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Abstract: In this paper, we study some bounds of constant dimension
codes further in Grassmannian space Gy(n,k). There is an increasing in-
terest in subspace codes since they are precisely what is needed for errors-
correction in networks. There is also a connection to the theory over finite
fields. By revising the specific construction method of the constant di-
mension codes in (1], [2], we can improve some bounds on g-ary constant
dimension codes in some given cases.
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§1 Introduction

Let F, be the finite field with ¢ elements, where ¢ is a power of a
prime. Let Iy be the n-dimensional row vector space over Fy, where n is
a positive integer. The projective space of order n over [, is the set of all
the subspaces of Fy, denoted herein by P,(n), including {0} and F7 itself.
Given a nonnegative integer k£ < n, the set of all subspaces of Iy that have
dimension k is known as a Grassmannian space, and usually denoted by
Gq(n, k). Thus Py(n) = Us<k<nGq(n, k). Now we introduce some formulas
(see [3]), which will be needed in the following sections. For brevity we use
the Gaussian coefficient

=[],

def (" = 1)(q" 1 = 1)---(¢g"**t = 1)
(F -1 -1 (g-1)

*Corresponding author.
E-mail addresses: gao_ you@263.net.

JCMCC 100 (2017), pp. 283-295



By convenience [g]q =1 for all integer n and [:]q =0 for all k < 0 and
n < k. For any U,V € P,(n), denote

U+V={ut+v|uelveV}

That is the smallest subspace containing both U and V. If UNnV = {0},
i.e., if U and V have trivial intersection, then the sum U + V is a direct
sum, denoted as U & V. Clearly,

dimU & V = dimU + dimV.

A subspace code C is a nonempty collection of some subspaces of Fy, name-
ly, a nonempty subset of Py(n). Thus the subspace code C is not dlfferent
from classical codes in which each of codewords is a vector. However, here
each codeword of C is an entire space of vectors. A code in which each
codeword has the same dimension is called a constant dimension code. In
other words, a code is contained within a single Grassmannian space. The
projective space can be endowed with the distance function

d(U,V) =dim(U + V) — dim(U N V),
which is equal to
d(U,V) = dimU + dimV - 2dim(U N V). (1)

Then the distance function turns P,(n) and G,(n, k) into metric spaces.
Given a metric space, then we can define codes. We say that C C Py(n) is
an (n, M, d) code in projective space if |C| = M and d(U, V) > d for all uyv
in C. We say that C is an (n, M,d, k) code if an (n, M,d) code C in whlch
each codeword has the same dimension for some k. Let A,(n,d) denote
the maximum number of codewords in an (n, M,d) code in P,(n). Let
Ay(n,d, k) denote the maximum number of codewords in an (n M,d k)
code in Gy(n,k). There is no doubt that the distance between any two
different codewords must be even in an (n, M, d, k) code. We always put d
as 26, namely, d = 24.

Very recently, Liao et al. [1] improved some bounds on q-ary constant
dimension codes in some cases, and showed that there exists no optimal con-
stant dimension code Ay(n,24, k) meeting both Wang-Xing-Safavi-Naini-
Bound and the maximal distance separate bound simultaneously. Etzion
et al. [2] presented several specific constructions of an (n, M, 2k, k) code.
And presented several new hounds on the size of codes in P,;(n), which may
be thought of as counterparts of the classical bounds in coding theory due
to Johnson, Delsarte, and Gilbert-Varshamoy. An operator channel was
defined by Koetter and Kschischang [4] when they studied random net-
work coding theory. They also introduced constant dimension codes and
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demonstrated that these codes can be employed to correct errors and/or
erasures over the operator channel. And stated that sphere-packing and
sphere-covering bounds as well as a generalization of the Singleton bound
are proved for constant dimension codes. Xia et al. [5] proved that con-
stant dimension codes achieve the Wang-Xing-Safavi-Naini bound if and
only if they are certain Steiner structures in F,. And, they also derived
two Johnson type upper bounds, say I and II, on constant dimension codes.
Compared with Wang-Xing-Safavi-Naini bound Johnson type bound II is
slightly improved. And pointed out that optimal constant dimension codes
which achieve both the Johnson type bounds I and II are actually a fam-
ily of so-called Steiner stuctures. Khaleghi et al. [6] constructed lifted
rank-metric codes along with improved constructions leading to codes with
strictly more codewords. Kohnert et al. [7] gave a table of the best found
constant dimension space codes. However, most of the results in above are
still needed further research in constructing more codes which close to the
upper bound, especially.

For any code C in P,(n), the orthogonal complement of C can be defined
as following: C*+ = {V+ | V € C}. Such orthogonal complements were first
considered in the paper [4] by Kotter and Kschischang. Then the relation
of C and C* is as follows.

Lemma 1 Let U, V be two arbitrary elements of Py(n). Then

d(U*, V) = n — dimU — dimV +dim(U N V).

Lemma 2 If C is an (n, M,d) code in P,(n), then its orthogonal
complement C* is also an (n, M,d) code.

From Lemma 1 and Lemma 2 we immediately have

Corollary 3 For any positive integers n, k and k£ < =, if C is an
(n, M,d, k) code, then C* is an (n, M, d,n — k) code.

Recently, Koetter-Kschischang [4] proved a bound which may be re-
garded as a counterpart of the classical Singleton bound, and they also
found that the upper bound is stronger than the sphere-packing bound.
The upper bound is shown below.

Proposition 4 [[4], Theorem 3] (Singleton type bound )

n—0+1
< .
Aq(n, 28, k) < [k—5+1]q

In 2003, Wang, Xing and Safavi-Naini [8] stated that constant dimension
codes are equivalent to the so-called linear authentication codes, and then
yielded an upper hound on linear authentication codes. Namely, the upper
bound is equivalent to the following bound on constant dimension codes.

285



Proposition 5 [[8], Theorem 5.2] (Wang-Xing-Safavi-Naini Bound)

[ 5 ]

k—=é+1 q
[ s ]
k—5+1 q

Proposition 6 [[2], Theorem 11] Let n = r (mod k). Then, for all q,

we have
" —qg" -1 -1
gk -1 '

In this paper, we study some bounds for optimal constant dimension
codes further. Revising the construction for constant dimension codes in
(2], [1] improved some bounds on g-ary constant dimension codes. Thus,
we will have the following proposition.

Proposition 7 [[1], Theorem 1.4) Let n = r (mod k), 0 < r < k.
Then, for all q, we have

Ag(n,26,k) <

Aq(n, 2k, k) >

q" —q*(qg"-1) -1

-Aq(n’ 21 k) 2 qk — l 1

and .
" —q (qr—l)-1'

q
Ag(n, 20k —1),k) > p

§2. Constructions of codes

It is well known that how to construct optimal codes is the most impor-
tant problem while the parameters n, k and d been fixed. By making use of
the knowledge of finite fields and revising the construction of constant di-
mension codes in (1], (2], we can construct many constant dimension codes
with a larger number of codewords than previously known codes. Then we
have the following theorems.

Theorem 8 Let n =r (mod k). Then, for all q, we have

113 r

a —q
A2,k 2 =

Proof: Let r be the remainder obtained when k is divided into n. Hence-
forth, we will represent the vectors in F as follows:

F7 = {(z,v,2) : € GF(¢"~*""),y € GF(¢*), z € GF(¢")}.
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Let a be a primitive element of GF(¢"~*~7), B be a primitive element of
GF(g*) and v be a primitive element of GF(g"). Further, let

M= ((0,,@0,0),(0,,31,0),--- a(Ovﬂk_laO))'

Since A% B',---,B% ! are independent over F,, it is easy to note that
dimM = k. We define t = 9-'%:___—;-—1. Then ¢ is an integer since k divides
n — k —r. Then the multiplicative order of ot in GF(g*) is ¢* — 1, and

therefore o is a primitive element of GF(¢*), namely, 8 = a*. Then GF(¢¥)
is a subfield of GF(¢"~*~"). Now we consider the following subspaces of

F7 that are given by

VVI = ((0“80,,71), (Os ,31,'71), Tty (Oyﬁkﬁl"yl))’

Ui = ((ai’os 0)’ (aiﬁa 01 0)’ ] (aiﬁk_ly 0,0))a

‘/i.l = ((aiv 07 71)) (aiﬂ, 0’ ’Yl)v Ty (aiﬂk—l’ Oa '71)):

‘/i.j = ((aia ﬂJ,O), (aiﬂa ﬁ.‘l,o), Tt ’(aiﬂk—l, ,BJ, 0)),

Viga = (&, 85,4, (o' B, B5,71), -+, (@81, 87, 41)).
where i ranges over {0,1,--- ,t—1},j € {0,1,--- ,¢*~2}and !l € {0,1,- -,
q" —2}. It is easy to see that

dimW; = dimU; = dimV;; = dimV; ; = dimV; ;, = k for all 4, j and L.
We construct the code C as follows:

C=MuUUW)ULU)UUVi)U(U Vi) U(U Vi)
] i i,l i,j i,5,0

Now we consider the minimum dimension distant d of the constant dimen-

sion code C.
(I) Since both oi8°,a'B, -+ ,a'B*~! and B°, B,---,B%~! are linearly
independent over F, for all i. It follows that

MnNU;=MnVyy=MnV,; =MnV,; = {0},

and
WinU;=wW,nV, =WinV;; =wW;nV, ;= {0}.

Observe that the t vector spaces Uy, Uy, -+ ,U,_; form a spread in IF{;‘k"’.
The fact is well-known, see [9], {10] for a detailed proof, therefore,

Uil nUiz = {0} for all 1 7é 3.
With the same reason,

Vi:,ll n V;z.lz = Vil,jl n Vizyjz = Viy 0 N Viz,jz,lz = {0}
for all 31, j», U1, l2, whenever iy # is.
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And any two of U;, V; ;, Vi1, V; ;1 have trivial intersection when i # 1.

(IT) Now, we consider the subspace W;, NWy,, 0 <} # I, < q" — 2.
For any A € W), " W,,, Then there exists some ag,ay, -+ ,ax_; € F, and
bo, by, ,bx—1 € Fq, such that

k-1 k—1 k=1 k-1
A=(0,)" amB™ ) am?) =(0, Y bmB™, > bm?™).
m=0 m=0 m=0 m=0
Namely,
k—1 k-1 k=1 k-1
D amB" =3 bmf™ and Y amt = bmy.
m=0 m=0 m=0 m=0

Since 8°,8!,--- ,B*~! are independent over F, and v # v (0 < I, #
la < q" — 2), the above equations imply that

k-1
am =bn(0<m<k—1) and Zam=0.
m=0
Namely,
k-1 k=1
Wi, oWy, = {(0, ) amB™,0) |am €Fy, D am =0,0< 1y # Iy < ¢"—2).

Thus, we can get
dim(W;,, nW,,) =k — 1.

With the same reason, for all 0 <) # I < ¢"—2 and 0 < j; # jo < ¢¥ -2,
then we will have
dim(Vi g, N Vig,) = dim(Vi g, 0 Vi) = dim(Vi s, 0 Vi) = dim(Vigyq 0
Vi'jz.l) = dim(vi.jl.lx n Vi.]'sz) =dim(V;; 0 Vijaa) = dim(V;y, N Viyj»lz) =
k—-1.

(III) Now, we consider MNW;, 0<1<qg"—2,set Aec M N W;. Then

there exists some ag,ay, -+ ,ap_1 € Fq and bo, by, -+, bx—1 € Fy, such that
k-1 k-1 k-1
A=(0,) " amB™0)=(0,> bmB™, > bm).
m=0 m=0 m=0
Namely,
k-

1 k—1 k-1
amB™ =) bmB™ and Y bmy' =0.
0 m=0 m=0

m=
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Since 8°, B, .-+, %! are independent over F,, the above equations imply
that

@mn =bn (0<m<k—1) and bop+by + - +be—1 =0.
Namely,
k—1 k-1
MW ={(0,Y" amB™,0) | am €Fy, Y am = 0}.

Therefore
dm(MNW)=k—-1, 1=01,---,q" —2.

(IV) For any A € U;NV, j1, then there exists some ag, a1, -+ ,ak—1 € Fyg
and bo, by, - ,br—1 € ]Fq, such that

- Zama’ﬁ ,0,0) _(mea'ﬂ"‘ meﬂ’ Zb 7)-

m=0 m=0 m=0
Namely,
k—1 . k—1 ' k-1 _ k-1
Z amo’f™ = Z bha'f™, Z bnB? =0 and Z bmy' =0.
m=0 m=0 m=0 m=0
Since both &% a8, -+ ,a'B*~1 and B°,41,... ,B*~! are linearly inde-

pendent over Fy, for all <. It follows that

k-1
Y bm =0 and ap=bm (0<m<k-1).
m=0
Namely,
k-1 k-1
UinViji={(_ amo'8™,0,0) | am €Fq, Y _ am = 0}.
m=0 m=0

Thus , we can get
dim(Ui n Vi,j,[) =k -1

With the same reason,
dim(U; V) =dim(U; NV, ;) =k - 1.
(V) Let any A € V; ju NV;;. Then

-(Zama s™, Zamﬁ’ Zam'Y)—(Z bma'™,0, mev)

m=0 m=0 m=0 m=0
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Namely,

k-1
Z ama’ ™ = Z bna'B Z amfB’ =0 and Z am?y = Z bm?'.
m=0

m=0 m=0 m=0
Then
k-1
D b =0 and am=bm (0<m<k-1).
m=0
Namely,
k—1 ‘ k-1
‘/isj:l N ‘/iyl = {(Z amalﬁm’ 070) I Om € IFQ! Z Qm = 0}'
m=0 m=0

Thus, we can get
dim(V;;; nViy) =k - 1.

For the same reason,
dim(Vi,,-,l n ‘/i,j) =k-1.

(VI) Let any A € V;; NV, ;. Then

= (Z ama'B™, 0, Z am?') = Z bma'B™, Z b 87,0

m=0 m=0
Namely,
k—1 k—1 ' k—1 k-1
Y ama'B™ =3 bna'f™, > bnf =0 and > amy =0.
m=0 m=0 m=0 m=0
Then
k-1
D bm=0 and @m=bn (0<m<k—1)
m=0
Namely,

Vian Vi, = {( Zama'ﬂm 00)|ame]F,,,Zam—0}

m=0

Hance,
dim(lfi,, n Vi,j) =k-1.
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Now from (I-VI) and the dimension distance formula (1) of constant di-
mension codes, we have § = 1 and

ICl=1+(¢" =1)+t+t(¢" — 1) +t(g" — 1) +t(¢" —1)(¢" — 1)
q -q"
gt —-1"

Therefore

g -q"
Aqg(n,2,k) > o

Theorem 9 Let n = (mod k) and r = k — 1. Then, for all q, we have

qn _ qr
Aq(’ﬂ,2(k - 1),k) 2 W.

Proof: Let M be the same as defined in Theorem 8. Now we consider the

following subspaces of F that are given by

Wl' = ((01 ﬁ01 'Yl)v (Ov :31"7”’1): Tt (O’ :Bk_z: 7l+k—2)’ (01 ﬂk_ls 0))1

U: = ((aivﬂi10)’ (aiﬂ, Bi7 O)v B (aiﬁk_lvﬂiao))a

V:J = ((aia ﬁjy O)s (aiﬂy ﬁj+l,0)7 Tty (aiﬁk—la ﬂj+k_l’o)>7
‘I = ((ai ﬂi l) (aiﬂ Bi l+l) . ,(aiﬂk—2,ﬂi’7l+k—2), (aiﬁk_l,ﬂi,())),
1 Jl = ((a ,BJs'Y ) (a ,B 5]-{-1 l+l)’ . (aiﬂk-l’ﬂj+k—2,7l+k—2)’

(a:ﬁk l’ﬁ_’H-k 1’0»‘
where i ranges over {0,1,--- ,t—1},j € {0,1,--- ,¢*-2}andl € {0,1, -,

g" — 2}. It is easy to see that dimW;" = dimU; = dimV}%; = dimV}, =
dimV}*;; = k for all 4, j and I. We construct the code C* as follows:

C*=MU QW)U U UV U(uVidu(y Vig-

Now we consider the minimum dimension distant d of the constant dimen-
sion code C*,
(I)In the same proof as that in Theorem 8, one can show that

MNU; =MNV5 =MV =MV, = {0},

and
Wy nUs =W NV =WinVy =W nvij, = {0}.

From Theorem 8 we can see that U;, NU;, = {0} forall0 < i; #ip <t -1
With the same reason,

UsnU, =V, NV, =V, 0V =Vian0 o2t = 10}

11,01 i2,j2
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for all j;, 72 and l. And any two of U7, RN Y have trivial intersec-

tion. From the proof of [2] Theorem 11 we can know that

lhnv* _V:Jl Vle V'Jlnvl*hl:{o}

J2

for every fixed 5 and all 0 < j, # j» < ¢* — 2.
(II) Let A € W,: N W',"; Then there exists some ag, a4, -+ ,ax—1 € Fq
and bo, by,--- ,bx—1 € Fy, such that

Zamﬁ Za 71+m) = (0, meﬁm Z” 7).

m=0 m=0 m=0

Namely,

k-1 ‘2
z amﬁ Z by B™ and z a 7'1+m = Z bm712+m.
m=0

m=0 m=0

Since 8°,B%,---,B*"! are independent over F, and v"* # %2 (0 < I, #
I; < ¢" — 2) the above equations imply that

am =bm (0<m<k—-1) and ap?°’ + a1y’ 4+t ap_ey* 2 =0.
Note that 7 = k — 1, then v~ 2 = 4=, Therefore we can know that

@0’ +ar' + - +aky! =0.

1

Since 72,41, ,9"~! are independent over F,,

a=a; = =ak-2=0and ap_; #0.
Thus, we have
dim(W; N W) = 1.
With the same reason,

dim(Vyy, NV;3,) = dim(Viy,, Vi) = dim(M A W;) =

.711

(IIT) Let A € Uy nV;?;. Then there exists some ao,ay,--- ,ax—; € F, and
bo, b1, -+ ,bx_1 € Fy, such that

k-1 k-1 k-1 k—1
Z amaiﬁm — Z bmaiﬂm and Z amﬁi = Z bmﬂjﬁ-m.

m=0 m=0 m=0 m=0

Therefore
k-1

m=bn(0<m<k-1) and Zamﬂ—zb pitm,
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Note that 3 is a primitive element in GF(q*), hence
g =" =0e-] =qeq1 =" =0ak_1 =0

forz’sj-l—e(modq"—l),OSesk—l.

It means that there exists some i =0,--- ,t—1and § =0,---,¢*—2, such
that
dim(U; nV7;) =1.

With the same reason,
dim( NV =1
(IV) Let A € U NV}, Then we will have

k-1 k-1 k=2
Z ama’f™ = Z bnotB™, Z amBt = Z b,.B and Z by ™ = 0.
m=0

Therefore,
am=bn (0<mMm<LEk-1),
and
by + b1yt + -+ begy* ) = 0.
Namely,

Y(ao?® + a1y + - +ak-2y""!) = 0.

Note that v is a primitive element in GF(q"), and 7°,v!,--- ,7"~! is inde-
pendent in GF(g"), hence

ag=a) = =ap-2=0and ar_; #0.

Therefore,
dim(U;NV)) =1.

With the same reason,
dim(V;nV5) =1
(V) Let A€ V*;n V. Then we will have

k-1 k—1 k-1
Z amaiﬂm = Z brnaiﬁm’ Z amﬁj+m Z bmﬁ' Z bm'y

m=0 m=0 m=0 m=0 m=0

Therefore

k-1 k-1
tm =bm 0<m<k—1), Y amp*™ =) bnf’

m=0 m=0
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and
7 (007° + b1yt + -+ b2y ) = 0.
Note that 8 is a primitive element in GF(g*), hence
o ="'+ =081 =Qe41 = - =01 =0
fori=j+e(modg-—-1),0<e<k-1,
and
ag = ay =--'=ak_2=0.
This means that
dim(V;nV7) =1life=k -1,
and
dim(V;nV) =0ife# k-1
Namely,
dim(V;; nV)) < 1.
With the same reason,

dim(U; N V,5) = dim(Viy, N Vi) < 1.

Now from (I-V) and the dimension distance formula (1) of constant dimen-
sion codes, we have § = k — 1 and
CTl=1+(¢" = 1) +t+t(g" — 1) +t(g" = 1) +t(¢" - 1)(¢" - 1)
" —q
g -1

Therefore .

n

Ag(n,2(k — 1), k) > "qk _"1 .

From the proof of Theorem 8 and Theorem 9, we can imply that C,

respectively C*, in Theorem 8, respectively in Theorem 9 are more perfect

than that in Proposition 7 ([1], Theorem 1.4). While we herein add a

condition r = k — 1 to the case of C*, we can imply that the code C*

which constructed in [1] is not perfect. Of course, from Proposition 4 and

Proposition 5 we can know that the codes C and C* in above do not achieve

the upper bound. From Corollary 3 we can also compute the codewords of
Ct and C*L.
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