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Abstract

This paper obtains new combinatorial batch codes (CBCs) from
old ones, studies properties of uniform CBCs, and constructs uniform
CBCs using semilattices.

AMS classification: 06A12, 05B20, 94B25
Key words: Combinatorial batch code, construction, semilattice

1 Introduction

Batch codes were introduced by Ishai, Kushilevitz, Ostrovsky and Sahai
[13], which were motivated by applications to load balancing in distribut-
ed storage, private information retrieval and cryptographic protocols. An
(n,N,k,m,t) batch code over an alphabet ¥ encodes a string z € L™ in-
to an m-tuple of strings v1,¥2,...,ym € L* (also referred to as servers)
of total length N, such that for each k-tuple (batch) of distinct indices
i1,%2,---,tk € {1,2,...,n}, the entries z;;,%;,,...,Z; from z can be de-
coded by reading at most ¢ symbols from each server. In this paper, we
only consider the case t = 1.

The combinatorial batch codes (CBCs) were proposed by Paterson, Stin-
son and Wei [16] to refer to purely replication based batch codes. Let n, N, k
and m be positive integers with k < m < n. An (n,N,k, m)-CBC is a set
system (X, B), where X is a finite set of elements called points and B is a
collection of subsets of X called blocks, such that the following properties
are satisfied:

(i) |X|=n,|B|=m,N =3 gcp|Bl, and
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(ii) for every k-subset {zy,za,...,zx} C X there exists a collection
{Bl,Bg,...,Bk} CBsuchthatz; € B; fori=1,2,...,k.

The integer N is called the size of the CBC. Brualdi et al. [4, 5, 6, 17] studied
constructions for CBCs. Chen et al. [9, 14, 15] studied optimal CBCs. An
(n, N = en, k,m)-CBC is called uniform if each point is contained in exactly
c blocks (2, 3, 16). We denote by n(m,c, k) the maximum value of n for
which there exists a uniform (n, cn, k, m)-CBC. The following general upper
hound on n(m, ¢, k) was established in [16]:

n{m,c, k) < %E—z)("—)- (1)

A c-uniform (n,cn, k,m)-CBC is called optimalif n = (k — 1)(':‘)/(":1) for
given m, c and k. Silberstein and Gél [18] constructed uniform CBCs based
on transversal designs and affine planes. Their research stimulates us to
consider other constructions.

Let C = (X, B) be an (n, N, k, m)-CBC with the point set X = {x,, z3,
...,Zn} and the block set B = {By, By,...,Bp}. For 1 < j < n, define
X; = {Bi,,...,By,} if z; is contained in blocks B;,,...,B;,. Then C is
represented by a dual set system (B, X) such that B = {B, B,,.. .vBm}
and X = {X},X>,...,X,}. The following result provides a very useful
characterization of CBCs in terms of the dual set system.

Theorem 1.1 (16]) A set system (B,X) is the dual set system of an
(n,N,k,m)-CBC if |B| = m, |X| = n, Syex|Y| = N and every set
of i blocks contains at least i points for 1 <i < k.

In this paper, we focus on the construction of uniform CBCs from a
semilattice. The rest of this paper is structured as follows. In Section 2, we
study constructions of new CBCs from old ones and discuss properties of
uniform CBCs. In Section 3, we show how to construct uniform CBCs from
a semilattice. In Section 4, we give thirteen families of examples of semi-
lattices from sets, vector spaces and maps, and study corresponding CBCs.
In Section 5 and Section 6, we give examples of semilattices from affine
spaces and distance-regular graphs, and study corresponding problems.

2 Constructions of new CBCs from old ones

In this section, we present three simple methods of constructions of new
CBCs from old ones, and discuss simple properties of uniform CBCs.
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The first method is called the sum construction. Given two CBCs with
disjoint point sets. If we put their points together as the collection of points
and put their blocks together as the collection of blocks, by [8] we obtain
a new CBC as stated in the following theorem.

Theorem 2.1 ([8]) Suppose there exist an (ny, N1, k1, m1)-CBC and an
(n2, Na, kg, m2)-CBC. Then there exists an (ny+na, N1+ Nz, k = min{k1, k2},
my + mg)-CBC.

The second method is called the product construction. Suppose that
(X1,B:) and (X3, B;) are two CBCs. Pick X = X} x Xo = {(z1,72) |
z; € X1,22 € X3} and B = {B; x By | By € By,B; € By}. One point
(x1,72) € X is placed in one block B x By € B if (z1,22) € By X Bs.
Then we obtain a new CBC as stated in the following theorem.

Theorem 2.2 Suppose there ezist an (n1, N1, k1, m;)-CBC and an(nz, N,
kz,mz)-Cw. Then there exists an ('n17l2,N1N2,k = min{kl,kg},mlmg)-
CBC.

Proof. Suppose that (Xi,B;) is an (n1, Ny, k1,m;)-CBC and (X3, Bz) is
an (ng, Na, kz, mg)-CBC. We will show that (X = X x X2,B = {B) x By |
B € By, B; € By}) is an (niny, N1 Na, k,mym2)-CBC. Clearly, (X, B) has
nyngy points and m;mg blocks. Note that

N=Y"|Bl= > |BllBl=MNNz.
BenB B €B,,B2€8;

For every k-subset {(z11,Z21), (Z12,%22), - - -, (Z1k, Z2x)} € X1 x X3, there
exist blocks Bji,Bia,...,Bix in By and blocks By, Bsa, ..., Bag in B,
such that z;; € By; and zo; € Bo; for i = 1,2,...,k. It follows that
there exist blocks Biy X Bai, Bz X Bag,...,Bix X Bg in B such that
(%1i,72:) € B1; x By; for i = 1,2,...,k. Therefore, the desired result
follows. (m}

Example 2.1 Pick X; = {1,2,3}, X2 = {4,5,6,7}, B, = {{1,2},{1,3},
{2,3}} and By = {{4,5,6},{4,6,7},{5,6,7},{4,5,7}}. Then (X1,B,) is
a (3,6,3,3)-CBC and (X3, B;) is a (4,12,4,4)-CBC. By Theorem 2.2, we
obtain a (12,72,3,12)-CBC.

The third construction is called the subconstruction. Suppose that
(X,B) is a CBC. Let X’ be a nonempty subset of X. Define X' as the

point set and B’ = {X' N B | B € B} \ {0} as the block set. Then (X', B')
is a CBC as stated in the following theorem.
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Theorem 2.3 Suppose that (X, B) is an (n, N, k, m)-CBC. Given a nonemp-
ty subset X' of X with size n’. Then there ezists an (n', N', k', m’)-CBC

with N' = 3 p.cp |B'|,k = min{k,|X'|} and m' = |B'|, where B' =

{X'nB|BeB}\ {0}

Proof. Note that N' = 3 5, 5 |B| and m’ = |B/|. For every k’-subset
{z1,%2,...,Zr} € X', there exists a collection {B1,Bs,...,By'} C Bsuch
that z; € X'N B, fori = 1,2,...,k'. Therefore, the desired result follows.
0

Example 2.2 Let (X1,B,) be as in Ezample 2.1. Pick X' = {1,2}. By
Theorem 2.3, we obtain a (2,4, 2, 3)-CBC with block set B' = {{1,2}, {1}, {2}}.

Now we discuss properties of uniform CBCs.

Theorem 2.4 n(m; + ma,c, k) > n(my, ¢, k) + n(ma, c, k).

Proof. Write n; = n(my,c k) and ny, = n(mg,c, k). Let (X1,B1) be a
uniform (ny,cny, k,m;)-CBC and (X2,B;) be a uniform (ng,cng, k, ms)-
CBC such that X; N X, = 0. By Theorem 2.1 we can obtain a uniform
(n1 + ng,e(ny + ng), k,m; + m)-CBC. It follows that n(m; + ma, ¢, k) >
ny + na. ]

Theorem 2.5 Let (X,B) be a uniform (n,cn,k,m + 1)-CBC with n =
n(m+1,¢,k). Then n(m+1,¢,k) < n(m,c,k) + min{|B| | B € B}.

Proof. Suppose B = {By,By,...,Bn,1}. Let i satisfy |Bi| = min{|B| |
B, € B}. Define B} = B; \ (BN B;j) for j =1,2,...,m+1. Let B =
{B; | =12...,m+1}\ {0}. Then (X \ B;,B') is a uniform (n —
|Bil, ¢(n — | Bi]), k, m’)-CBC, where m’ < m is the size of B, which implies
that n(m/’,c,k) > n — |B;|. If m’ < m, from Theorem 2.4 we deduce that
n(m,c,k) > n(m',c,k) + n(m — m/,c,k) > n(m’,c,k). Hence we have
n(m,c, k) > n — |B;|, as desired. o

3 Semilattices

Let (P, <) be a finite partially ordered set (poset) with the least element
0. For z,y € P, if z < y, we say that y contains z. Moreover, if there
does not exist element z such that z < z < y, we say that y covers z. The
poset P is ranked and has rank function, if there is a function ¢ from P
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to the integer set such that £(0) = 0 and £¢(y) = £(x) + 1 if y covers z.
The maximum value of ¢(z) is called the rank of P, denoted by N. The
fibers (or levels) Py, P, ..., Py of the poset are the subsets of P given by
P, = {z € P | {(z) = i}. Pick any z,y € P such that z < y. By the interval
[z, 9], we mean the subposet [z,y] ;= {z € X | z X z Xy} of P. Let (P, X)
be a finite poset with the rank function ¢ and fibers P,..., Py. We call
P a semilattice, if any two elements ¢ and y of P have the greatest lower
bound, denoted by z A y. As usual, we denote by z V y the least upper
bound of z and y if it exists. Note that if P is a semilattice and z,y € P
have a common upper bound, then z V y exists.

Let P denote a semilattice with the rank function £ and fibers P, ..., Py.
We call P a strictly semilattice, if the following properties are satisfied:

(i) For any z € P,, the number of elements z € P, such that z X z isa
constant, where 0 <r < s < N.

(i) The number |[u, z] N P,| is a constant &(r, s,t) for v € P and z € P
with « < 2, and the function 8(r, s,t) is strictly increasing about t,
where 0 <r < s<t< N,ie 1=0(rss)<0(rss+1l)< -+ <
é(r,s,N).

Theorem 3.1 Suppose that P is a strictly semilattice with rank N. For
positive integers 1 < a < B < N with |Py| > |Pg|, let P, be the point set X
and Pg be the block set B. One point x € P, is placed in one blocky € Pp
ifr < y. Assume that (0,c,8)/|Pa| > max{6(0,£,8)/|P| | a+1 £
€ < N}. Then the set system (X, B) is a uniform (n,cn, k,m)-CBC with
n = |P,|,c = mb(0,a, B)/n,m = |Pg| and k = max{2c—Q, 3c—3Q}, where
Q = max{mé(0,¢, B)/|P¢| | a+1 < € < N},

Proof. Note that n = |X| = |P,| and m = |B| = |Pg| are obvious. The
definition of strictly semilattice tells us that the set system (X,B) is a
uniform CBC. Counting pairs (v,w) € Py X Pg with v X w in two ways
yields cn = mé(0, @, 8), which implies that ¢ = m8(0,q, B8)/n. Let (B, X)
be the dual set system of the set system (X,B). For any three distinct
block X3, X2 and X3 in X, there exist three distinct points z;,z2 and x3
in P, such that X; = {y € Ps | z1 2y}, Xo={y € Pg | r2 <y} and
X3 = {y € Pg | z3 < y}. Then there are the following two cases to be
considered.

Casel: X1NX2#0,X,NX3#0and XonN X3 # 0. Since z;, T2 =
(z1Vz2) and P is a strictly semilattice, we have (0,1, @) < (0, 1, £(z1Vz2))
and N > (z; V z2) > o+ 1. Counting pairs (v,w) € Pz vz,) X Pp
with v < w in two ways yields that the number of the elements w in Py
satisfying (2, V z2) < w is m8(0, &(z1 V 22), 8)/|Pe(z,vz,)|- It follows that
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(X1 N X3| < max{mb(0,£,8)/|P¢| | a+1 < € < N} = Q. Similarly, we
have [X; N X3] < Q and | X3 N X3| < Q. Therefore, one obtains that

X1UXal = 1Xa]+|Xal - X, 0 X
> 2c-9Q,
|X1UX2UX3| = ]X1|+|X2|+IX3|—|X10X2‘
—|X1 N X3| =] Xo N X3| + | X1 N X2 N X3
> 3c-3Q,

which implies that k is at least max{2¢ — Q, 3¢ — 3Q}.

Case2: XN X, =0, X;N X3 =0o0r Xon Xz =0. Without loss of
generality, assume that X; N X5 = 0. Similar to the Case 1, we have that
k is at least max{2c — , 3c — 3Q}. o

Theorem 3.2 Suppose that P is a strictly semilattice with rank N. For
positive integers 1 < a < B < N with |P,| <| Pg|, let Pg be the point set X
and P, be the block set B. One point z € P is placed in one block y € P,
if y X x. Then the set system (X, B) is a uniform (n,cn, k,m)-CBC with
n = |Pgl,c = 6(0,a,8),m = |P,| and k = max{26(0,c,B) — 6(0,c, 8 —
1),30(0,a, B) — 360(0,x, B — 1)}.

Proof. Note that n = |X| = |Pg|,m = |B| = |P,| and ¢ = 6(0,, B) are
obvious. Let (B, X) be the dual set system of the set system (X, B). For any
three distinct block X1, X3 and X3 in X, there exist three distinct points
z1,z2 and 23 in Pgsuch that X) = {y e P, |y <}, Xo={ye Pa |y <
z2} and X3 = {y € P, | y < z3}. Since z; Axzy < 21,25 and P is a strictly
semilattice, we have 6(0, 1, £(x,Az;)) < 6(0,1,8) and B—1 > £(z1Az;) > 0.
It follows that |X; N X,| < max{6(0,,£) |0 < €< B—1} =6(0,0,8~1).
Similarly, we have | X; N X3| < 6(0,a,8—1) and | X2 N X3| < 6(0,a, 8 —1).
Therefore, one obtains that

| XaUuXe| = [Xi]+|Xa| =] X1n X,
= 20—0(0,Q,ﬂ—1),
|X1UX2UX3| = |X1|+|X2]+IX3|—I XlnX2I
—1X1 N X3| —| X2 N X3| + | X; N X2 N X3)
> 3c-36(0,a,8 — 1),

which implies that k is at least max{26(0, o, 8) —6(0,«, 8 —1), 36(0, o, B) —
36(0,a, B — 1)}, as desired. ]
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4 Semilattices from sets, vector spaces and
maps

In this section we give thirteen families of strictly semilattices with rank
N, and give their parameters. By Theorems 3.1 and 3.2, we can construct
uniform CBCs from these semilattices.

Let ¢ be a positive integer. Fix a positive integer n. The Gaussian
binomial coefficients with basis q is defined by

-1
noi o fg =
. 'l-=Io —F ifg=1,
i = i—1 n_ i
o | g iq#1
j=0
In the case g = 1, for convenience, we write (7) instead of [7] .

Example 4.1 (The Boolean Algebra) Let P be the collection of all subsets
of [N] := {1,2,...,N}. Ordered by inclusion, P is a strictly semilattice
with the rank function £(z) = |z| and the parameters

|Py| = (1:’) 8(r,s,t) = (Z::)

Pick M = [(N+1)/2). If1 < a < B8 < M, let Pg be the point set
and P, be the block set. Then we obtain uniform (n,cn,k,m)-CBC with
n=()c= ()= (%) and k = max{2(?) - (%2),3(2) - 3(°;)}. If
M <a < B <N, let P, be the point set and Pg be the block set. Then we

obtain uniform (n,cn, k,m)-CBC with n = (5),c = (g__:), m= (1,;1) and
N-a N-a-1 N-a N-a-1
k= 2 — —- .
mee{a(70) - (570 70)2(570) —2(5-2 1)
Remark. Pick the collection of all 2-subsets of {1,2,3,4} as the point
set and the collection of all 3-subsets of {1,2,3,4} as the block set. Then

we can obtain optimal uniform (6,12,4,4)-CBC. It seems interesting to
construct optimal uniform CBCs using the Boolean algebra.

Example 4.2 (The Projective Geometry) Let FY be the N-dimensional
vector space over the finite field Fy and P be the collection of all subspaces of
IF',’]V . Ordered by inclusion, P is a strictly semilattice with the rank function
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¥z} = dimz and the parameters

|P,| = mq O(r,s,t) = [::TL.

r

and P, be the block set. Then we obtain uniform (n,cn,k,m)-CBC with
= [, = ], m = (1], and
n—[ﬂ]q,c—- agm=1[a], an

[+

ol 202

IfM <a<pB<N, let P, be the point set and Pg be the block set. Then

we obtain uniform (n,cn,k,m)-CBC with n = [’Z]q,c = [g:: JM= [g]q

Pick M = [(N+1)/2]. If1 £ a < 8 £ M, let Pg be the point set

and

k = max 2 N——a] 3 [N—a—l] ,3[N—a] _3[N-—a—1] .
B-al, [B-a-1]] [B-a], B-a-1],
Example 4.3 (The Attenuated Space) For fized positive integersn and N,
let w be a fized n-dimensional subspace of IF";*N . Let P be the collection

of all subspaces x of Fg*V with z Nw = {0}. Ordered by inclusion, P is a
strictly semilattice with the rank function £(z) = dimz and the parameters

Rl=am[Y] . o= [“’]

s—r|
q
For1 < a < f <N <n, let Pg be the point set and P, be the block set.
Then we obtain uniform (n,cn, k,m)-CBC withn = |Ps|,c = §(0,a, 8),m =
|P| and

q

k = max{26(0, &, 8) — 6(0,c, 8 — 1), 36(0, &, ) — 36(0, &, B — 1)}

Forn < N, pick M = (N+n+1)/2. If M < a < 8 < N, let P, be the point
set and Pg be the block set. Then we obtain uniform (n,cn, k, m)-CBC with
n=|Py,|,m =|Pg|,c = m#(0,, B)/n and k = max{2c — , 3c - 3Q}.

Example 4.4 ([7] The Classical Polar Space) Classical finite polar spaces
are incidence structures, consisting of all the totally isotropic subspaces of
3 with respect to a certain non-degenerate sesquilinear or quadratic form
f. The rank of the polar space is the algebraic dimension of the maximal
totally isotropic subspaces, denoted by N. The summary is given by Table 1.
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Table 1: The Classical Polar Spaces

name r form | X |

[Cn(q)] 2N symplectic [ﬂq :1:[; (@¥-i+1)
(Bn(q)) 9N +1 quadratic ™, :li(qlv-i +1)
[Dn(q)] 2N quadratic (with rank N ) [’:’ ]q :E[;(qN —i=1 4 1)
PDni1(g)] 2N +2  quadratic (with rank N)  [V], '1:[: (V=1 4 1)
[2Aon(r)) 2N +1 Hermitian (g =r?) ™, :lj:(qN—i+1/2 +1)
[2Aon-a(r)] 2N Hermitian (q =r?) [i’]q :lj:(qN-i—l/z +1)

Let P be the collection of all totally isotropic subspaces of Fy. Ordered by
inclusion, P is a strictly semilattice with the rank function ¢(z) = dimz
and the parameters

|Pr| = [N] ‘”I—Il(q’\”"*""1 +1), 6(r,s,t)= [z:r]q

T
q i=0 T

wheree =1,1,0,2, %s % according to [Cn(q)], [BN(q)]! [DN(Q)]v [ZDN-H(Q)]a
[2Aan(r)], [PA2n-1(r)], respectively. Pick M = (2N +e—2)/3. If M <
a < B <N, let P, be the point set and Pg be the block set. Then we obtain
uniform (n,cn, k,m)-CBC with n = |P,|,m = |Ps|,c = m8(0, e, B)/n and
k = max{2c — Q,3c — 3Q}.

For fixed positive integers n and m, let w be an l-dimensional subspace
of Fy*™, denote also by w an ! x (n + m) matrix of rank ! whose rows
span the subspace w and call the matrix w a matrix representation of the
subspace w.

Example 4.5 (The Attenuated Classical Polar Space) For fized positive
integers n and m, let Fy be the classical polar space with rank N as in
Ezample 4.4 and w = (00™™) J(™)). Then the quotient space Fy*™ /w is
isomorphic to Fy. Let P be the collection of all subspaces z = (z122) of
Fp+™ with x Nw = {0}, where z; is a totally isotropic subspace of Fy and
z9 is a matriz. Ordered by inclusion, P is a strictly semilattice with the
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rank function £(z) = dimz and the parameters

|Pr| =¢q™ [N] r]:[l(q”*“‘*-"-1 +1), 6(r,s,t) = [t - "] .
Tleizo §—Tlg

where e as in Example {.4. For 1 <a<B <N <m+e—2, let Pg be the
point set and P, be the block set. Then we obtain uniform (n,cn,k,m)-
CBC with n = |Pg|,c = 0(0,,8),m = |P,] and k = max{20(0,a, B) —
0(0,a,8 — 1),36(0,,8) — 30(0,c0, 8 — 1)}. For (m+ e —2) < N, pick
M=02N+m+e-2)/3. If M <a< B <N, let P, be the point set
and Ps be the block set. Then we obtain uniform (n,cn,k, m)-CBC with
n = |P,|,m = |Pg|,c = m(0, e, B)/n and k = max{2c — Q, 3c — 3Q}.

Example 4.6 (The Map) Let P be the collection of all pairs (w, f), where
w is a subset of [N] := {1,2,...,N} and f : w = |N] is a map. Ordered
by inclusion, that is (w, f) =% (u,9) if w C u and g|l,, = f, P is a strictly
semilattice with the rank function &(w, f) = |w| and the parameters

|P| = N(I:') 8(r,s,t) = (:::)

For1 <a < B <N, let Pg be the point set and P, be the block set. Then we
obtain uniform (n,cn,k, m)-CBC with n = Nﬁ(g),c = (g),m = N¢ (1:)
and k = max{2(5) - (°7"),3(5) - 3(°;")}-

Example 4.7 (The Injective Map) Let P be the collection of all pairs
(w, f), where w is a subset of [N] and f : w — [N] is an injective map.
Ordered by inclusion, P is a strictly semilattice with the rank function
l(w, f) = |w| and the parameters

|| = (N)N(N— 1) (N—r+1), 6(rst)= (t"').

T s—r
Pick M = N+(1-V4N +5)/2. If 1< a < B < M, let Pg be the point set
and P, be the block set. Then we obtain uniform (n,cn,k,m)-CBC with
n = |Psl,c = (£),m = |Pal and k = max{2(%) - (;"),3(8) - 3(°;")}.
If M < a < B <N, let P, be the point set and Pg be the block set.
Then we obtain uniform (n,cn,k,m)-CBC with n = |P,|,m = |Ps|,c =
mé(0,a, B)/n and k = max{2c — Q, 3¢ — 3Q}.
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Example 4.8 (The Bilinear Form) Let P be the collection of all pair
(w, f), where w is a subspace of ]Ff;’ and f : w — ]Fg" is a linear map.
Ordered by inclusion, P is a strictly semilattice with the rank function
lw, f) =dimw and the parameters

pi=a (Y] amen=[)7]]

s—1 q'
For1<a< B <N, let P be the point set and P, be the block set. Then
we obtain uniform (n,cn,k,m)-CBC with n = ¢#N [g]q,c = [g]q,m =

qN [’z]q and

ool P00,

al, a ], Lo, a |,

Example 4.9 (The Injective Linear Map) Let P be the collection of all
pair (w, f), where w is a subspace of F{;’ and f : w — IF(IJV i an injective

linear map. Ordered by inclusion, P is a strictly semilattice with the rank
function (w, f) = dimw and the parameters

pi=ge2 ] @-n}] oma0=[.77]

s—r|’
i=N—-r+1 q

For1 < a < B < N, let Pg be the point set and P, be the block set.

N
Then we obtain uniform (n,cn, k,m)-CBC withn = ¢?(B-1/2 [ (¢'-
i=N—-r+1

D3] e Epm =t {1 @ =02, ond

i=N-—r

o] P2,

Example 4.10 (The Square Bilinear Form) Let P be the collection of all
pair (w, f), where w is a subspace of IF(’]V and f : w = w is a bilinear
form on w. Ordered by inclusion, P is a strictly semilattice with the rank
function ¢(w, f) = dimw and the parameters

P =g [N] L Ot = [t"”]
T q S

_Tq
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Forl < a < B <N, let Pg be the point set and P, be the block set. Then we
obtain uniform (n, cn, k,m)-CBC with n = ¢*" e ¢ [3],

T el F )

Example 4.11 (The Alternating Form) Let P be the collection of all pair
(w, f), where w is a subspace of lFé" end f : w — w is an alternating
bilinear form on w. Ordered by inclusion, P is a strictly semilattice with
the rank function (w, f) = dimw and the parameters

|P'r| = qr(r—l)/2 [N] , 0(7-’ s, t) = [t - T] .
T q S~ q

Forl <a < B <N, let Ps be the point set and P, be the block set. Then
we obtain uniform (n,cn, k,m)-CBC with n = ¢gP(F—1)/2 [’,}’]q, c= [g]q’ m=

qcx(a—l)/2 [I:]q and

e of] P2 000,001}

Example 4.12 (The Hermitian Form) Let P be the collection of all pair

(w, f), where w is a subspace ofIFé" and f : w = w is a Hermitien form on

2

w, where ¢ = r° is square. Ordered by inclusion, P is a strictly semilattice

with the rank function (w, f) = dimw and the parameters

IPr|=qr2/2[N] , 9(7‘,8,t)= [t—r] )
Tlq §—Tlg

T

For1 <a < B <N, let Ps be the point set and P, be the block set. Then
we obtain uniform (n,cn,k,m)-CBC with n = ¢#'/2 [g]q,c = [g]q,m =

¢*"[3], and

e-mac{of7] [P0 5[ [P0

Example 4.13 (The Symmetric Bilinear Form) Let P be the collection of
all pair (w, f), where w is a subspace ofIF‘f,V and f : w — w is a symmetric
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bilinear form on w. Ordered by inclusion, P is a strictly semilattice with
the rank function ¢(w, f) = dimw and the parameters

N
— or(r+1)/2
B =gV

q

r

8(r,5,t) = [i:’"]q.

For1<a < B <N, let P be the point set and P, be the block set. Then
we obtain uniform (n, cn, k, m)-CBC with n = ¢#(#+1)/2 [g]q, c= [g]q’ m=
q°(°‘+1)/2 [I:]q and

o] 2], )
5 Semilattices from affine spaces

In this section we give four families of examples of strictly semilattices with
rank N + 1. These examples are from an affine space.

Example 5.1 ([19] The Affine Geometry) Let FY and P be as in Ezam-

ple 4.2. Let P’ be the collection of all cosets of subspaces in P together with

the empty set 0. We define £(0) = 0. Ordered by inclusion, P’ is a strictly
semilattice with the rank function £(z) = dimx + 1 and the parameters

|P 1l =g " [ITV] . B(r+1,s+1¢t+1)= [Z:r] .

q q

and P, be the block set. Then we obtain uniform (n,cn,k,m)-CBC with
n = |Pgl,c = 8(0,c, B),m = |P,| and k = max{26(0,,8) — 6(0,c,8 —
1),36(0,c,8) — 36(0,c,8 —1)}. For M < a < 3 < N, let P, be the point
set and Pg be the block set. Then we obtain uniform (n,cn, k, m)-CBC with
n = |Py|,m = |Pg|,c = mb(0, e, B)/n and k = max{2¢c — Q, 3c — 3Q2}.

Pick M = (N —2)/2. For 1 £ a < B < M, let Pg be the point set

Example 5.2 (The Affine Attenuated Space) Let lF;‘*N and X be as in
Ezample 4.3. Let P’ be the collection of all cosets of subspaces in P together
with the empty set §. Ordered by inclusion, P’ is a strictly semilattice with
the rank function ¢(z) = dimz + 1 and the parameters

IPIT+1|=qn+N+rn—r[N:| , 9(r+1,s+1,t+1)= [t—T] )
T q S—T‘q
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For1 < a < B <N <n, let Pg be the point set and P, be the block set.
Then we obtain uniform (n,cn, k, m)-CBC withn = |Pg|,c = §(0,a, B), m =
|Pa| and k = max{26(0, a, B) — 6(0, o, 8 — 1), 36(0, &, B) — 36(0, 2, B — 1) }.
Forn< N, pickM=(N+n+1)/2-1. IfM <a<B<N, let P, be the
point set and Pg be the block set. Then we obtain uniform (n,cn, k,m)-CBC
with n = |Py|,m = | Pg|,c = m#(0, o, B)/n and k = max{2¢c — , 3¢ — 3Q}.

Example 5.3 (The Affine Classical Polar Space) Let Fg and X be as in
Ezample 4.4. Let P’ be the collection of all cosets of subspaces in P together
with the empty set §. Ordered by inclusion, P’ is a strictly semilattice with
the rank function €(z) = dimz + 1 and the parameters

_.[N = i t—7r
Py} = g*N*e [T] [I@™141), 6 +1,5+1,641) = [s_r] :
9 i=0 q
Pick M = 2N +e—-2)/3. If M < a < 8 < N, let P, be the point set
and Pg be the block set. Then we obtain uniform (n,cn,k,m)-CBC with
n = |Py|,m = | Pg|,c = m#(0, e, B)/n and k = max{2c — Q, 3c — 3Q}.

Example 5.4 (The Affine Attenuated Classical Polar Space). Let Fp+m
and P be as in Example 4.5. Let P' be the collection of all cosets of sub-
spaces in P together with the empty set 0. Ordered by inclusion, P’ is a
strictly semilattice with the rank function £(z) = dimz + 1 and the param-

eters
r—1

[N —ie
(Pl = @sssmeem=r [V T(ghseniot oy,
7 i=0

9(r+1,s+1,t+1)=[2_rJ :
q

If1 £a < B <N <m, let Pg be the point set and P, be the block set. Then
we obtain uniform (n, cn, k,m)-CBC with n = |Pg|,c = (0, a, 8), m = | P,|
and

k = max{26(0, a, B) — 6(0, a, B — 1), 36(0, a, B) — 36(0, , B — 1)}

Form < N, pick M = (2N+m+e—2)/3. If M < a < B < N, let P, be the
point set and Pg be the block set. Then we obtain uniform (n,cn, k,m)-CBC
with n = |Fs|,m = |Pg|,c = mf(0, a, B) /n and k = max{2c — Q,3c — 3Q}.
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6 Semilattices from distance-regular graphs

In this section, we give five families of examples of strictly semilattices with
rank N. These examples are from distance-regular graphs.

Let T be a connected regular graph. We identify I with the set of
vertices. For two vertices u and v, let 8(u,v) denote the usual distance
between v and v. The maximum value of the distance function in T is
called the diameter of T', denoted by D(I"). For vertices u and v at distance
i, define

C(u,v) = Ci(u,v) = {w | d(u,w) =i - 1,8(w,v) = 1},

A(u,v) = Ai(u,v) = {w | 8(u, w) =14,0(w,v) = 1}.
For the cardinalities of these sets we use lower case letters ¢;(u,v) and
a;(u,v). A connected regular graph I' with diameter D is called distance-
regular if ¢;(u,v) and a;(u,v) depend only on ¢ for all 1 <7 < D.

Let T’ be a distance-regular graph. A r-subset {r;,z2,...,2.} C T
is said to be a t-cligue of I' with size r if any two distinct vertices in
{z1,%2,...,2,} are at distance t.

Example 6.1 ([1] The Johnson Graph) Let (i) be the collection of all
t-subsets of [n]. The Johnson graph J(n,t) is defined on (™)) such that two
vertices A and B are adjacent if and only if |[ANB| =t—1. Let N = |n/t|
and P be the collection of all t-cliques of the Johnson graph J(n,t) together
with the empty set 0. Ordered by inclusion, P is a strictly semilattice with
the rank function £(z) = |z| and the parameters

P = (z)% uir,s,t) = (:::)

Moreover, by Theorems 3.1 and 3.2 we can obtain uniform CBCs.

Example 6.2 (/1] The Grassmann Graph) Let [Ff]q be the collection of
all t-dimensional subspaces of Fy. The Grassmann graph Jy(n,t) is de-
fined on [Ft";]q such that two vertices A and B are adjacent if and only if
dim(ANB) =t —1. A strongly t-clique of Jy(n,t) with size ¢ is a subfam-
ily {A1, Az, ..., A} C [[7], such that dim(A; + Az + -+~ + Ag) = te. Let
N = |n/t] and P be the collection of all strongly t-cliques of the Grassmann
graph Jy(n,t) together with the empty set @. Ordered by inclusion, P is a
strictly semilattice with the rank function £(z) = |z| and the parameters

Prtr-0/2 72 [ it t—r
IPf|=q—'H[ ] s u(r,s,t)=( )
q

r! ol ¢ s—T
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For1 <a < B <N, let Ps be the point set and P, be the block set. Then
we obtain uniform (n,cn, k,m)-CBC withn = |Pg|,c = 6(0,, B),m = |P,]
and k = max{260(0, o, 8) — 8(0, o, B — 1), 36(0, o, B) — 36(0, 2, 8 — 1)}.

A distance-regular graph I" with diameter D > 2 is said to be antipodal,
if 8(z,y) = 0(x,2) = D and y # z implies 8(y, z) = D. For u €T, the size
of the set {v € " | d(u,v) = D} depends only on D, denoted by kp.

Example 6.3 ({1, 7] The Antipodal Distance-Regular Graph) Suppose that
T is an antipodal distance-regular graph with diameter D. Let N = kp + 1
and P be the collection of all D-cliques of T' together with the empty set
0. Ordered by inclusion, P is a strictly semilattice with the rank function
{(z) = |z| and the parameters

121 = (2 D )ieen +1, s = (70)

T §—r

Pick M = |(kp +1)/2]. If1 < a < B < M, let Ps be the point set
and Py be the block set. Then we obtain uniform (n,cn,k,m)-CBC with
n = |Pgl,c = 8(0,e,B8),m = |P,| and k = max{26(0,, 8) — 6(0,, 8 —
1),30(0,@,8) —30(0,0,8—1)}. If M <a < B< N, let P, be the point set
and Py be the block set. Then we obtain uniform (n,cn,k,m)-CBC with
n = |Ps|,m = |Pg|,c = m8(0, &, B) /n and k = max{2c — Q,3c — 3Q}.

A distance-regular graph I' is said to be of order (I, v) if, for each vertex
z € I, the induced subgraph on I'(z) is a disjoint union of u + 1 cliques
with size {. Then each maximal clique is of size ! + 1, and each vertex is
contained in % + 1 maximal cliques.

Example 6.4 (/1, 7] The Distance-Regular Graph of Order (1, k) ) Suppose
that T' is o distance-regular graph of order (l,u). Let N =1+ 1 and P be
the collection of all cliques of T’ together with the empty set §. Ordered by
inclusion, P is a strictly semilattice with the rank function £(z) = |z| and
the parameters

|P,| = (H;l)n(u+1)/(l+1), ulr,s,t) = (t"").

§—7r

Pick M = [(1+1)/2]. If1 < a < B < M, let Pg be the point set
and P, be the block set. Then we obtain uniform (n,cn,k,m)-CBC with
n = |Pgl,c = (0,0, 8),m = |Pa| and k = max{20(0,c, ) — 6(0,c, 8 —

316



1),30(0,,8) — 36(0,, B —1)}. f M S a < B < N, let P, be the point set
and Py be the block set. Then we obtain uniform (n,cn,k,m)-CBC with
n = |Pyl,m = |Pg|,c = m8(0,, B)/n and k = max{2¢c — Q, 3c — 3Q}.

Recall that a subgraph induced on a subset A of I is called strongly
closed if C(u,v) U A(u,v) € A for every pair of vertices u,v € A. A
distance-regular graph I' with diameter D is called D-bounded, if every
strongly closed subgraph of I is regular, and any two vertices = and y are
contained in a common strongly closed subgraph with diameter d(z,y). A
regular strongly closed subgraph of I is called a subspace of I'. For any
two subspaces A; and Ay of I', Ay + Az denotes the minimum subspace
containing A; and As.

Proposition 6.1 ({10, Lemma 2.1]) LetT be a D-bounded distance-regular
graph with diameter D > 2. For1 < i+1 <i+s<i+s+t < D,
suppose that A and A’ are two subspaces satisfying A C A’, D(A) =i and
D(A') = i+ s +t. Then the number of the subspaces with diameter i + s
containing A and contained in A’, denoted by N(i,i+ s,i+ s +1t), is

(bi — bigose)(bixs = bitste) - (bigs—1 — bits+t)
(bi — bigs)(big1 — bits) - (Dits—1 — bits)
Example 6.5 (The D-Bounded Distance-Regular Graph) Let T’ be a D-
bounded distance-regular graph with D = N. For z € T, let P be the

collection of all subspaces A containing z in . Ordered by inclusion, P is a
strictly semilattice with the rank function £(A) = D(A) and the parameters

|P,| = N(0,r,D), u(r,st)=N(r,s,t).

Moreover, by Theorems 3.1 and 3.2 we can obtain uniform CBCs.

7 Conclusion

In this paper, we explore a novel construction of CBCs. By investigating
a series of semilattices originated from sets, vector spaces and maps, affine
spaces and distance-regular graphs, we construct many uniform CBCs. In
this sense, our work builds the connection between the CBCs and semilat-
tices. We hope this new point of view can stimulate further research and
provide new constructions of CBCs. We have to say that our constructions
will provide more choices in solving practical problems.
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Huang and Weng [12] introduced pooling spaces, the first author, Ma
and Wang [11] introduced partition semilattices. Note that strictly semi-
lattices are not only pooling spaces but also partition semilattices. It seems
interesting to construct CBCs using pooling spaces and partition semilat-
tices.
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