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Abstract. Irregular-spotty-byte error control codes were devised by
the author in [2] and their properties were further studied in [3] and
[4]. These codes are suitable for semi-conductor memories where an
I/O word is divided into irregular bytes not necessarily of the same
length. The i-spotty-byte errors are defined as t; or fewer bit errors in
an i-byte of length »; where 1 < t; < n; and 1 < i £ s. However, an
important and practical situation is when i-spotty-byte errors caused
by the hit of high energetic particles are confined to i-bytes of the
same size only which are aligned together or in words errors occur
usually in adjacent RAM chips at a particular time. Keeping this
view, in this paper, we propose a new model of i-spotty-byte errors
viz. uniform i-spotty-byte errors and present a new class of codes
viz. uniform i-spotty-byte error control codes which are capable of
correcting all uniform i-spotty-byte errors of i-spotty measure u (or
less). The study made in this paper will be helpful in designing
modified semi-conductor memories consisting of irregular RAM chips
with those of equal length aligned together.
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1. Introduction

The i-spotty-byte error control codes devised by the author [2-4] gen-
eralizes the usual notion of spotty-byte error control codes [1, 5-7]. In i-
spotty-byte error control codes, an I/O word is divided into irregular bytes
not necessarily of the same length in contrast to the spotty-byte error con-
trol codes where an I/O word is divided into regular bytes of the same length
“p”. Also, in i-spotty-byte error control codes, a RAM chip corresponds to
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an i-byte and all RAM chips are physically independent. However, all RAM
chips of the same size are aligned together and constitute a “sector”.

A practical situation is when semi-conductor memories with i-byte
arrangement are exposed to strong electromagnetic waves, radioactive par-
ticles or energetic cosmic particles, then the errors caused due to a single
hit are confined to i-bytes of the same size constituting a “sector”. Consid-
ering this situation, this paper proposes a new model of i-spotty-byte errors
viz. uniform i-spotty-byte errors and present codes for the correction of the
same followed by a decoding algorithm.

2. Definitions and Notations

Let ¢ = p™ be a power of prime number p and F, be the finite field
with g elements. A partition, P, of a positive integer N is defined as

P:N=mi4+ma+---+mg,1<m <mg:--<my g=>1.
and is denoted as
P = [my]lma] - -+ [mg] = [n1] [n]2 - - - [y,
if
my =mp = =my, =n,

mA1+1 EMmMy 42 == mA1+)\2 = nNa,

Mg tdg 4t Aam1+l = Mhy4ag- A 1 +2

I L VE D PRUNED VLR (F2

Then we can write the field Ff;’ as

FY = F'oFMe...9F™
s
- ¢ & =)
i=1 “X;—copies
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Each vector v € FN @( @ F7¢) can be uniquely written as v =
i=1 A.-—copiea
(v1,v2,---,vs) where v; € (F;”' )M for all 1 < j < s and is represented as
( V2, --,v;\j), v €Fg7 for alll1<a <Ay, (1)

or equivalently

'Uj ( ('1:1) (1|2) e (1,11,’) (v(zvl) 0(212)’ , ;2 n’J),
. (Aj,l) (AJ,2) (AJan))
*y ] b J l
where v = (v(" b (a 2L (a "’)) 'vj(-a'b) € F,foralli <a <) and
1<b< n;.

Here vj(1 < j < s) is called the “j** sector of v” consisting of \; i-bytes
viz. v}, 02, ,v;-\ ' each of length n;. Thus the length of the j** sector
v; is Ajn;. The partition P is named as primary partition or irregular-
byte partition. Further, let 1 < T < N be a positive integer such that
P': T = [t1)*[ta)*2 - - - [ts]* be a partition of T where 1 < t; < n; for
alll1 <i<sandalsol <t <ty <--- <t;. Then P is called as
the “secondary partition” or “error partition”. Note that the secondary
partition depends upon the primary partition. The number N is called the
primary number and the number T is called the secondary number.

Clearly,

N =Mny+dong+ -+ Agn,
and

T = Aty + Aatg + - - - + Asts.

We give below few definitions given in [2] with slight modifications.

Definition 2.1 [2]. Let N and T be the primary and secondary numbers
respectively as discussed in the preceeding paragraph corresponding to the
partitions P and P’ resp. given by

P:N = [n}Mpa]* - [na]™,
and
P:T = [Nt [t
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where 1 <t; <n;forall1 <i<s.

L]
Let v = (vy,v2,- -, vs) be a vector in Fé" = @( @ F;“) as given in
A

t=1 i~-copies
(1). The irregular-spotty-byte weight (or simply i-spotty-byte weight) wéP’P )(v)
corresponding to the primary partition P and secondary partition P’ is

given by

. a zwm‘“ £
w P (v) = Z Z : 2)

g
where ng(v,("‘b)) is the Hamming weight of the a** i-byte in the it*
b=1
sector v; and [z] denotes the smallest integer greater than or equal to .
Definition 2.2 [2]. The irregular-spotty distance (or simply i-spotty dis-
tance) between two vectors u,v € F{]V corresponding to the primary parti-
tion P and secondary partition P’ is given by

- g
A | owa®™ - o)
d(Pspl) , - (-PsP‘) — _— b=1
s (wv)=wy " N(u—v) g Z=: »
- g i
s | 2o
b=1
= , (3
i=1 a=1 t @)

ng

where ZdH (u,(“'b) , v‘g“‘b)) is the Hamming distance between the at" i-bytes
b=1

of the i** sectors u; and v; of u and v respectively. Then i-spotty-byte

distance is a metric function.

Note. We also call the i-spotty weight and i-spotty distance as “t;/n;-
weight” and “t;/n;-distance” respectively. Moreover, we simply denote the
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i-spotty weight wf,P’P’) and i-spotty distance dE,P P by ws and dg respec-

tively when the primary partition P and secondary partition P’ are clear
from the context.

Definition 2.3 [2]. Let T and N be the primary and secondary numbers
corresponding to the primary and secondary partitions P and P’ resp.
where P and P’ are given by

P:N
P:.T

g - o],

[t [t -« [ta]

and1<¢t; <n;foralll1 <i<s.

8
Let VCFY = @( @ Ff,“) be an F, subspace of F} equipped with
i=1 “)\;—copies

the i-spotty-byte metric dg. Then V is called an “irregular-spotty-byte” (or
simply “-spotty-byte”) error control code and is denoted by [N, k,dg; P, P']
where

N = md+nde+--+n5A
length of the code,
k = dimg,(V), and
dp = :1’131613’ dp(.’ﬂ, y)

z#y

3. Uniform i-spotty-byte error control codes

In this section, we define uniform i-spotty-byte errors and then design
codes to control these type of errors. We begin with the definition of vectors
of i-spotty weight or i-spotty measure (i 2> 1) in relation to Definition 2.1.

8
Definition 3.1. Let v = (v1,v2,---,v,) € FY = @( @ Fp). If
i=1 A;—copies
wg(v) = w},P 'P')(v) = pu, where w,(gp P ')(v) is given by (2), then we may say
that i-spotty-weight or i-spotty measure of v is u(p > 1) or equivalently we

say that t;/n;-measure of v is p.

Definition 3.2. A “uniform i-spotty-byte error” of i-spotty measure u is
an error vector of i-spotty measure z in which all the erroneous digits are
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confined to i-bytes of the same sector.

Example 3.3. Let N = 13,7 =9 and
P:=N =13 = [13]2]?]3]%,
P':T =9=[PIPeP,

be the primary and secondary partitions corresponding to N = 13 and
T = 9 respectively. Then

u = (000:00 00:110 011) € F}3

is a uniform i-spotty-byte error of measure 2. But v = (010:01 00:000 000) €
F13 is not a uniform i-spotty-byte error of measure 2.

Note. (i) It is to be noted that b; = ’Vt—’] y1 £ j £ s is the maximum
J
number of ¢; /n;-errors that can occur in any i-byte of th j** sector and \;b;

is the maximum number of t;/n;-errors that can occur in the jt* sector of
length A;n; of a received word.

(ii) Let 6., be the number of (erroneous) i-bytes in the jt* sector (1 < j < s)
having z; number of i-spotty-byte errors where z;=1,2,---b;.

Let

S
1

O1+ 02+ + 6y,

= total number of erroneous i-bytesin the j** sector.
Then the total number of i-byte in the j* sector of a word is expressed as

og; = Uj+90

= Oo+01+02+--+0p,.

Definition 3.4 [5]. Given a monic primitive polynomial g(z) of degree r
over Fg, the 7 x r companion matrix M corresponding to g(z) is defined as
follows:

g(z) = go+ Qz+ 92$2 R + gr_2_7;"-2 + gr_lx'r—l +z",
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00 0 0 -9
10 00 -9
01 0 0 -—g2
M = . . .
00 1 0 —gr—2
00 01 —gr1/,,,
Observations.

(i) Let a be a primitive element of F7, and a root of g(z). Its companion
matrix M has its columns | o | for i = 1to r where | o' |is

the coefficient vector of z*(mod g(z)).

The companion matrix of o is M7 and its column vectors are ex-

pressed as follows:

MJ = a:) aj-{-l e aj-}-r—l

rXr

Let e be the exponent of g(z), that is, y = e is the least positive solution of
z¥ = (mod g(z)). The companion matrix M has the following properties

5):
(a) M is non singular.
(b) M®=Me=1I,.
(c) Mi= M7 if and only if i = j(mod e).

Now, we present the code construction method of uniform i-spotty-byte
error control codes. Using the following definition:
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Definition 3.5. Let y,n; < n2 < --- < nyand t; < t; < --- < t, be
positive integers with 1 < ¢; < n; forall 1 < i < s. Let [ and r be the
positive integers such that

1> m’alx{2pti} and r > m%.lx{yti}.
= 1=
Further, for i = 1 to s, let

(i) Hi=[hj , hia---hi, ), hi, € F, belxn; matrices over F, satisfying
the following two properties:

(a) Every set of 2ut; (or fewer) columns of H! are linearly indepen-
dent over F,.

(b) Every set of u(t; + t;) (or fewer) columns with ut;(or fewer)
columns taken from H/ and ut;(or fewer) columns taken from
H}(1<4,j,,< s) are linearly independent over F,.

(ii) HY = [h{1 hiy---hip)hi; € Foforalll < j < my, ber xny
matrices over Fg such that every set of ut; (or fewer) columns of H/
are linearly independent over F,.

Theorem 3.6. Using the notations as given in Definitions 3.5, let M be an
T X1 companion matriz over Fy. Letm = q"—1. Foreach1 =1 to s, let \;
be the positive integers satisfyingl < A\; <m  for alli. Then the null space
of H=[H,,Hy,---,H,|, where each H;(1 <i < s)isa(l+(2u—1)r)x \in;
submatriz given by

H! H! Hi’ e H‘(
MOHY  MMHP MPHP .. MODRY
H Mngl M2HY Magr . MZ(A.— 1) H‘{I
i = 1 T t
MOH! M@-OHr MAW-DEr MEs-DO-) g (+(2Za=1)7) X Aens

is @ uniform i-spotty-byte error control code V correcting all uniform i-
spotty-byte errors of measure p (or less) and having check but length R =
1+ (2u—1)r and code length N = Ayny+Aing+- - -+ An,. The parameters
of the resulting code will be

[N,N —R,d; P, P'],
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where P: N = [nq]M1[ng]*2 -+ [ng)*e, P : T = [t} M[tg]?2 - -+ [ts]*+ and
d<2u+1.

Proof. It suffices to prove that the code V which is the null space of H
detects all i-spotty-byte errors of measure 2y or less with errors confined
to at most two sectors meaning thereby that the code corrects all uniform
i-spotty-byte errors of measure y or less.

Let e € FY =@( 4)) FZ,"').
A

j=1 “Xj—copies
Then e is of the form

e = (e1-e)

— 0o 1 A1—1 0 1 )\—l 0 1 As—1
= (elaela : :ell 1" *y€9,E0y " 22 17" 1€4,€5,°° ", € )s

where e}’ € Fg? forall1<j<sand 0<u; <A;—1.

Suppose wg(e) < 2u with erroneous i-bytes confined to at most two sectors.
We claim that eHT # 0.

There are two cases to consider:

Case 1. When there is only one erroneous sector, say j%* sector with erro-
neous i-bytes say ej*,e}?, -+, e;.‘" with

[ <

k=1 J

. A’ 1)mels

Then the Hamming weight of the j** sector e; = (€3, €]
less than or equal to 2ut;. Since H} is an !X n; g-ary matrix whose every
set of 2ut; (or fewer) columns are linearly independent over F, therefore,

we must have eHT # 0.
Case 2. When the number of erroneous sectors in e is equal to 2.

Uie
Let e; and ex be the erroneous sectors in e such that eJ ,e e be

e;*" be the erroneous 1-bytes in e,

the erroneous i-bytes in e;; e}, e;?, -

> X [w"tffz”l <2,

w=j,k TN=u1-Uje V1 Vo

where
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and

0<up,ug,y o uj- <A -1,

OS’Ula“'a’Uk- < Alc -1
Then eHT = 0 gives the following relation:
e;}x {H;T (Mux H;I)T (M2u1 HJ(/)T . (M(zp—nu, H:;I)T]

+€;~‘2 [HJ,T (Mu2 H_.;’)T (M2u2 H;’)T . (M(Zu—l)ug H_;')T]

+e}‘jo [H;T(Muj. H;l)T (M2uj- H;’)T . (M(Zy—l)u,—‘ H;I)T] (4)

+e’,:‘ [H,:T (Mul HI'cI)T (M2v1 HIIcI)T . (M(zu—l)u, Hl,c,)T]

+e:'°' l:H,,‘T (Mv"' Hl,cl)T (M(zv,‘. HI,c,)T . (M(Zp,—l)v,‘. HL’)T]
= [Ol Or Op-vvvne Or]’
where O; and O, are the 1 x ! and 1 x r null matrices over F, respectively.

The relation

uj‘ T Uke r
(So)af + (S e)ui =0
p=uy w=v;
leads to
Uje Vi
> =0, amd 3 e-on,
p=uy w=vy

because of property (i) (b) of Matrix H! given in Definition 3.5.

Uje Vg
Multiplying the equation ) _ ef = On, by (H/)T, ) € = On, by (H})T
p=u, w=v;
from right gives
uj.
(Zef)HJ'-'T =0,, and
p=1uy
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The following

Vg
( Z e}f) HI'c'T = Oy.

w=v;

equation from (4) is obtained:

R N A e

s[epE T ey T

+ .. ...................................

+ (e;-‘j. H:;IT)(Mujo )T ...... (e;jo H;IT)(M(Zp—l)an )T]

+lep BT EO M)
+[epBn 0T e BT
PSSO

+ ez“‘ HL’T)(MU". )T ...... (ezk. HgT)(M(2p—l)vk- )T]

[0 O ---0y).

T T Use T T
Let e;' HY ,e;-"H;' yooo, e Hi bedenoted by 7y, Tugy 3 Tuje and e;' Hy ",

T . vy T
el Hy ,---,ep*" HY be denoted by 7,,7y,, - ,7y,. resp. Then (5) can be

rewritten as

Ty, +

ot T + Ty o+ Ty =0

Tuy (M™ )T L o Y (M )T + 1y (MM )T R
47y, (M) = O,

.................................

................................. (6)

Tuy (M(2u—1)u1 )T 4+ Tu,. (M(2u—1)u,-. )T + 7y, (M(2y—1)v1)7’
ot Ty, (M(Z#—l)vk- )T = O,.

Writing the above equation in the matrix form gives

(ruu'","'u_,-.:"'vu"'yrvk.) X
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1 (Mux)T (M(2#—l)u:)T

i (M“-J")T (M(Zu-:l)uj.)T

11 (M")T ... (M@s—Dw)T
i (MU.,‘. )T . : . (M(Zp—.l)vk. )T
= (Or Or Tt Or),
or equivalently
(run"'vru,w;rvn' N ‘,Tvk-) x
1 e 1 1 s 1 T
M@ e Muis M9n ka.
X . . . . .
MOs=Vui . pfee-Dus  ppCu-Dw .. pf@a-Due

=0, O, ---0Oy).

Since the total numbers of erroneous i-bytes in the two erroneous sectors
is j* + k* = p+1 (say) which is less than or equal to 2y, therfore, writing
the above matrix equation for the top p + 1(< 2u) relations, we get

(Tul,"',ruj.,rvl,"',"'uk.)X
T
1 1 1 1
M% . My MY .. M,
X . . . . . .
MPpPur ... MPU; MPUL .. NfPUke

= (Or Or e Or)

The coefficient matrix in the above equation being Vandermonde’s matrix
is non-singular. Therefore, relations (6) have a solution given by r,, =
T Ty STy = =Ty = Or.

This implies that

T Y J T T
UL IS L = eHIT T QI L GV T
S H == H = HY == HY =0,
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which further gives

uy — o¥i* — Ul ==kt =
e =0y, and €' = =¢*" =0y,

as every set of ut; (or fewer) columns of Hj and every set of utx (or fewer)
columns of HY are linearly independent over Fy. A contradiction. Hence
eHT #0. O

Example 3.7. Let ¢ = 2, ny = 4,n0 = 2,t) = 2,6 = L, Ay = 3, =2,
p=1,1=4and r = 3. Further, let

1 000 10
Hi=li=|go 10| » ®=h|l11]| -
0 0 0 1/,., 01/,
1 001 11
H{'=(0101) , H5'=(01) .
0 010/,., 0 0/,

Then

(i) Every set of 4 (or fewer) columns of H] are linearly independent over
Fa;

(ii) Every set of 1 column of Hj is linearly independent over Fy;

(iii) Every set of columns with 2 (or fewer) columns taken from Hj and 1
(or fewer) column taken from Hj are linearly independent over F;

iv) Every set of 2 (or fewer) columns of H{ is linearly independent over
1
Fy;

(v) Every single column of HY is linearly independent over F5.

Let o € F3 be a root of the primitive polynomial g(z) = z*+z+1 € Faz].
Then the null space of H where

y_| H H H 1 H H |

o®HY olH} o?H{ i o®HY o'HY

aiHi/ = [ a‘i a‘i+l a'i+2 ai+3 ] , 0 S i S 2’
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and

CYj él-_-[a] aj+3]y OS]SL’

is a uniform i-spotty-byte error control code that corrects all uniform i-
spotty-byte errors of measure 1 and having check bit length R = 7 and
code length N = 16.

Example 3.8. Let ¢ =2, n; = 4,ny = 3,¢; =t = 1,A\; = 4,)y = 5 and
p =2 Letl=6and r =3. Let « € F} be a primitive element defined by
g(z) =23 +z+1 € Fy[z]. The 3 x 3 companion matrix for g(z) is given as

001
M=[a o &®]=[1 01 ,
0103x3
Let ] )
(1000 [0 0 0
0100 000
,_ |00 10 |0 01
Hi=190 01 v Ha=14 9 ’
0000 101
(000 0], [ 001 1],
1 001
H' = |01 01 =[1 a & o®],
001 0}j,,
100
HY = I3=|0 1 0 .
00 1],,
Then

(i) All the 4 columns of H] are linearly independent over Fs;
(ii) All the 3 columns of H} are linearly independent over F;

(iii) Every set of columns such that 2 (or fewer) columns taken from Hj

and 2 (or fewer) column taken from H} is linearly independent over
Fo;
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(iv) Every set of 2 (or fewer) columns of H/(i = 1,2} is linearly indepen-
dent over Fa.
Then the null space of H where

Hy HY HY H Hy HY HY HY Hy
" MO}  MYHY M2HY  M3HY MOuy  MVHy M2my  M3Hy  MAHY
MOHY  M2u)  MAHY MSHY © MO HY M3HY Miny  MOHY  MBHY
MOuY  M3H)!  MSHY MPHY MOuy M3HY MSHy MOHY MY

is a uniform i-spotty-byte error correcting code that corrects all uniform i-
spotty-byte errors of measure 2 (or less) and having check bit length R = 15
and code length N = 31.

4. Decoding of uniform i-spotty-byte error correcting
codes

Let V be a uniform i-spotty-byte error correcting code that corrects
all uniform i-spotty-byte errors of measure u or less.Let c,v and e be a
codeword of V, a received word and an error vector respectively. The
syndrome S is calculated as

S = [So Si Sz Squ-i]
= 'vHT=(c+e)HT=eHT,

where Sp € Ff, is an I-bit g-ary row vector and Sp € F3,1 <p < 2u—1is
an r-bit g-ary row vector. If x4 or fewer uniform i-spotty-byte errors occur
in the j'* sector e; with erroneous i-bytes €}, €}?, -+, ;" (j* < p) such
that

wp(ef) +wp(ef?) + -+ + wp(e;”") < py
then the syndrome S is given by:
F Sy T
S1

Sop—1

| ]
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[ e H! +eH +.. +e" HI"
(eulH" )(M"‘)T ( qur/T)(Muz)T
+( H" )(Muj. )T

(em HIIT)(M(2p—l)u1)T ( u-.-H/lT)(M(zp—l)ug )T e
.y (e"J HIIT)(M(2p—1)u, )

Let

f gt g ...y N
ej=¢€ +te '+ -te;

Then the relation
UJ' -

So= D efH] =ejH]
p=uy
can determine the sector number j and sum of erroneous i-byte e; uniquely
because of the fact that the matrices H/(1 < i < s) satisfy the conditions
(1)(a) and (i)(b) of Definition 3.5. Now multiply e} by n; x r g-ary matrix
Hj " from right gives

»zynT r
e;H € Fy.

T T Use T
uy " U2 174 ¢ " 3
Let us denote €; Hj ,€5 Hj SRR > Hj by Tuys*,Tu;. TESpectively
where Ty, , Ty, -+, Ty, € Fp.

Let a be a root of g(z) which defines the companion matrix M. The
operation 7,(M?)T, (u; < p < u;-) is equivalent to the product of T, and
af over F7. We write the new syndromes S’ as given below:

S =

SZp—l
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[ Tuy + Tug + - +7%°
Tu, @Y1 + Ty 02 - 1y 0
Tug a1 4 Tug a2 ... 4 Tuje aus®

- f . (7)

| Tu, a(zy—l)ul + ruza(zl‘_l)uz + -4 Tujo a(2ﬂ_1)u1" i

The syndrome S’ given in (7) is identical to that of RS code with minimum
Hamming distance (24 + 1) over F. The error patters over Fy and error
locations are determined by using the existing decoding algorithms of RS
codes such as Berlekemp-Massey algorithm.

In the final step of decoding, the error patterns é&; € Fy’ where p =
uy,ug, - -, uj- are transformed from the corresponding 7-bit error patterns
rp € F according to one-to-one mapping from r, to é;? for p = ug, ug, -, Uje.
This mapping is implemented by the table as discussed in [1, 5]. Here, at
most, one of the é;.’ may be miscorrected, that is, é;.’ # e;.’ . The following
relation proven in [1, 5] determines whether or not & = e’; . That is, if &
satisfies the relation (8), then éf = ef, otherwise not.

wp(&; + €7) < pu — wp(éf). (8)

Summarizing the above discussion, the decoding is performed according to
the following algorithm:

Step 1. The erroneous sector number j and the sum of erroneous i-bytes e

is obtained by the relation Sp = e H. ;T which is satisfied only for a unique

J(1<j<s).

Step 2. The first element Sp in S is transformed to S; € Fy by the opera-
: ¢ _ gt

tion 5y = ejHi" .

Step 3. Error locations uj,us, - -+, u;j- and error patterns ry,, Tug, " *» Tuj.

are determined from the syndrome S’ by the decoding algorithm of the RS

code over F7.

Step 4. The error pattern & is obtained from r,(u; < p < u;-) according
to the mapping table discussed in [1, 5].
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Step 5. The error patterns é‘;’ , P = U1,u,- -+, u;-, obtained in the previous
step are checked whether or not they satisfy the relation (8). If satisfied,

2P _ P
then & =¢j.

Step 6. If €7, for some o, does not satisfy the relation (8) or cannot be
transformed from r, in the mapping table, the error pattern e] is recovered
from the other error patterns obtained in Step 5 as follows:

Uuje
o __ :‘:_}: P
ej—eJ 63.

r=uj
p#Eo

5. Conclusion.

In this paper, we have presented a new class of i-spotty-byte-codes
viz. Uniform i-spotty-byte error control codes and discussed their design
method and decoding algorithm.
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