B. Beasley, K.-T. Kang, and S.-Z.Song. Linear preservers of term
ranks of matrices over semirings. Linear Algebra and its Applications,
436(2012), 1850-1862.

L. B. Beasley, K.-T. Kang, and S.-Z.Song. Preservers of Term
Ranks of Symmetric Matrices. Linear Algebra and its Applications,
436(2012),1727-1738.

L. Beasley, K.-T. Kang and S.-Z. Song. Linear operators that pre-
serve sets of primitive matrices. Journal of the Korean Mathematical
Society, in press.

L. B. Beasley, K.-T. Kang, S.-Z.Song and N.-S. Sze. Regular Matrices
and Their Strong Preservers over Semirings. Linear Algebra and its
Applications, 429(2008), 209-223,

L. B. Beasley and N. J. Pullman. Linear operators that strongly
preserve primitivity. Linear and Multilinear Algebra, 25(1989), 205
213.

L. B. Beasley and N.J. Pullman. Linear operators strongly preserving
idempotent matrices over semirings. Linear Algebra and its Applica-
tions, 160(1992), 217-229.

L. B. Beasley and N.J. Pullman. Linear operators that strongly pre-
serve upper ideals of matrices. Congressus Numerantium, 88(1992),
229-244,

L. B. Beasley and N. J. Pullman. Linear operators that strongly
preserve the index of imprimitivity. Linear and Multilinear Algebra,
31(1992), 267-283.

R. A. Brualdi and J. A. Ross. On the exponent of aa primitive, nearly
reducible matrix. Mathematics of Operations Research, 5(1980), 229
241.

74



[11] R. A. Brualdi and H. Ryser. Combinatorial Matriz Theory. (Cam-
bridge University Press, New York, 1991).

[12] Y. Chen and X Zhao. On linear operators strongly preserving in-
variants of Boolean matrices. Czechoslovak Mathematical Journal,
62(187)(2012), :169-186.

(13] J. D. Davis. Rigid embedding of simple groups in the general linear
group. Canad. J. Mathl, 29(1977), :384-391.

[14] G. Frébenius. Uber die Darstellung der entlichen Gruppen durch
Linear Substitutionen. §. B. Deutsch. Akad. Wiss. Berlin, (1897),
994-1015.

[15] R. A. Horn and C. R. Johnson. Matriz Analysis. (Cambridge Uni-
versity Press, New York, 1985).

[16] C. K. Li and S. Pierce. Linear preserver problems. American Math-
ematical Monthly, 108(2008), 591-605.

[17] H-H. Li and Y.-J, Tan. Linear operators that strongly preserve
nilpotent matrices over semirings. Northeast Mathematical Journal,
23(2007), 71-86.

(18] S.-H. Lin, B.-S. Tam. Strong linear preservers of symmetric doubly
stochastic or doubly substochastic matrices. Linear Algebra and its
Applications, 379(2004), 179-200.

[19] J. W. Moon. Topics in Tournaments. (Holt, New York, 1968).

[20] S. Pierce and others. A Survey of Linear Preserver Problems. Linear
and Multilinear Algebra, 33(1992), 1-119.

[21] J. A. Ross. On the exponent of a primitive, nearly reducible matrix.
II. SIAM Journal on Algebraic and Discrete Methods, 3(1982), 395-
410.

[22] S.-Z. Song, K.-T. Kang and Y.-B. Jun. Linear preservers of Boolean
nilpotent matrices. Journal of the Korean Mathematical Society,
43(2006), 539-552.

[23] J.-L. Xu, C.-G. Cao and X.-M. Tang. Linear Preservers of Idem-
potence on Triangular Matrix Spaces over any Field. International
Mathematical Forum, 2(2007), 2305-2319.

75



