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Abstract

Let G = (V,E) be a graph. The open neighborhood of a vertex
v € V is the set N(v) = {u|luv € V} and the closed neighborhood of
v is the set N[v] = N(v) U {v}. The open neighborhood of set S of
vertices is the set N(S) = |J, s N(v), while the closed neighborhood
of a set S is the set N[S] = J,¢s N([v]. A set S C V dominates a set
T CcVifT C N[S], written S = T. Aset S CV is a dominating set
if N[S] = V; and is a minimal dominating set if it is a dominating
set, but no proper subset of S is also a dominating set; and is a y-set
if it is a dominating set of minimum cardinality. In this paper we
consider the family D of all dominating sets of a graph G, the family
MD of all minimal dominating sets of a graph G, and the family ~y
of all 4-sets of a graph G. The study of these three families of sets
provides new characterizations of the distance-2 domination number,
the upper domination number and the upper irredundance number in
graphs.
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1 Introduction

Let G = (V,E) be a graph. The open neighborhood of a vertex v € V
is the set N(v) = {uuv € V} and the closed neighborhood of v is the
set N[u] = N(v) U {v}. The open neighborhood of set S of vertices is
the set N(S) = UJ,cs N(v), while the closed neighborhood of a set S is
the set N[S] = J,cs N[v]. A set S C V is a dominating set if N[S] =
V. The minimum cardinality of a dominating set in a graph G is called
the domination number of G, and is denoted ¥(G). A dominating set of
cardinality v(G) is called a v-set of G.

A dominating set S is minimal if no proper subset $’ C S is also a
dominating set. A dominating set is 1-minimal if for every vertex u € S,
the set S—{u} is not a dominating set. The property of being a dominating
set is super-hereditary in the sense that every superset of a dominating set is
also a dominating set. Because of this, it can be shown [2] that a dominating
set is minimal if and only if it is 1-minimal.

An equivalent definition of a dominating set is a set S having the property
that every vertex v € V — S is adjacent to, or within distance-1 of, some
vertex u € S. A set S is, therefore, a distance-2 dominating set if every
vertex v € V — § is within distance-2 of some vertex u € S. The minimum
cardinality of a distance-2 dominating set in a graph G is denoted 7<2(G).
For a thorough discussion of distance domination in graphs the reader is
refereed to the chapter on this subject written by Henning in [4].

A set S C V is said to be irredundant if for every vertex u € S, N [u] —
N[S—{u}] #0. If pn[u, S] = N{u] - N[S—{u}] # 0 for a vertex « € S then
we say that u has a private neighbor with respect to S, and every vertex in
pnlu, 8] is said to be a private neighbor of u. The condition that for every
vertex u € S, N[u] — N[S — {u}] # 0 is equivalent to the condition that for
every vertex u € S, (N[u] N V) — (N[S — {u}] N V) # 0. Thus, one could
say that every irredundant set S C V is irredundant with respect to V. Let
IR(G) denote the maximum cardinality of an irredundant set in a graph

A set S C V is independent if no two vertices in S are adjacent. Notice
that according to the definition of an irredundant set, every independent
set is irredundant since u € pn[u,S] # @, for every vertex u € S, that is,
every vertex in S is its own private neighbor.

In this paper we consider the family D of all dominating sets of a graph
G, the subfamily MD C D consisting of all minimal dominating sets of a
graph G, and the subfamily ¥ C MD consisting of all y-sets of a graph G.
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The study of these three families of sets provides new characterizations of
distance-2 domination and irredundance in graphs.

2 Dominators of Sets of Vertices

A set S C V dominates a set T C V if T C N[S], written S — T. In this
case we also say that S is a dominator of T. The domination number of a
set T, denoted ¥(T'), equals the minimum cardinality of a dominator S of T'.
The following results provide some insights into the nature of dominators
in graphs.

Proposition 1 Every set S is a dominator of itself, that is, S — S, al-
though S might not be a minimal dominator of itself.

Proposition 2 A set S is a minimal dominator of itself if and only if S
is an independent set.

Proposition 3 Every set S C V in a graph G has a minimal dominator
S’ such that 8’ C S.

Proposition 4 Every set S C V in a graph G has a minimal independent
dominator S’ such that S' C S.

Proposition 5 IfS’ — S and S’ is a minimal dominator of S, then |S'| <
|S].

From these propositions we are led to ask: when does a set S have a
disjoint dominator S’, that is S’ — S and S'NS =§?

A partial answer to this question is given by Ore’s classical theorem (7).

Theorem 1 [Ore] The complement V — S of @ minimal dominating set S
of a graph G without isolated vertices is a dominating set.

Thus, every minimal dominating set S in a graph without isolated vertices
has a disjoint dominator. But the complete answer to this question is given
by the following. Given a set S C V, an enclave is a vertex v € S such that
Nu] C S; thus a vertex u € S is an enclave if every neighbor of u is also a
vertex in S. Notice that if a vertex « € S is an isolated vertex in G, then
u is an enclave in S.



Proposition 6 A set S C V has a disjoint dominator if and only if S does
not contain an enclave.

Proposition 7 If a set S C V has a disjoint dominator, then it has a
minimal disjoint dominator.

We say that a set S C V is irredundant with respect to a set T if for every
vertex u € S, (N[u|NT) — (N[S — {u} NT) # @. In this case we say that
every vertex u € S has a private neighbor with respect to T.

Proposition 8 If S is a minimal dominating set of a set T, then S is
irredundant with respect to T' and irredundant with respect to V.

Proof. Assume that S is a minimal dominating set of a set T in a graph
G = (V,E). If S minimally dominates T then for every vertex u € S,
S — {u} does not dominate 7.

Case 1. If SN T # @ then this can happen in three ways:
(i) v € S — T and has a private neighbor in T.
(i) u € SNT and is isolated in S and in T, and is therefore its own
private neighbor with respect to T,
(iii) v € SN T, is not isolated in T and has a private neighbor in T
other than itself.

Case 2. If SNT = @, then S minimally dominates T if and only if every
vertex u € S has a private neighbor in T', that is, it dominates a vertex in
T that no other vertex in S dominates. O

3 Edge Covers

An edge cover of a set S C V in a graph G = (V,E) isaset M C E of
edges such that every vertex in S is contained in an edge in M. The edge
cover number of a set S (or of a graph G) denoted a(S) (or ;(G)) is the
minimum cardinality of an edge cover of S (or of V). Define the following
three parameters:

a1p(G) = min{oy (D), D € D}.
a1mp(G) = min{a;(D), D € MD}.
a14(G) = min{oy(D), D € v}.
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A set S C V is called a paired dominating set if S is a dominating set
and the subgraph G(S] induced by S has a perfect matching, that is, a
set M of independent edges (no two edges have a vertex in common) and
V(M) = S, that is the set of vertices contained in an edge in M is precisely
S. The paired domination number, denoted v,-(G), equals the minimum
cardinality of a paired dominating set in G.

We say that an edge e = uv ev-dominates a vertez z € V if either z = u,
or z = v, or = is adjacent to either u or v. The ev-domination number,
denoted ¥ey(G), equals the minimum cardinality of a set of edges that ev-
dominates every vertex in V. This concept was studied by Lewis in his
Ph.D. thesis [6].

The following theorem was discovered by Haynes, Hedetniemi and Hedet-
niemi [3].

Theorem 2 For any graph G = (V, E), a1p(G) = Ypr(G)/2 = Yeu(G)-

This theorem, in its full generality, is the basis for this paper.

4 Distance-2 Domination

Motivated by the definitions of a1p(G), @1 mp(G), and a1,(G), we define
the following three new parameters, where the domination number of a
set D C V in a graph G = (V, E), denoted (D), equals the minimum
cardinality of a set § C V such that S — D. We make the following three
definitions, as follows:

vp(G) = min{y(D), D € D}.
Amp(G) = min{y(D), D € MD}.
Y(G) = min{y(D), D € v}

Proposition 9 Any dominator S of a dominating set D is a distance-2
dominating set of G.

Theorem 3 For any graph G, 7<2(G) < ¥0(G) £ Ymp(G) £ % (G) <
v(G).

Proof. The first inequality follows immediately from Proposition 9. The
next two inequalities follow from the definitions. The fourth inequality,
that v, (G) < ¥(G), follows from Proposition 5. D
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Theorem 4 For any graph G without isolated vertices, 7<2(G) = 7p(G).

Proof. The fact that v<2(G) < vp(G), again, follows from Proposition 9,
that is, any dominating set of a dominating set is a distance-2 dominating
set. It only remains to show that v<2(G) > ¥p(G). Let S be a v<a-set
of a graph G, that is, a distance-2 dominating set of minimum cardinality.
Let Sy = N[S] - S and let S = V — § - §;. It follows therefore that
V=SuUS,uUS; and S— 5.

It also follows that S) is a dominating set of G. Suppose not. Clearly,
since S is a distance-2 dominating set of G, it must be the case that §; —
S3. Thus, if S) is not a dominating set of G, then there must be a vertex
u € S that is not adjacent to any vertices in S;. Since we have assumed
that G has no isolated vertices, it follows that u must be adjacent only to
vertices in S. But in this case, if follows that $ — {u} is also a distance-2
dominating set: a contradiction.

It follows, therefore, that S is a dominator of a dominating set, S;, of G,
and therefore, |S| > vp(G). D

Corollary 1 For any graph G, 7<2(G) = vp(G).

Proof. The proof of the preceding theorem assumes that the graph G
has no isolated vertices. But a similar proof can be constructed where the
graph G has isolated vertices. If a graph G has k isolated vertices, and G’
is the graph obtained from G by deleting these k isolated vertices, then it
is easy to see that v<2(G) = k + v<2(G’). Similarly, it is easy to see that
w(G) =k +p(G"). O

Corollary 2 The distance-2 domination number of a graph G equals the
minimum cardinality of a dominator of a dominating set of G.

Corollary 3 If a set S is any minimal distance-2 dominating set of a graph
G without isolated vertices, then the set S; = N [S] - S is a dominating set
of G.

An even stronger result than Theorem 4 exists.

Theorem 5 For any graph G, vp(G) = Ypmp(G).
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Proof. By definition it follows that vp(G) < ymp(G). Thus, we must
show that vp(G) > ymp(G). Let S € D be a dominating set for which
¥(S) = yp(G). If S is a minimal dominating set, then clearly Ymp(G) <

10(G)

Thus, assume that no minimal dominating set S achieves ¥(S) = 7p(G).
Let S be a non-minimal dominating set for which v(S) = vp(G), and let S*
be a v-set of S where |S*| = yp(G). Now let S’ be a minimal dominating
set that is a subset of 5. Note that S* also dominates S’ C S. But S* may
not be a vy-set of S§’. So let S” be a 4-set of §’. Clearly,

157} <| 8| = ¥p(G).
Thus, ymp(G) < ¥p(G). O

Corollary 4 For any graph G, v<2(G) = v0(G) = Tmp(G) £ %(G) <
Y(G)-

The path Pjg of order n = 19 is an example of a graph for which

v<2(Pi9) = 10(Pr9) = Ymp(Pra) =4 < ¥4 (Pro) =6 < y(P1g) = 7.

It is natural to ask when is v, (G) = 7(G)? The answer is straightforward.
A set S C V is a 2-packing if for every u,v € S, N[uJn N[v] = 0. An
equivalent definition of a 2-packing is that for every vertex v € V, [N[v] N
S| < 1. Still a third definition of a 2-packing is that for every u,v € S,
d(u,v) > 2, where d(u,v) equals the minimum length of a path between u
and v.

Theorem 6 For any graph G, v4(G) = ¥(G) if and only if every y-set of
G is a 2-packing.

Proof. If every v-set of a graph G is a 2-packing, then the minimum
cardinality of any dominator of a v-set must be v(G), since no one vertex
can dominate two or more vertices of a y-set. Therefore, v,(G) = ¥(G).

Conversely, if 7,(G) = 7(G) then there cannot exist a y-set S in which
two vertices of S can be dominated by one vertex. This means that for any
two vertices u,v € S, N[u|N N[v] =0, i.e. Sis a 2-packing. O

A dominating set S is efficient if for any vertex v € V, |[N[vjn S| = 1.
This means that every vertex in V — S is adjacent to exactly one vertex in
S, and no two vertices in S are adjacent.
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Corollary 5 For any graph G, v,(G) = ¥(G) if and only if every -set is
efficient.

The class of trees for which v, (T") = 4(T') can be characterized as follows.
A staris a tree, denoted K ., having r leaves, each of which is adjacent to
a central vertex x of degree r. Let 7 (-y,) denote the class of trees that can
be constructed recursively as follows. Let Tp = K, ., for any r > 2. Let
Tit1 =T 0 Ky 4, where Ty, is constructed from a previously constructed
tree T; by adding a star K 4, and an edge joining a leaf of K 1,s to a non-
central vertex of T;.

Theorem 7 For a tree T, v (T) = ¥(T) if and only if T € T (7,)-

Proof. Note that, by construction, every y-set of any tree T € 7 must
contain the central vertex in every star, and therefore is an efficient dom-
inating set. Therefore, by Corollary 5, v,(T) = v(T). Conversely, let
S = {u1,uz,...,ux} be any ~,-set of a tree T. Since v,(T) = ¥(T), we
know from Corollary 5 that S is an efficient dominating set of T. It fol-
lows that {N[u,], N{us),..., N[uk]} is a partition of V(T) into stars, and
therefore that T is a member of 7. O

Recall that a;,(G) equals the minimum cardinality of an edge cover of a
v-set of G.

Proposition 10 For any graph G without isolated vertices, M(G) € a14(G) <
%G).

Proof. Let S be any y-set of a graph G without isolated vertices. Assume
that 7(G) = k. By selecting k edges, one adjacent to each vertex in S,
you will form an edge cover of S of cardinality k. Thus, a1+ (G) < ¥(G).
Similarly, let F C E be a minimum cardinality edge cover of a v-set, say S,
of G. Thus, |F| = a;1,(G). By selecting any one vertex from each edge in
F, you will form a dominating set of a y-set S of G of cardinality at most
a14(G). Thus, 7,(G) < a14(G). O

Question 1 s it true that y<o(T) = ¥(T) if and only if T € T(v)?
5 Independent domination

A set § C V is an independent dominating set if it is both an independent
set and a dominating set. The independent domination number i(G) equals
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the minimum cardinality of an independent dominating set in G, while the
vertex independence number Bo(G) equals the maximum cardinality of an
independent set in G.

Let i(D) denote the minimum cardinality of an independent dominator
ofaset DC V.,

Let I'(G) equal the maximum cardinality of a minimal dominating set in
G. It is well known that for any graph G,

Y(G) £i(G) £ Bo(G) <T(G).

We have previously shown that for any graph G:

7<2(G) = 7p(G) = YMmD(G) £ 7,(G) £ 7(G).

To these inequalities we can add several more, having to do with inde-
pendent domination.

ip(G) = min{i(D), D € D}.

imp(G) = min{i(D), D € MD}.

ir(G) = min{i(D), D € ~v}.

i<2(G) = minimum cardinality of an independent distance-2 dominating
set in G.

Proposition 11 Any independent dominator S of a dominating set D is
an independent distance-2 dominating set of G.

Since the proof of the following theorem is virtually identical to that of
Theorems 4 and 5, we omit the details.

Theorem 8 For any graph G, i<2(G) = ip(G) = imp(G) < iy(G) <
i(G).

It can also be observed, as above, that for the path P,
iM'D(Plg) =4 < i-,(Plg) =6< i(Plg) =1T.

Proposition 12 For any graph G, v,(G) < i,(G) < v(G) < i(G).

Proof. It is immediate, from the definitions, that v,(G) < i,(G) and
¥(G) < i(G). It only remains to show that i,(G) < ¥(G), but this follows
immediately from Proposition 4.
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6 Upper Domination

As we did for independent domination, we can define several parameters in-
volving what is called upper domination, namely, the maximum cardinality
of a minimal dominating set. Let I'(D) denote the maximum cardinality of
a minimal dominator of a set D.

I'(G) = maximum cardinality of a minimal dominating set in G.

I'p(G) = max{T(D), D € D}.

Cpmop(G) = maz{l'(D), D € MD}.

I'(G) = maz{T'(D), D € v}.

I'r(G) = maz{I(D), D € T}, of where D € T refers to the set of all
minimal dominating sets D of cardinality I'(G).

I'<2(G) = maximum cardinality of a minimal distance-2 dominating set
inG.

Proposition 13 For any graph G, I't(G) < Tmp(G) <Tp(G) L |V].

Proof. This follows from the definitions, since the classes ' C MD C D,
and the fact that V € D, and every minimal dominator of a set S has
cardinality no greater than the cardinality of S. O

Proposition 14 For every graph G, fo(G) < I'(G) < I'r(G).

Proof. Let S be any fBo-set of G. Then either fo(G) = I'(G) or Bo(G) <
I'(G).

If Bo(G) = I'(G), then S is both a fBp-set and a I-set. But then S
minimally dominates itself. Therefore, I'r(G) > Bo(G) = I'(G).

If Bo(G) < I'(G), then let S be any I'set. Since S is & minimal dominat-
ing set, it is a maximal irredundant set. Therefore, every vertex u € S has
a private neighbor, say u'. Either u =/, i.e. u is its own private neighbor,
or u’ € V —§ is an external private neighbor of u. Let S = {u1,uz,. .., uc}
and let §" = {u},uj,...,u;}, where for 1 < i < k, v} is a private neighbor
of u;. Then it is easy to see that S’ is a minimal dominating set of S.
Therefore, I'r(G) > |S'| = |S] = T(G) > Bo(G). D.

Proposition 15 For any graph G, T'r(G) = Tpmp(G).
Proof. By definition, and Proposition 13, we know that I'n(G) <

L mp(G). Therefore, we must show that I'r(G) > Cap(G). For any min-
imal dominating set S € MD, it follows that I'(S) < |S|. From this it
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follows that I'yp(G) < I'(G). But from Proposition 14, it follows that
I'r(G) > T(G), from which it follows that I'r(G) > I'(G) > Tmp(G). O

Proposition 16 For any greph G, T mp(G) =T'(G).

Proof. In the proof of Proposition 15 we show that I'pmp(G) < I'(G).
It only remains to show that Capp(G) > I'r(G) > I'(G). But this is shown
in the proof of Proposition 14. O

Proposition 17 For any graph G having no isolated vertices, ['p(G) =
IR(G).

Proof. Let Sy be any IR-set. Then Sy is a distance-2 dominating set.
Let S; = N[So] — So. It follows that S is a dominating set of G, and
therefore S; € D. It also follows that Sp U S is a dominating set of G,
and therefore Sy U S; € D. But since Sy is a maximal irredundant set in
G, Sp minimally dominates Sp U S, since each vertex of Sp has a private
neighbor in So U S;. Therefore, ['p(G) 2 TR(G).

Conversely, we must show that I'p(G) < IR(G). But for every minimal
dominating set S of a dominating set S’, I'(S) < |S’|. But every minimal
dominator S of a dominating set §’ is irredundant. By definition, therefore,
I'p(G) <IR(G). O

Proposition 18 For any graph G without isolated vertices, I'(G) = 7(G).

Proof. Bollobas and Cockayne [1] have show that every graph G without
isolated vertices has a y-set S in which every vertex u € S has an external
private neighbor, that is there exists a vertex v € V — S for which N(v) N
S = {u}. Therefore, let S’ = {uj,u,...,u;} be a set of external private
neighbors of the vertices $ = {uy,u2, ..., %k}, where ] is a private neighbor
in V — S of vertex u; € S. It then follows that S’ is a minimal dominating
set of a v-set S in G, where |S'| = |S| = ¥(G). Therefore, I';(G) > v(G).
But from Proposition 5 we know that every minimal dominating set S’ of a
set S has cardinality no greater than than of S. Therefore, I'y(G) < 7(G)..
a

Proposition 19 For any graph G,
Y(G) € i4(G) < T+(G) = ¥(G) £ i(G) < Bo(G) < T(G) =Tr(G)
=T'mp(G) < T'p(G) = IR(G).
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Proof. These inequalities follow from the definitions, Proposition 3 and
Propositions 14, 15, 16, 17 and 18. O

7 Upper Distance-2 Domination

While distance-k domination, including distance-2 domination, has received
some study, [4], very little is known about I'<3(G), which equals the max-
imum cardinality of a minimal distance-2 domination set in a graph G.
As an illustration, consider the subdivided star S(K, ), which is the tree
having one central vertex, say z, of degree n, n vertices of degree 2, each
of which is adjacent to vertex z, and n leaves, each of which is adjacent to
a vertex of degree 2. For this tree, 7<2(S(K1,n)) = 1. On the other hand,
T'<2(S(K1,n)) = n, since the set of n leaves is a minimal distance-2 domi-
nating set. In addition, the set of n vertices of degree 2 is also a minimal
distance-2 dominating set.

We ask the general question: which inequalities, if any, exist between the
parameter ['<3(G) and the other parameters discussed in this paper?

In (5] the following characterization of minimal distance-k dominating
sets is given.

Proposition 20 (Henning, Oellermann, Swart) Fork > 1, let S be a
distance-k dominating set of a graph G. Then S is a minimal distance-k
dominating set if and only if each vertex u € S satisfies at least one of the
following two conditions:

(i) there exists a vertez v € V — S such that the only vertez in S within
distance-k of v is the vertez u, or

(i1) the vertez u is at distance at least k 4 1 from every other vertex in
S.

The upper distance-2 domination number I'<3(G) is not comparable with
either the vertex independence number By(G), the independent domination
number (G) or the domination number ¥(G). Consider the Cartesian prod-
uct of the form G = K,,0P;, for n > 4. The columns of this graph consist
of three copies of the complete graph K,. The rows of this graph consist
of n paths of length two. It is easy to see that the domination number,
the independent domination number and the independence number of this
graph-all equal three. However, the set of n vertices in the complete graph
in the first column forms a minimal distance-2 dominating set. Thus, it
can be seen that ['<5(G) = n.
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On the other hand, for the star G = Ky ,, Bo(G) = n > I'<2(G) = L.
Therefore, fo(G) and I'<2(G) are incomparable.

For the cycle G = C; or the cycle G = Cs, however, I'<2(G) = 1 <
¥(G) = i(G) = 2. Therefore, I'<2(G) is not comparable with either v(G)
or i(G).

On the other hand, a good upper bound for I'<3(G) exists.

Theorem 9 For any graph G having no isolated vertices, I'<2(G) < I'p(G) =
IR(G).

Proof. Let S be a I'<s-set of a graph G. Obviously, S is a dominating
set of N[S]. Let S* C S be a minimal dominating set of N[S], that is,
N[S*] = N[S). Then, N[N[S*]] = N[N[S]] = V and §* is a distance-2
dominating set of G. By minimality of S, we have |S*| = |S|, and thus,
S* = S. Hence, S is a minimal dominating set of N[S]. Any minimal
dominating set of a subset of V is an irredundant set in G. Hence, |S| <
IR(G). O

This theorem raises the question about the relationship between I'<2(G)
and I'(G).

We close with the following theorem.

Theorem 10 For any graph G having no isolated vertices, I'<a(G) <
I(G).

Proof. Let G be a graph of order n > 2 such that G has no isolated
vertices. Let S be a I'<z set of G. Since S is a minimum cardinality,
distance-2 dominating set, it partitions V into three disjoint sets, V =
S UV, UV, where V; is the set of vertices in V — .S having a neighbor in
S, and V; is the set of vertices at distance-2 from S.

From Proposition 20 we know that every = € S has a distance-2 private
neighbor (d2pn). Let Sp = {z € S|z is its own d2pn}. Then, for every
z € So, and every y € § — {z}, d(z,y) > 3.

Let S; = {z € S — Solz is adjacent to one of its distance-2 private
neighbors}. If z € S}, then there exists v € N(z) such that v is at least
distance-3 away from S—{z}. That is, if z € S}, then there exists y € N(z)
such that for every z € S — {z}, d(y, 2) > 3.

Finally, let S, = S — (So U S)). Note that if z € S, then every d2pn of
z, say y, is distance-2 from z, and for every z € § — {z}, d(y,2) > 3.
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For every x € S, let P, = N(z) — S = N(z) N V; be the neighbors of
z € V;. Now define:

e Py = U P; = {vjv € N(z) for some z € So} = N(So) N}

€Sy

e Pi=|J P.={vjve N(z),z € $1} = N(S1)nV;
€S

e Pp=J P={vlve N(z)- S,z € S} = N(S:) NV
€S,

Notice that V; = Py U P, U P,, since every vertex in V] has a neighbor in
S and § = S5 U S US,. Notice also the following:
e V) is a dominating set of G.
o P, = N(z) if € S U Sy, since Sp U S is an independent set.

e P, # { for any z € S, that is, every vertex in S has a neighbor in V;,
since G has no isolated vertices.

e P, dominates z for all z € S.
Notice that V) dominates S. All vertices v ¢ S that are distance-1 away
from some z € S are in V7, and all vertices v ¢ S that are distance-2 from

S, i.e. all vertices in V,, are dominated by V), since every vertex in V, must
have a neighbor in V;.

Now, let V C V; be a minimal dominating set of G. Then V — {z} is not
a dominating set of G, for any = € V.

Now define the following:

oﬁ’: nv
P:(A p)ﬂP1=(P‘ﬂV)—P2
}5 =V - (P1U.P2) PoﬂV

Since V is a dominating set, for each z € Sp there exists v € V that
dominates z. By the definition of Sp,v € V' cannot dominate two or more
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vertices in S. Thus, if v dominates z € So, then v ¢ PiuPyve Py, and
| Pol 2| Sol-

Everyz € Sy hasad2pnv € N(:c)ﬂVl But v € V} cannot be in BUP,
nor ad,]a,cent to a vertex in Py U P,. Otherwise, v would not be a d2pn.
Since V is a dominating set, v must be dominated by avertex z € P1 , Wwhere
either z = v or z is adjacent to v. However, z € P, cannot dominate the
d2pn v of = and also be adjacent to another vertex w € S, where w # z,
else v cannot be a private d2pn of z € 5;. Hence the number of vertices
in P, that dominate a d2pn of S is greater than or equal to |S1|. Thus,
[P} 2| Sil-

Finally, let z € S. Then there exists a d2pn v € V; of z that is distance-
2 from S,. This vertex v is dominated by a vertex in P. Since v is a d2pn,
v is not dominated by any vertex in Py U Py. Thus, v is dominated by a
vertex y € P,. Now y cannot dominate a d2pn w of any vertex in Sy other
than z. Thus, |P2| > |S2|.

Thus, I(G) 2 |P| = |Po]+|P1|+|Pa| 2 So|+51]+]S2| = |S] = T<2(G)-
o

8 Summary

In this paper we have provided a new characterization of minimum distance-
2 domination, i.e. for any graph G,

v<2(G) = 10(G) = Ymp(G)-

We have provided a new characterization for the upper domination num-
ber, i.e. for any graph G,

I'(G) =Tr(G) = Tmp(G).
We have also provided a new characterization of the upper irredundance
number, i.e. for any graph G,

I'5(G) = IR(G).

In addition we have provided the following new inequality chains:

7<2(G) = 10(G) = Ymp(G) £ 1,(G) £ 1,(G) £ ¥(G), and
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(G) £4y(G) < T+(G) =¥(G) < i(G) < o(G) < T(G) =T'r(G)
=Tmp(G) < T'p(G) = IR(G).

Finally, we showed that for any graph G, I'<3(G) < T'(G), but I'<3(G) is
not comparable with either 8o(G), i(G), or v(G).
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