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Abstract

The eternal domination number of a split graph is shown to equal
either its domination number, or its domination number plus one. A
characterization of the split graphs which achieve equality in either
instance is given. It is shown that the problem of deciding whether
the domination number of a Hamiltonian split graph is at most a
given integer k is NP-complete, as is the problem of deciding whether
the eternal domination number of a Hamiltonian split graph is at
most a given integer k. Finally, the problem of computing the eternal
domination number is shown to be polynomial for any subclass of
split graphs for which the domination number can be computed in
polynomial time, in particular for strongly chordal split graphs.

1 Introduction

In eternal domination, the goal is to dynamically maintain a fixed-size
dominating set of a graph G subject to the condition that at each time
t=0,1,2,... the set be reconfigured so that it contains a specified vertex.
This problem was first studied by Goddard, Hedetniemi and Hedetniemi in
[9). Several different models were proposed, depending on how the recon-
figuration may take place. We consider the “all guards move” model, in
which we say that a dominating set D, can be reconfigured to a dominating
set D, if and only if there is a bijection 7 : Dy = Dy such that r(z) € N[z]
for all z € Dy. The guarding terminology comes from the analogy of having
mobile guards stationed at vertices of Dy and the reconfiguration involving
each guard either staying in place, or moving along an edge of G to a vertex
of D,. A survey of results on eternal domination and related problems can
be found in [14]. Reconfiguration problems for dominating sets have been
considered by several authors, for example see [5, 8, 10].

An eternal dominating set is a dominating set D, starting from which a
dominating set of size |D| can be dynamically maintained as above. Note
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that each set which arises in the process is also an eternal dominating set.
The smallest integer d for which there exists an eternal dominating set of
cardinality d is called the eternal domination number of G, and denoted
by v$5(G). The problem of computing the eternal domination number is
polynomially solvable for several graph families including trees [13], and
proper interval graphs {3]. It follows from the recursive construction of
cographs that the eternal domination number of a connected cograph which
is not complete is two. Since threshold graphs are cographs, the same
statement holds for them.

In general it is difficult to determine the complexity of deciding whether
a given graph has eternal domination number at most a given integer k.
The main difficulty seems to lie in establishing membership in a particular
complexity class, as this requires a succinct certificate that a dominating
set of the given size can be maintained “forever”. Deciding whether a given
graph has an eternal dominating set of size at most a given integer k is
hard for co-NPNP, but not known to belong to this complexity class [11].

Our focus is on eternal domination in split graphs. Preliminary results
are discussed in the next section. One of these shows that the problem of
deciding whether the domination number of a Hamiltonian split graph is at
most a given integer k is NP-complete. The complexity of this problem is
listed as “unknown” on the website http://wuww.graphclasses.org. The
main results of the paper are presented in Section 3. We show that the
eternal domination number of a split graph is either its domination number,
or its domination number plus one, and characterize the split graphs such
that equality holds in either case. It is then shown that, for split graphs,
there exists a succinct certificate that there exists an eternal dominating
set of a given size. Hence, for split graphs, the problem belongs to NP. This
makes it possible to prove that the problem of deciding whether the eternal
domination number of a Hamiltonian split graph is at most a given integer
k is NP-complete. The section concludes by showing that the problem of
computing the eternal domination number is Polynomial for graphs which
are simultaneously a split graph and a strongly chordal graph, and some
other subclasses of split graphs.

The eternal domination number of a graph in the all guards move model
is typically denoted by v5°. We prefer to adopt the notation 755 used in
[7]) because it leaves no doubt that all guards can move, rather than only
m of them.
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2 Definitions and preliminary results

Recall that a split graph is a graph G such that V(G) admits a partition
(C(G),I(G)) into a clique C = C(G) and an independent set Z = Z(G). A
split graph may have several such partitions. It can be assumed that Z is
maximal. Thus, every vertex in C can be assumed to have a neighbour in

T.

Also recall that a dominating set in a graph G is a subset D C V such
that N[v] N D # @ for every v € V, where N{v] = N(v) U {v} is the closed
neighbourhood of v. Each vertex in N[v] N D is said to dominate v. The
minimum size of a dominating set of G is the domination number of G and
denoted by v = v(G).

Observation 2.1 Every connected split graph G has o minimum dominal-
ing set which is a subset of C.

Theorem 2.2 The problem of deciding whether a split graph with a given
Hamilton cycle has a dominating set of size at most a given integer k is
NP-complete.

Proof: Since the Hamilton cycle is given as part of the instance, it is possible
to recognize a valid instance of the problem in polynomial time. Since it is
easy to verify whether a given set of vertices is a dominating set of size at
most k, the problem belongs to NP. The transformation is from the problem
of deciding whether a split graph has a dominating set of size at most a
given integer k, which was proved to be NP-complete by Bertossi [1].

Suppose a split graph G and an integer k£ > 0 are given. Let C(G) =
{e1,¢2,...,¢p} and Z(G) = {i1,i2,...,%g}. We may assume G is neither
a complete graph nor the complement of a complete graph, so p > 0, and
g > 0. Construct G’ from G as follows. For each vertex i; € Z(G), add two
new vertices a;; and b;;. Add edges so that the subgraph of G’ induced by
C(G) U {ai,,b;; : i; € I(G)} is complete. Finally, for each i; € Z(G), join
a;; and by, to i;. Note that G’ is a split graph, and the sequence

H= C1,C2, .- 'cpaa'ilyilibilaaizv’l'?abiza' .. aaiq9iq’biqacl

is a Hamilton cycle in G’. The transformed instance of the problem consists
of G', the Hamilton cycle, H, and the integer k. The transformation can
clearly be accomplished in polynomial time.

It remains to show that G’ has a dominating set of size at most k if and
only if G has a dominating set of size at most k. Since any dominating set
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of G is a dominating set of G/, if G has a dominating set of size at most k,
then so does G'. Since, for every vertex x € {a,, bi; : i; € Z(G’)} there is
a vertex y € C(G) such that N(y) 2 N(z), any dominating set of G’ of size
at most k can be transformed into a dominating set of G of size at most k.

O

As mentioned in Section 1, a difficulty in determining the complexity of
deciding whether a graph G has an eternal dominating set of size at most
a given integer k is providing a succinct certificate that there is a strategy
for dominating the graph “forever”. We next define a digraph which will
be shown to provide a certificate that such a strategy exists. We will show
in the next section that, when G is a split graph, there is a certificate of
size polynomial in the number of vertices of G.

Let G be a graph and k be a positive integer. An eternal dominating
k-configuration for G is an arc-labelled directed graph D such that:

e the vertices of D are dominating sets of G of the same cardinality,
which is at most k;

e there is an arc from vertex X to vertex Y labelled with the set Y — X
if and only if X can be reconfigured to Y; and

e for every vertex X of D, the union of the labels on the arcs leaving
X equals V(G) - X.

The following proposition can be used to show that, if the integer k
is fixed, then the problem of deciding whether a graph G has Y < kis
Polynomial. The ideas are taken from [12] and carry over to our situation
even though the results given there are neither in this form, nor for this
variant of eternal domination. One begins with the collection of all dom-
inating sets of V(G) with cardinality k (as k is fixed these can be found
in polynomial time) and constructs an arc-labelled digraph with these as
vertices using the rule in the second point above. Then, vertices which do
not meet the criteria in the third point above are iteratively deleted until
an eternal dominating k-configuration is found, or no vertices remain.

Proposition 2.3 ([12]) A graph G has 4%, < k if and only if it has an
eternal dominating k-configuration. A k-subset D C V is an eternal dom-
inating set of G if and only if it belongs to some eternal dominating k-
configuration.

To compute the eternal domination number, one can use a binary search

strategy and employ the above algorithm for [log,(|V|)] values of k. Al-
ternatively, since eternal domination can be regarded as a pursuit-evasion
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game, one can do the same using the relational approach in [2] instead
of looking for an eternal dominating k-configuration. Both of these meth-
ods are O(|V|f0a)). A O(17.54!V!) algorithm for computing the eternal
domination number is presented in [7].

3 Eternal domination in split graphs

Our main results are presented in this section. There is a sense in which
the first lemma is the main result of the paper. It is the essential ingre-
dient that makes all of the other results possible. Using this lemma we
give tight bounds on the eternal domination number of split graphs, and a
characterization of the situations in which equality holds. We then turn to
algorithmic issues and show that it is NP-complete to decide whether the
eternal domination number of a Hamiltonian split graph is at most a given
integer k. The section and paper concludes by identifying some subclasses
of split graphs for which the eternal domination number can be computed
in polynomial time.

Lemma 3.1 Let G be a split graph. Then v, < d if and only if for each
z € V there erists a dominating set Dy with z € Dz, and |D.| =d.

Proof: By definition the elements of an eternal dominating set can be recon-
figured to obtain an eternal dominating set containing any specific vertex.
Hence the required sets all exists when d = +35,. Thus they exist for any
larger integer.

We shall show that if the sets D, all exist, then v3, < d. Since G is a
split graph, for any = € V, we can assume D, — {z} C C.

Suppose the elements of D, are required to be reconfigured to obtain
the set D,,, where v # w. We must show that there exists a bijection
r : D, » D, such that r(z) € Niz] for each z € D,. If v € Z then,
since D,, is a dominating set such that D,, — {w} C C, there is a vertex
u € N[v)nD,NC; set r(v) = u. Similarly, if w € Z, since D,, is a dominating
set such that D, —{v} C C, there is a vertex z € N{w|ND,NC; set 7(2) = w
(note that if v € Z, then z # v, and otherwise r(v) was not previously
defined). Since (D, UD,,)— {v,w} CC, and |D,| = |Dy| = d, the mapping
r can be extended to a bijection. It follows that the reconfiguration is
possible.

Thus each set D, = € V, is an eternal dominating set, and 735, < d. O

It follows that 45, is the smallest positive integer d such that, for each
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z € V, there exists a dominating set D, with z € D,, and |D;| = d.
Corollary 3.2 Let G be a split graph. Then v(G) < v5(G) < v(G) + 1.

Proof: The lower inequality is clear. It suffices to prove the upper inequality.
The result is clear if G has only one vertex, so assume |V| > 2. Thusy < [V].
Let D C € be a minimum dominating set, and w ¢ D.

Letz € V. If z € D, thenset D, = DU{w}. Ifz € D, set D, = DU{z}.
Each set D, is a dominating set of size v + 1. The result now follows from
Lemma 3.1. O

We next characterize the graphs which achieve equality in Corollary 3.2.
A vertex z of a graph G is a domination critical vertez if y(G—{z}) < v(G).

Corollary 3.3 Let G be a split graph which is not complete, and in which
every vertez in C is adjacent to a vertex in . Then v%,(G) = v(G) if and
only if every vertez in I is a domination critical vertex.

Proof:

Suppose v55,(G) = ¥(G) > 1. Then, by Lemma 3.1, for any = € Z there
exists a dominating set D, of size v(G) with z € D,. Since the set D, —{z}
is a dominating set of G — {z}, it follows that z is a domination critical
vertex.

Now suppose every vertex in Z is a domination critical vertex. Then, for
any = € Z there exists a minimum dominating set D, consisting of = and a
minimum dominating set of G—{z}. Hence, by Lemma 3.1, 75,(G) = 7(G).

a

We now describe examples of split graphs in which Y3 = 7. Suppose
C is a complete graph on p vertices. For 1 < t < p, let Z be the set of
t-subsets of the vertices in C. Join a vertex z belonging to C to a vertex
T belonging to T if and only if z € T. Call the resulting split graph S .t
Then the domination number of Sptisp—t+1,asanysetof p—t+1
vertices in C contains a vertex adjacent to each vertex in Z, and any set of
p — t vertices in C is the complement of the neighbourhood of some vertex
in Z. Every vertex in C is adjacent to a vertex in Z, and for any T € Z the
complement of the neighbourhood of T is a dominating set of S, , with size
p—t =+ —1. Thus, by Corollary 3.3, we have v, = v.

Let G be a split graph in which every vertex in Z has degree 2. Let
Auz(G) be the graph with V(Auz(G)) = C(G) and zy € E(Auz(G)) if and
only if there exists : € Z(G) which is adjacent to both = and y. It is clear
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that for any graph H there exists a split graph G such that H = Auz(G).
Let D C C be a dominating set in G. (For any dominating set of G, a
vertex not in C can be replaced by one of its two neighbours.) Then D
corresponds to a vertex cover of H. It follows that v(G) equals the vertex
covering number of H, 7(H). We have therefore proved that the problem
of deciding whether a split graph has a dominating set of size at most a
given integer k is NP-complete when restricted to the situation where every
vertex in Z has degree 2. (This result is almost certainly not new.)

The graph Auz(G) helps provide connections to the problem of charac-
terizing the split graphs with 735, = <. Suppose H = Auz(G) is connected.
Then every vertex in C is adjacent to a vertex in Z. By Corollary 3.3,
7%5,(G) = v(G) if and only if every vertex in Z is a domination critical ver-
tex. Equivalently, 7%5,(G) = v(G) if and only if every edge e € E(H) is a
vertez cover critical edge (i.e. 7(H —e) < 7(H)). Since the complement of
a vertex cover is an independent set, this is also equivalent to H having the
property that the deletion of any edge increases the independence number.
Graphs with this property are studied in [4]. A characterization is given,
but not one which is easy to check. Our Corollary 3.3 can be regarded as
giving another characterization of these graphs which is also not easy to
check.

On the other hand, if H = Auz(G) is bipartite, then by Konig’s The-
orem we have 755,(G) = v(G) if and only if the deletion of any edge of H
reduces the size of a maximum matching. This is true if and only if every
edge of H belongs to a maximum matching, that is, if and only if H is a
disjoint union of copies of Kj.

One can also define Auz(G) when the vertices in Z may have any degree,
in which case it is a hypergraph. Again, a dominating set in G corresponds
to a vertex cover in Auz(G).

We now show that, in the case of split graphs, an eternal dominating
k-configuration provides a succinct certificate that there exists an eternal
dominating set of size at most k.

Lemma 3.4 Let G be a split graph with ¥, < k. Then G has an eternal
dominating k-configuration with at most |V(G)| vertices.

Proof: We may assume k < |C|. For each vertex z, let D, be a dominating
set of size k which contains z and k — 1 vertices of C — {z}. The sets D
exist because G is a split graph. For any vertices z,y € V(G), the set D,
can be reconfigured to Dy, as in the proof of Lemma 3.1. It follows that the
sets Dy, x € V(G), form the vertices of a dominating configuration. O
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Theorem 3.5 The problem of deciding whether a split graph G with a
given Hamilton cycle has an eternal dominating set of size at most a given
integer k is NP-complete.

Proof: We show first that the problem is in NP. Suppose 7%,(G) < k.
The certificate consists of an eternal k-dominating configuration with n =
|V(G)| vertices, which exists by Lemma 3.4. Since each vertex consists of a
subset of V(G), there are most n(n—1) arcs, and each arc label is a subset of
V(G), the certificate is of size polynomial in n. Further, the certificate can
be verified by checking that the definition of a dominating k-configuration
is satisfied, and this can be accomplished in time polynomial in n.

The transformation is from the NP-complete problem of deciding whether
a given split graph with a given Hamilton cycle has a dominating set of size
at most a given positive integer, which is NP-complete by Theorem 2.2.
Suppose an instance of this problem, a split graph G with a Hamilton cy-
cle M and a positive integer t, is given. We may assume that G is not a
complete graph. Thus, Z # . Let G’ be the split graph obtained from G
in two steps. First, choose any vertex ¢ € C with a neighbour in Z, add a
new vertex ¢’ and join it to every element of N|c]. Second, add a vertex
g adjacent to all vertices in C U {c'}. The transformed instance consists
of G’, the Hamilton cycle obtained by inserting g, ¢’ into M immediately
after c, and the integer ¢ + 1. The transformation can be accomplished in
polynomial time.

Observe that ¥(G’) = v(G). Further, since the vertex g is not a dom-
ination critical vertex of G’, we have v%,(G’) = ¥(G') + 1 by Corollary
3.3. Thus, if y(G) < ¢, then v33(G’) = ¥(G) + 1 < t + 1. Similarly, if
YR(G)<t+1,thent+12> ¥G)+1. O

We conclude by identifying some subclasses of split graphs, different

from threshold graphs, for which the problem of determining the eternal
domination number is Polynomial.

Lemma 3.6 Let G be a subclass of split graphs which is closed with re-
spect to vertez deletion and on which the problem of finding the domination
number is Polynomial. Then the problem of finding the eternal domination
number is also Polynomial on G.

Proof: Let G € G. By Corollary 3.2 the quantity y3,(G) is either v(G) or
7(G) + 1. By Corollary 3.3, it equals
Yan(G) = 1 + max{7gp(G — {2}) : 2 € Z(G)}.

The maximum can be found by solving at most |Z| domination problems.
By hypothesis, each vertex-deleted subgraph of G is also in G. Since the
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domination problem is Polynomial on G, the maximum can be done in time
polynomial in |V(G)|. O

Corollary 3.7 The problem of computing the eternal domination number
is Polynomial on the class of graphs which are simultaneously a split graph
and a strongly chordal graph.

Proof: Strongly chordal graphs are closed with respect to vertex deletion,
as are split graphs. The domination number of a strongly chordal graph can
be computed in polynomial time [6]. The result now follows from Lemma
36. 0

References

{1] A.Bertossi, Dominating sets for split and bipartite graphs, Information
Processing Letters, 19 (1984), 37-40.

(2] A. Bonato and G. MacGillivray, Characterizations and algorithms
for generalized cops and robbers games. manuscript, 2015. See
http://www.math.uvic.ca/faculty/gmacgill/Preprints/

[3] A.Braga, C. de Souza and O. Lee, The eternal dominating set problem
for proper interval graphs, Information Processing Letters 115 (2015),
582-587.

[4] M. Chellali; On k-independence critical graphs, Australasian Journal
of Combinatorics, 53 (2012), 289-298.

(5] M. Edwards, Vertex-Criticality and Bicriticality for Independent Dom-
ination and Total Domination in Graphs. Ph.D. Thesis, Department
of Mathematics and Statistics, University of Victoria, Victoria, BC,
Canada, 2015.
https://dspace.library.uvic.ca:8443/handle/1828/6097

[6] M. Farber, Domination, independent domination, and duality in
strongly chordal graphs. Discrete Applied Math. 7 (1984), 115-130.

[7] S. Finbow, S. Gaspers, M.-E. Messinger and P. Ottaway, A Note on
the Eternal Dominating Set Problem. Manuscript, 2015.

[8] G. Fricke, S.M. Hedetniemi, S.T. Hedetniemi, K.R. Hutson, 7-éraphs
of graphs, Discussiones Mathmaticae Graph Theory, 31 (2011), 517-
531.

129



[9] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, Eternal security
in graphs, Journal of Combinatorial Mathematics and Combinatorial
Computing 52 (2005), 169-180.

[10] R. Haas and K. Seyffarth, The k-Dominating Graph, Graphs and Com-
binatorics, 30 (2014), 609 — 617.

(11} W. F. Klostermeyer, Complexity of Eternal Security, Journal of Com-
binatorial Mathematics and Combinatorial Computing, 61 (2007),
135-141.

[12] W. F. Klostermeyer, M. Lawrence, and G. MacGillivray,
Dynamic Dominating Sets: the Eviction Model for Eter-
nal Domination. To appear in Journal of Combinato-
rial ~Mathematics and  Combinatorial  Computing.  See
http://www.math.uvic.ca/faculty/gmacgill/Preprints/

[13] W. Klostermeyer, and G. MacGillivray, Eternal Dominating Sets in
Graphs, Journal of Combinatorial Mathematics and Combinatorial
Computing 68 (2009), 97-111.

[14] W. Klostermeyer,and C.M. Mynhardt, Protecting a graph with mobile
guards. http://arxiv.org/abs/1407.5228

S. Bard, M. Edwards, G. MacGillivray!, F. Yang
Mathematics and Statistics, University of Victoria
P.O. Box 1700 STN CSC

Victoria, BC, Canada V8W 2Y2.

C. Duffy

Mathematics and Statistics, Dalhousie University
6316 Coburg Road

P.O. BOX 15000

Halifax, NS, Canada B3H 4R2

Stefan Bard, sbard@uvic.ca

Chris Duffy, christopher.duffy@dal.ca
Michelle Edwards, edwardsm@uvic.ca
Gary MacGillivray, gmacgillQuvic.ca
Feiran Yang, fyang@uvic.ca

1Research supported by NSERC

130



