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ABSTRACT. We show that all but 4489 integers n with 4 < n < 4.10%0
cannot occur as the order of a circulant Hadamard matrix. Our al-
gorithm allows us to search 10000 times farther than prior efforts,
while substantially reducing memory requirements. The principal
improvement over prior methods involves the incorporation of a sep-
arate search for double Wieferich prime pairs {p, ¢}, which have the

property that p7=! =1 mod ¢? and g*?~! = 1 mod p?.

1. INTRODUCTION

An n x n matrix H, each of whose entries is &1, is a Hadamard matriz
if HHT = nl,, that is, if its rows are mutually orthogonal. A matrix is
circulant if each row after the first one is a cyclic shift to the right by one
position of the prior row. The matrix

+ + + -
-+ + +
Hi=|p - 4 4
o+ -+

has both properties, but no circulant Hadamard matrices of order n > 4
are known. The well-known circulant Hadamard matriz conjecture asserts
that none of higher order exists. This problem is more than a half-century
old, dating at least to the monograph of Ryser [14].

A number of necessary conditions are known for an integer n > 4 to he
the order of a circulant Hadamard matrix. Ryser noted that n must he a
square, and subsequently Turyn [19,20] showed that n must have the form
4u? with u odd and not a prime power, and further that « > 55. In 1999,
Schmidt {15] raised this bound to u > 165, and in 2002 [16] found that
only two additional values of u > 1 could not be disqualified up to 5- 10%/2;
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u = 11715 and u = 82005. In 2005, Leung and Schmidt [8] improved the
lower bound to w > 11715. These results employed some very restrictive
algebraic conditions on u arising from their field descent method [8, 16].
These conditions are described in Section 2, but they involve a requirement
that among the prime divisors of u there must exist a number of Wieferich
prime pairs, which are pairs (g,p) with the property that ¢?~! = 1 mod
p?. Articles by P. Borwein and the second author (1,12] exploited this
structure to construct all integers 1 < u < 10! for which n = 4u? could
not be excluded as the order of a circulant Hadamard matrix by using the
known restrictions. These searches produced only 1453 different permissible
integers using restrictions known in 2009, and this was reduced to 1371
possibilities by employing three additional algebraic restrictions found by
Leung and Schmidt in 2012 [9]. More recently, a powerful new restriction
developed by Leung and Schmidt [10] reduced this number to 882 possible
values.

In those prior searches, the most computationally expensive case checked
for the possibility that u = pq for distinct odd primes p and q. This could
occur only when {p, ¢} form a double Wieferich prime pair, that is, when
both (¢,p) and (p,q) are Wieferich prime pairs. In this article, we em-
ploy a separate and more efficient search for double Wieferich prime pairs,
using the method of Keller and Richstein [7]. With this case handled sepa-
rately, other cases can assume additional information on u—in particular,
the presence of at least three distinct prime factors. This allows for a siz-
able increase in the space we can search, while substantially decreasing the
overall memory requirement. Using this strategy, we magnify the bound
on u by a factor of 100, and thus increase the bound on possible orders of
circulant Hadamard matrices by a factor of 10%. We find that all but 4489
integers n with 4 < n < 4-10% can he eliminated as the order of such
a matrix. The details of our search strategy appear in Section 3, and we
summarize its results in Section 4. Some brief remarks on a special case of
the circulant Hadamard matrix conjecture known as the Barker sequence
problem, which was the primary focus of [1,12], appear in Section 5.

The smallest integer n > 4 that cannot be excluded as a possible order of
a circulant Hadamard matrix remains the example of Leung and Schmidt,
n = 4-11715% = 548 964 900.

2. RESTRICTIONS ON CIRCULANT HADAMARD MATRICES

We summarize a number of known algebraic restrictions on the order
n = 4u? of a circulant Hadamard matrix when u > 1. We recall that Turyn
showed that » must be odd, and must have at least two distinct prime
divisors. Turyn [19] also established a more complicated criterion known
as the self-conjugacy test. For this, given two integers a and b, we say a is
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semiprimitive modulo b if there exists an integer j such that e/ = —1 mod
b. We say an integer r is self-conjugate modulo an integer s if each prime
divisor p of r is semiprimitive mod s,, where s, denotes the largest divisor
of s not divisible by p. Turyn proved the following theorem.

Restriction 1. Suppose n = 4u? is the order of a circulant Hadamard
matriz, and 7 and s are integers with v | u, s | n, and ged(r,s) has k > 1
distinct prime factors. If r is self-conjugate mod s, then rs < 28~ 1n,

Jedwab and Lloyd [6] noted a useful special case of this, obtained by
selecting r = p* for an odd prime p and s = 2p2k,

Restriction 2. Suppose p* | u, for an odd prime p and positive integer k.
If p?% > 2u? then no circulant Hadamard matriz of order n = 4u? ezists.

For the next two tests, we require some definitions. Let D(t) denote the
set of prime divisors of the integer ¢t. For a positive integer m and a prime
q, let

H p if misodd or g =2,
my = { PEPENa)
2 H p otherwise.
p€D(m)\{q}
Next, let ord,(t) denote the order of ¢ in the multiplicative group (Z/sZ)*,
and for a prime p let v,(t) denote the largest integer k such that p* |t but
p*1 1 t. For positive integers m and n and a prime p, define b(p, m,n) by

2—1 + vy (ord -1 if =2s
qunz:i){{Z} {VZ(q ) 2( m, (Q)) } p

max P=1 _ 1) 4+ v,(ord ifp>2,
1€DONP) {Vp(q ) p( mg (Q))} p

with the convention that b(2,m,2%) = 2 and b(p,m,p*) = 1 for an odd
prime p and an integer k > 0. Then define F(m,n) by

b(p,m,n) =

F(m,n) =ged | m, H ph(pmn)
pED(m)

Leung and Schmidt [8] established the following restriction, which we call
the F-test. Here, ¢(-) denotes Euler’s totient function.

Restriction 3. If n = 4u? is the order of a circulant Hadamard matriz,
then up(u) < F(u?, u).

Next is a bound of Leung and Schmidt from (9] that also depends on
the function F(m,n). We cite their result here only as it applies to the
circulant Hadamard matrix problem.
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Restriction 4. If n = 4u? is the order of a circulant Hadamard matriz,
and m and w are positive integers with m | v, w | n, and m is self-conjugate
modulo njw, then np(F(n/w,u?/m?)) < w?F(n/w,u?/m?)2.

The article [9] of Leung and Schmidt established two additional restric-
tions involving self-conjugacy, which apply only in certain special cases.
One requires that u have a particularly large prime-power divisor, although
not as large as that needed in Restriction 2.

Restriction 5. Suppose that n = 4u? is the order of a circulant Hadamard
matriz, let p be an odd prime dividing u, let a = v,(u), and suppose that
p®® > 2u. Further, let r be a divisor of m = u/p®, with r self-conjugate
modulo p, and suppose that q1, ..., gx are the prime divisors of m/r. Then
ged(ordy(qr), . .., ordy(gr)) < m?/r2.

The last restriction from [9] applies when u is composed entirely of primes
that satisfy a simple congruence condition.

Restriction 6. Let u be an integer whose prime divisors are all congruent
to 3 mod 4. Let p be one of these divisors, and suppose that w is a divisor
of u that is self-conjugate modulo p. Let qy, ..., q. be the prime divisors,
excluding p, of u/w. Ifu =w orged(ord,(q1), .. .,0rd,(gx)) < u?/w?, then
no circulant Hadamard matriz of order 4u? exists.

Finally, Leung and Schmidt {10] recently determined an additional alge-
braic restriction on the order of a circulant Hadamard matrix. For positive
integers x and y, let w(z, y) denote the largest divisor of x that is relatively
prime to y.

Restriction 7. Let u be an odd integer, let d | u so that ged(d, u/d) = 1,
and let p be a prime divisor of u/d with the property that 2u?p(d?) <
pp(u?). Let a be the multiplicity of p in u/d, let m be a divisor of u with
p* | m such that v,(ordyza(q)) > vp(ordy(uya,q)(q)) for every prime divisor
g # p of u. Lett be an integer satisfying ged(t,u/d) = 1 and for every
prime divisor q of u/m there is an integer s, with ¢°1 =t mod w(u?/d?,q).
Let S be the set of prime divisors of u/(dp®), and set

g {{s € S: vaordy(t)) = va(ordy(t))}, if 2| ordy(t),
0, if 24 ordp(t).

In addition, if u/m is a prime power q° then set S’ = S'U{q}. Fors € S\§,
set f; = min{ordp,(t)/ord,(t), (s — 1)/2}. If

ord,(t) > 5;— ma.x{{zl;,;2 } U { fs(ss_—lfs) 1S € S\S’}} , (1)

then no circulant Hadamard matriz of order 4u® exists.
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Our strategy for selecting parameters when applying Restriction 7 is
discussed in Section 4.

3. SEARCH STRATEGY

Our strategy is similar to the one employed in [1]. We describe the
method briefly here, highlighting the improvements, and refer the reader
to [1] for additional details.

We wish to construct all odd integers u < U = 10'® with at least two
distinct prime divisors so that u satisfies the F-test of Restriction 3. By
Restriction 2, we need only consider prime divisors up to V := (2U?)}/3 =
21/3.10%°, Since u is odd and not a prime power, and v,(¢"~ ! — 1) > 1
for distinct primes p and g, we see that b(p,u2,u) > 1 for each prime p | u,
and consequently F(u2,u) has exactly the same prime divisors as u. If
F(u?,u) < u?/p for some prime p | u, and F(u?,u) > up(u), then it follows
that p < ], (1 — 1/¢)", and this latter quantity is at most 3.446... for
u < U (attained when u is the product of all odd primes up to 41). Thus, if
an integer u < U passes the F-test, then either F(u?,u) = u?, or possibly
F(u? u) = u?/3 when 3 | u.

Since F(u?,u) depends only on the squarefree part of u, we consider the
squarefree case first. If p | u for a prime p > 5, we require that b(p, u?,u) >
2, and it follows that at least one of the following two conditions must hold:
(i) there exists a prime ¢ | u so that (g,p) is a Wieferich prime pair, or (ii)
there exists a prime g | u so that p | ord,, (g). The second case requires the
existence of another prime r | u so that p | (r — 1).

We search for permissible values of u < U by creating a large directed
graph D(U), whose vertices are a subset of the primes up to U, and which
has two types of edges. A solid edge g — p links g to p for each Wieferich
prime pair (g,p), and a flimsy edge r ~» p connects 7 top if p| (r —1). A
flimsy edge is also added from each prime p > 3 in D(U) to 3 to account
for the looser restriction at this prime. Candidates for integers u that
pass the F-test then correspond to induced subgraphs of D(U) in which
each vertex has positive indegree. Our method first searches for cycles of
length at most 12 in this graph, since the product of the smallest 13 odd
primes exceeds U. For each such cycle, we then determine all induced
subgraphs of D(U) containing this cycle, and additional edges that flow
outward from the vertices in the cycle, with the property that the product
of the vertices in the subgraph is at most U. Each flimsy edge in such a
subgraph is then tested to ensure that the F-test is indeed satisfied, since
the order condition is stronger than the simple division constraint of the
construction, and because F' must be evaluated at each candidate value u
to determine the requirement at the prime 3. For each permissible value u
discovered, we also construct all non-squarefree multiples of « having the
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same prime factors as u that pass the F-test and remain below the hound
of U, by observing the values of b(p, u?,u) for p | u.

Since a flimsy edge r ~ p connects a prime 7 to a smaller prime p, every
cycle in D(U) must contain a solid edge ¢ — p with ¢ < p. We call such a
pair an ascending Wieferich pair. These are rare, and most of our compu-
tation is devoted to searches for these pairs. In prior work, for each prime
g < U we tested every prime p < min{U/q,V} for a possible ascending
Wieferich pair (g,p). However, many of these tests are unnecessary. An
integer u of the form u = pg passes the F-test only if {p,q} is a double
Wieferich prime pair, since a flimsy link requires the presence of a third
prime r distinct from p and ¢. In the current method, we search for these
double Wieferich pairs separately, using a more efficient method. For this,
we employ a result first noted by Worms de Romilly in 1901 [22] (see also
(7] for a generalization to higher-power congruences).

Proposition 1. Let a be a primitive root of a prime q, and let b = a? mod
q®. Then all solutions to x9=! = 1 mod ¢q® are given by b* mod ¢2, for
0<k<qg-2

Following Keller and Richstein (7], we use this result to search for double
Wieferich prime pairs {p,q} by implementing the following algorithm.

Step 1. For each odd prime g < /U, perform Step 2.
Step 2. Compute a primitive root a mod g, and set b = a? mod ¢2.
Step 3. For each power b* mod ¢? with 0 < k < ¢q — 2, perform Step 4.

Step 4. For each odd integer p with ¢ < p < min{U/q,V} and p = b*
mod g2, test if p is prime. By Proposition 1, for each prime p dis-
covered, the pair (p,q) is automatically a descending Wieferich
pair, so test if ¢?~! = 1 mod p?. Print {p, q} if this holds.

For a fixed prime g, we need only search q — 1 of the residue classes mod
q*, so this procedure speeds the search for double Wieferich prime pairs
by approximately a factor of g. We remark that for efficiency we employ
a simple pseudoprime test in Step 4 (one iteration of Miller-Rabin with a
fixed base, after a gcd computation checks for divisibility by any of the first
ten odd primes), and verify primality of p only in the pairs {p,q} reported.

Next, we search for additional ascending pairs (g,p) that are required
for our graph D(U). Let g be an odd prime with ¢ < /U. We wish to de-
termine all primes p with ¢ < p < V which may appear in the construction
of an integer u < U that passes the F-test, with the knowledge that {p,q}
is not a double Wieferich prime pair. We consider three cases.

2

(i) If p ~ g, then q | (p — 1), and a third prime » > 3 must be present
as well in u for the flimsy link to be valid, so we need only search
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primes p = 1 mod ¢ with ¢ < p < min{U/3q,V}ifg>3andg<p<
min{U/15,V} if ¢ = 3.

(ii) If ¢ = p augments another cycle, then we may account for the primes
in the cycle when computing an upper bound for p. From the results
of (1], we know that the cycle with minimal vertex product is 3 —
11 = 71 — 3, with value 3-11- 71 = 2343. We consider three cases.

e If ¢ = 3, 11, or 71, then we need to check primes p satisfying
p < min{U/2343,V}. Let R, denote the set of primes p found
here for which ¢ — p is an ascending Wieferich pair, and let
Ry = {5,7,47}, which are the primes involved in either descend-
ing Wieferich pairs or flimsy links beginning from 3, 11, or 71.
(These links are 11 ~» 5, 71 ~» 5, 71 ~ 7, and 71 — 47.) Let
R = R, UR;.

o If g € R then we search for primes p > g which satisfy p <
min{U/2343¢,V'}.

e For all other primes g, we know that an ascending pair ¢ — p
cannot connect directly to the smallest cycle, so either this link
attaches to another cycle, or it attaches to the minimal cycle,
but indirectly, with at least one other prime s as an intermediary.
Certainly s > 5. Since the second-best cycle is 13 — 863 ~» 23 —
13, whose value of 258037 is larger than 5-2343 = 11715, we can
search for primes p > q satisfying p < min{U/11715¢, V'}.

(iii) If ¢ — p forms one edge of a cycle, then there must exist at least one
additional prime 7 linking to g in the cycle. We consider two cases.

o If 7 > g, then we need to test primes p satisfying ¢ < p <
min{U/(q-succ(q)), V'}, where succ(g) denotes the smallest prime
larger than q.

e If 7 < g, then (r,q) is also an ascending Wieferich pair. As-
suming that we are testing the primes ¢ in ascending order, we
can look up the smallest prime r for which (r,q) is an ascending
Wieferich pair. If such an » exists, we test primes p in the range
g < p < min{U/qr,V}. In practice, we test blocks of primes
concurrently using a cluster, so processing of prior primes is not
always complete when a search is being performed for a particular
prime ¢q. Because of this we first complete searches for the first
t odd primes. Then for larger primes g, we need to test primes
p in the range ¢ < p < min{U/pi;1q,V}, where p:41 denotes
the (t + 1)st odd prime, if no ascending pair (r,q) is known at
the time of the search. We can select ¢ so that this constraint is
stronger than that of case (ii).

For each prime ¢ then we perform the search indicated in case (i), and
the search corresponding to the weakest constraint from cases (ii) and (iii).
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The primes 3, 7, and 71 are considered first, then the primes in the set R
constructed during this search, and then the remaining odd primes ¢ < vU.

Once the search for ascending Wieferich pairs is complete, we search
for descending pairs and flimsy links by using a strategy somewhat more
refined than that employed in (1,12]. First, for each prime p appearing in
an ascending pair ¢ — p, we find all odd primes r < p so that {p,r) is a
descending Wieferich pair and add the solid link p — r to D(U). We also
compute the prime factors of p—1 and add a flimsy link from p to any such
odd prime factor r, provided there is not already a solid link from p to r.
For each such new link p — 7 or p ~~ r discovered, we repeat this process
on the prime r if it has not yet been explored. This process continues until
no new primes appear.

4. RESULTS

4.1. Circulant Hadamard matrices. OQur search was implemented in
C+-+, using GMP [4] for arithmetic with large integers. With U = 1015,
we find that R, = {331,1006003} in our construction, arising from 3 —
1006003 and 71 — 331. We construct the graph D(U) having 10020 ver-
tices, 21385 Wieferich prime pairs (4501 of them ascending), 16348 flimsy
links arising from the divisibility constraint, and an additional 2603 flimsy
links to the prime 3 to allow for the possibility that F(u?,u) = 42/3 in the
F-test. This graph is significantly smaller than the graph constructed in
[12] using U = 10'3, owing to our more efficient search strategy in using
a separate algorithm for the case of double Wieferich prime pairs, and to
our more refined search strategy for the various kinds of links. The graph
in [12] had 643931 vertices, 1732862 solid edges, and 1939685 flimsy edges,
and so required more than 91 times the storage using an adjacency list
representation for its graph.

Tarjan’s algorithm [18] for enumerating cycles in a directed graph detects
402 different cycles in D(U) with vertex product u < U. The cycle aug-
menter produces 7021 permissible induced subgraphs of D(U) containing
one of these cycles. We then verify the F-test for each corresponding inte-
ger u, checking each required flimsy link and testing if [] au(l— 1/q9)"' >3
when 3 | u. At the same time, we test if any non-squarefree multiples
of permissible values u also pass the F-test. This produces 8204 positive
integers u < 10'® that pass both Restrictions 2 and 3.

These values are then subjected to Turyn’s self-conjugacy test of Restric-
tion 1, followed by the four criteria of Leung and Schmidt. We apply Re-
strictions 5 and 6 before Restriction 4 since the last is more time-consuming.
In Restriction 7, for each divisor d of u satisfying ged(d, u/d) = 1, we con-
sider each prime divisor p of u/d, ordered from largest to smallest. We
then take m to he as large as possible relative to this choice. Since the
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TABLE 1. Effect of Restrictions 1, 4, 5, 6, and 7 for U = 105,

Initial Exclusions from Restrictions: Admissible

Q(u) | Number | Res1 Res5 Res6 Res4 Res7| Number

2 5 5 - - - - 0

3 60 51 0 0 0 5 4

4 312 203 5 3 10 24 67

5 1005 361 16 17 31 167 413

6 2019 418 8 22 42 463 1066

7 2425 269 3 25 27 701 1400

8 1637 100 0 6 8 528 995

9 628 18 0 0 0 169 441

10 109 1 0 0 0 9 99

11 4 0 0 0 0 0 4
Total 8204 1426 32 73 118 2066 4489

right side of (1) is at least 2u%/m?, we can reject the current choice of
pif (p—1)/2 < u?/m? In almost all cases that survive this filter, we
find that u/m is a prime power, which simplifies our choice of t. When
u/m = ¢°, we choose t = g if ¢ t u/d, and if g | u/d, then we select ¢
so that t = 1 mod ¢ and t = ¢ mod w(u?/d?,q). This strategy lets us
eliminate 2065 of the 6555 values of u that survived the other restrictions.
Only five of the possible values of u force a choice of m so that u/m has
more than one factor, and Restriction 7 allows us to handle one of these:
1 = 3639009138645 = 3- 544963 - 5395561, hy choosing d = 15, p = 44963,
m = u/d, and t = 44234923246041944760450. Table 1 exhibits the number
of values u that were eliminated by each of these tests, organized by the
number of prime factors Q(u) of u, counting multiplicity.

The five smallest integers u > 1 that survive all known necessary condi-
tions for n = 4u? to be the order of a circulant Hadamard matrix remain
11715=3-5-11-71, 82005 =3-5-7-11-71, 550605 = 3-5-11-47- 71,
3854235 =3-5.7-11-47-71, and 3877665 = 3 .5-11-71-331. The five
smallest permissible values u > 10'® determined here are

10010975913705 = 3-5- 13- 23 - 83 - 4871 - 5521,
10114065558733 = 37 - 83 - 293 - 821 - 13691,
10133892169345 =5-7-7-19-43-103 - 491531,
10163608060697 = 7 - 13 - 23 - 467 - 863 - 12049,
10171384404951 = 3-7-11-17-71.307 - 331 - 359,
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and the five largest possible u < 105 are

992395041021485 = 5- 23 - 41 - 83 - 487 - 1069 - 4871,
994687636227489 = 3 - 3 - 41 - 83 - 487 - 4871 - 13691,
994985827355325 =3-5-5-13-17 .23 - 251 - 863 - 12049,
995017496776329 = 3-13-23-29-41 - 83 - 821 - 13691,
999646398756005 = 5-7-11-13 - 23-29 - 467 - 743 - 863.

All 4489 permissible values of u < 10'® are available at the website [13].

4.2. Double Wieferich prime pairs. Our search detects five double
Wieferich prime pairs {p,q} with p and ¢ odd, pg < U = 10, and
max{p,q} < V = 21/3.101% {3,1006003}, {5, 1645333507}, {83,4871},
{911,318917}, and {2903,18787}. All of these had been found in prior
searches, respectively by Brillhart, Tonascia, and Weinberger [2], Mont-
gomery [11], Aaltonen (see [5]), and the last two are credited to Mignotte
and Roy in an unpublished manuscript of 1992 (see for instance [3]). Only
one other double Wieferich pair is known where p and ¢ are both odd:
{5,188748146801}. It lies outside our search range, and was found by Keller
and Richstein (7). (Keller and Richstein searched systematically for double
Wieferich pairs having ¢ < 10° and p < max{10'!, q2}; their example arose
in a separate search for ascending Wieferich pairs with base 5.)

5. BARKER SEQUENCES

A Barker sequence is a finite sequence ay, ..., an, each term =1, for
which ,Z:‘;lk a;a;qk| < 1 for 0 < k < n. The longest known Barker

sequence has length 13, and it is widely conjectured that no longer Barker
sequences exist. This has been established for sequences with odd length
[17,21), but the even case remains open. It is well known that this problem
would be settled if one could show that no additional circulant Hadamard
matrices exist, since every Barker sequence with even length n can be used
to create such a matrix of order n. In [1] it was shown that only one integer
n with 13 < n < 4-10% survives Restrictions 1-6, plus an additional
restriction that applies to Barker sequences of even length: if p | u then
p =1 mod 4. This value is n = 4u2, where

up = 31540455528264605 = 5 - 13 - 29 - 41 - 2953 - 138200401.

Another 237806 candidate lengths n with 4 - 1033 < n < 10'% were also
identified in [1], but without certifying if that list was complete in this range.
Asreported in [10], the anti-field-descent test (Restriction 7) eliminates 4u2,
along with more than 96.5% of the other 237806 known candidates; the 8125
surviving permissible values for « from that list can be found at [13]. The
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smallest known integer that survives all known restrictions on the length
of a Barker sequence, including Restriction 7, is now n = 4uf, where

uy; = 19804304830012264298738041
= 30109 - 1128713 - 2167849 - 268813277.

We remark that u; has 26 digits and 4u? has 52 digits. It should be noted
however that because the method of [1] established completeness only up to
U = 10'63 it is possible that 4u? is not the smallest integer that survives
all of the known restrictions on the length of a Barker sequence. This
method of this paper may be used to extend the validated range in the
Barker sequence problem from the present limit of U = 10'6® to perhaps
109 or 1020 at this time, but achieving U = 2-10% to reach (2) seems out
of reach at present. We leave this to future research.

(2)
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