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Abstract

For a graph H and a positive integer A, let *H denote the multigraph
obtained by replacing each edge of H with X parallel edges. Let G be
a multigraph with edge multiplicity 2 and with Cy as its underlying
simple graph. We find necessary and sufficient conditions for the
existence of a G-decomposition of *K, for all positive integers A
and n.

1 Introduction

If @ and b are integers with a < b, we denote {a,a + 1,...,b} by [a,b]. Let
Z, be the group of integers modulo n. For a finite set S and a positive
integer A, we let XS denote the multiset that contains every element of
S exactly A times. For example, 3[a,d] is the multiset {a,a,2,a + 1,a +
l,a+1,..,b—1,b—1,b~1,bb,b}. Similarly for a graph H, we let *H
denote the multigraph obtained by replacing each edge in H with A parallel
edges. Thus *K,, denotes the A-fold complete multigraph of order n. We
note that a multigraph is not required to contain multiple edges. However,
our graphs contain no loops. If we wish to emphasize that a given graph
does not contain parallel edges, then we refer to it as a simple graph. For
positive integers r and s, let K, denote the complete multipartite graph
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with r parts of cardinality s each. The order and size of a multigraph G
refer to |V (G)| and |E(G)|, respectively. .

Let V(*K,) = [0,n — 1]. The label of an edge {i,5} in *K,, is defined
to be |i — j|. The length of an edge {i,j} in *K,, is defined to be min{|i —
jl,n — |i — §I}. Thus if the elements of V(*K,,) are placed in order as
vertices of an equisided n-gon, then the length of edge {i, j} is the shortest
distance around the polygon between i and j. Note that if n is odd, then
K, consists of An edges of length i for i € [1, 221]. Furthermore if n is
even, then *K, consists of An edges of length i for i € |1, % —1] and *2—“
edges of length %.

Let V(*K,) = Z, and let G be a subgraph of *K,,. By rotating G, we
mean applying the permutation ¢ +— i + 1 to V(G). Note that rotating an
edge does not change its length.

Alternatively, we may let V(*K,) = Z,_, U {oo}. As expected, rotating
a subgraph G of K, in this case continues to mean applying the permu-
tation ¢ = ¢ 4+ 1 to V(G), with the convention that oo + 1 = 0o. If neither
i nor j is the oo-vertex, then the label and length of the edge e = {3, 5}
are defined as if e is in *K,;. The label and length of an edge {i, o0} are
both defined to be co. Again, rotating an edge does not change its length.
In this case, if n is odd, then *K,, consists of A(n — 1) edges of length oo
along with A(n — 1) edges of length i for i € [1, "T‘“"] and # edges of
length 251, Furthermore if n is even, then then *K,, consists of Aln—1)
edges of length oo along with A(n — 1) edges of length i for 3 € [1, "T‘z]

Let K and G be graphs with G a subgraph of K. A G-decomposition
of K is a set (or multiset) A = {G},Ga,...,G,} of subgraphs of K each of
which is isomorphic to G (and is called a G-block) and such that each edge
of K appears in exactly one G-block. If there exists a G-decomposition of
K, then we say G divides K and write G|K. A G-decomposition of K is
also known as a (K, G)-design. A (*K,, G)-design is called a G-design of
order n and indez X. A (*K,,G)-design A is said to be cyclic if rotating a
G-block in A yields another G-block in A. If V(*K,) = Z,_; U {00}, then
a cyclic (*K,,, G)-design is also called a I-rotational (*Kn, G)-design. The
study of graph decompositions is generally known as the study of graph
designs, or G-designs. For recent surveys on G-designs of index 1, see 1]
and [3].

Let G be a graph. A classical problem in the study of graph de-
signs is to find necessary and sufficient conditions for the existence of a
G-decomposition of *K,,. This is known as the spectrum problem for G.
The set of all such n is called the spectrum for G-designs of indezx \, or al-
ternatively the indez A spectrum for G. The spectra for G-designs of index
1 has been determined for several classes of graphs including cycles, paths,
stars and all graphs of order at most 5 (see [1]).
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In recent years, there have been some investigations of G-designs of
index A where G is a multigraph with edge multiplicity at least 2. For
example, in [6] Carter determined the spectrum for G-designs of index A for
all connected cubic multigraphs G of order at most 6. Sarvate and various
co-authors have investigated G-designs of index A for various multigraphs
G of small order (see for example [7], [10], [12], and [13]). See also [5] and
8] for the spectrum for G-designs where G is a multigraph of small order.

In this article, we investigate G-decompositions of *K,, where G is
a multigraph with edge multiplicity 2 and with C,; as the simple graph
underlying G. Figure 1 shows the five possibilities for such a G. We find
necessary and sufficient conditions for the existence of a G-decomposition
of AK,, for all integers ) > 2.

b d b d b d b d b d
a c a c a c a ¢ a c

Gila,b,c,d] Gala,b,e,d] Gsla,b,c,d] Gyla,bc,d] Gsla,b,c,d|

Figure 1: The five multigraphs with edge multiplicity 2 and C4 as the
underlying simple graph.

Figure 1 gives a key that denotes a labeled copy for each of the five multi-
graphs of interest. For example, Gi[a, b, ¢, d] refers to the multigraph with
vertex set {a,b,¢,d} and edge multiset {{a,b}, {a,b}, {b,c}, {c,d}, {d,a}}.

2 Main Results

The index A spectra for G) and G; are settled in [12] and in [6], respectively.
Thus we will focus on the three remaining multigraphs. The case A = 2 for
all bipartite subgraphs of 2K} is settled in [2].

2.1 (*K,,Gs)-designs

We begin with some obvious necessary conditions.

Lemma 1. Let A > 2 and n > 4 be integers. If there ezists a (*Kn,G3)-
design, then the following necessarily hold:

1. ifged(N,6) =1, thenn=0, 1, 4, or 9 (mod 12);

2. if gcd()\,6) =2, thenn =0 or 1 (mod 3);



3. ifged(A,6) =3, thenn =0 or 1 (mod 4);

4. if gcd(A,6) =6, thenn > 4.
Proof. Let A and n be as stated and suppose there exists a (*K,, G3)-design.
Since the number of edges in G3 is 6, we must have that 6|An(n — 1)/2,
and thus 12|An(n — 1). If ged(), 6) = 1, then 12|n(n — 1), and thus n = 0,
1, 4, or 9 (mod 12). If ged(A,6) = 2, then 6|n(n — 1), and thus n =0 or 1
(mod 3). Similarly, if ged(),6) = 3, then 4|n(n — 1), and thus n =0 or 1
(mod 4). Finally, if gcd(), 6) = 6, then 2jn(n—1), which is always true. W

From Allen et al. {2], we have the following for index 2.

Lemma 2. There exists a (%K, G3)-design for all n = 0 or 1 (mod 3)
where n 3 3.

Next, we settle both the index 3 and index 6 spectra for Gj.
Lemma 3. There exists a (*K,, Gs3)-design for alln =0 or 1 (mod 4).

Proof. We consider two cases.

CASE 1: n =0 (mod 4).
Let n = 4z and let V(®Ky;) = Z4;— U {o0}. Let

A ={G3[00,5,2+ 7,1 +j]: 0< j < 4z - 2}
U{Gs[di+35,5,4i +2+4,1+j:1<i<z—1,0<j <4z —2)}.

It is easily checked that A is a 1-rotational (3K, G3)-design.

CASE 2: n=1 (mod 4).
Let n = 4z + 1 and let V(3K4z+1) = Z4z41. Let

A={Gsdi+j,j,4i-2+j1+j:1<i<z 0<j<4z}.
It is easily checked that A is a cyclic (3K, G3)-design. [ |

Lemma 4. There ezists a (°K,, G3)-design for all n > 4.

Proof. We consider four cases.

CasE 1: n=0or 1 (mod 3).

By Lemma 2 there exists a (2K,,G3)-design. Hence, we can obtain a
(°K ., G3)-design from three copies of a (2K, G3)-design.

CASE 2: n=5or 8 (mod 12).

By Lemma 3 there exists a (3K, G3)-design. Hence, we can obtain a
(®Kn, G3)-design from two copies of a (3K, Ga)-design.

CASE 3: n =2 (mod 12).

Let n = 12z + 14. Then we are looking to show that G5 divides 6K 122+14-
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We view our ®K 22414 as SKgUCK 12:4+8U%Ks,122+8. It is proved in the above
cases that G3|®Ks and G3|%K12.4+8. We now must show that G3|%Ks 12548
Clearly ?K3 2 divides ®Ke 12048, so all that remains to be shown is that
G3|?K3,2. Let 2K3 2 have vertex bipartition {{u,u2,us}, {v1,v2}}. Then
{G3[vl y U1, V2, U3], G3 [vlv U2, V2, ’U3]} is a (2K3.21 G3)'de5ign'

CASE 4: n =11 (mod 12).

Let n = 12z + 11. Then we are looking to show that G3 divides ®Kj2.411.
We view our ®K12,411 as 8 K5UCK12,4+6UCKs 12246 It is proved in the above
cases that G3|%K5 and G3|%K12;+6. We now must show that G3|°K5s 12246
Clearly %K o divides ®Kj 12046, s0 all that remains to be shown is that
G3|*Ks,2. Let 3K52 have vertex bipartition {{u1,us,us, us,us}, {v1,v2}}.
Then {G3[v1, u1, v2, ug), G3[v1, Uz, v2, u1], Ga[vy, u, va, Uz}, Galv1, ua, v2, us),
G3[’Ul,u5,’02, ’U.4]} isa (3K5,2,G3)-design.

Finally, we have all the necessary building blocks to settle the index A
spectrum for Gjs.

Theorem 5. For any positive integers A > 2 and n > 4, there exists o
(*Kn, G3)-design if and only if 12|An(n — 1).

Proof. The necessary conditions are established by the fact that the number
of edges in G3 must divide the number of edges in *K,,. To show sufficiency,
we use the following 4-case breakdown prescribed by Lemma 1.

CASE 1: A =0 (mod 6).

Let A = 6. By Lemma 1, we need to show that Gj divides 5K, for
n > 4. By Lemma 4 there exists a (°K,,, G3)-design. Hence, we can obtain
a (5K, G3)-design from t copies of a (°Kn, G3)-design.

CASE 2: A=1or 5 (mod 6).

We note that A = 5 is the least possible edge multiplicity that meets the
criterion for this case of the proof. Thus A = 2t + 3 for some integer ¢ > 1.
By Lemma 1, we need to show that G3 divides 2+3K,, forn =0, 1, 4, 0r 9
(mod 12). By Lemmas 2 and 3 there exist both a (2K, G3)-design and a
(3K, G3)-design. Hence, we can obtain a (>+3K,,, G3)-design from ¢t copies
of a (*K,,, G3)-design and a single (3K, G3)-design.

CASE 3: A =2 or 4 (mod 6).

Let A = 2t such that ¢ # 0 (mod 3). By Lemma 1, we need to show
that G5 divides K, for n = 0 or 1 (mod 3). By Lemma 2 there exists a
(2K, G3)-design. Hence, we can obtain a (*K,, G3)-design from t copies
of a (2K, G3)-design.

CAsE 4: A =3 (mod 6).

Let A = 6t + 3. By Lemma 1, we need to show that G5 divides ®*3K,, for
n=0or 1 (mod 4). By Lemma 3 there exists a (*K,,,G3)-design. Hence,
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we can obtain a (%+3K,,,G3)-design from 2t + 1 copies of a (°K,, G3)-
design. |

2.2 (°K,,G,)-designs
Again, we begin with some necessary conditions.

Lemma 6. Let A > 2 and n > 4 be integers. If there exists a (*K,,G4)-
design, then the following necessarily hold:

1. ifged(A,7) =1, thenn =0 or1 (mod 7);

2. ifged(A,7) =7, thenn > 4.
Proof. Let X and n be as stated and suppose there exists a (*K,, G4)-design.
Since the number of edges in G4 is 7, we must have that 7|An(n—1)/2, and
thus 14|An(n — 1). If ged(), 7) = 1, then 14|n(n — 1), and thus n = 0, 1, 7,
or 8 (mod 14). If ged(X, 7) = 7, then 2|n(n — 1), which is always true. W

From Allen et al. [2], we have the following for index 2.
Lemma 7. There exists a (*K,, G4)-design for alln =0 or 1 (mod 7).

Next, we show the only insufficiencies of the necessary conditions in
Lemma 6 (i.e., when A is 3 or 5) before settling the index 7 spectrum
for G4.

Lemma 8. There does not ezist a (3K,, G4)-design for any n.

Proof. Suppose A is a (3K, G4)-design. We note that each G4-block in A
contains exactly one edge of multiplicity 1 and three edges with multiplic-
ity 2. Since each edge in 3K, has edge multiplicity 3, each pair of vertices
must be incident with at least one edge of multiplicity 1 within a G4-block
of A. This leads to a contradiction, as the number of vertex pairings in
3K» (i-e., the size of K,,) exceeds the number of G4-blocks in A. [ ]

Lemma 9. There does not ezists a (°K,, G4)-design for any n.

Proof. Suppose A is a (°K,, G4)-design. Then the proof proceeds similarly
to that of Lemma 8. a

Lemma 10. There ezists a ("K,,,G4)-design for all n > 4.

Proof. We consider four cases.
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Casg 1: n=0 (mod 4).
Let n = 4z and let V("Ky;) = Zgz—1 U {o0}. Let

A = {Guloo,3,1 45,2+ ), Gall +5,4,00,2+5]: 0 < j S 4z — 2}
U {G4[4i—1+j,j,4i+1+j,1 + 3],
Galdi+1+37,5,4i— 14351+ j]:

1<i<z-1, 05j54x—2}.

It is easily checked that A is a 1-rotational ("Kyz,G4)-design.

CASE 2: n=1 (mod 4).
Let n =4z + 1 and let V(7K4z+1) = Z4z+1- Let

1<i<z, 0<j < 4o}
It is easily checked that A is a cyclic ("K4z+1, G4)-design.

CasE 3: n =2 (mod 4).
Let n =4z + 2 and let V("K4z42) = Zgz41 U {00}. Let

A = {Gsfoo,5,2 + 5,1 + ), Galiy 1 + 5,00, 2 + 4],
Gal2+7,4,1+5,3+4]:0<j S da}
U {G4[4i+j,j,4i+2+j,1+j],
Galdi+2+j,5,4i+51+j:1<i<z—1, 05;‘541:}.

It is easily checked that A is a 1-rotational ("K4, 12, G4)-design.
CASE 4: n =3 (mod 4).

219



Let n =4z + 3 and let V("K4z43) = Zaz43. Let

A= {Gul3+3,3,2+ 5,1+, Gal3 +4,1+,2+ 4, 1],
Gal3+ 37,4, 1+ 4,4 +14]: 05j54x+2}
U{G4[4i+1+j,j,4i+3+j,1+j],
Galdi+3+75,5,4+1+4,1+3]:
1<i<z-1, 05j54x+2}.

It is easily checked that A is a cyclic ("K4z43,G4)-design. |

Finally, we have all the necessary building blocks to settle the index A
spectrum for G4.

Theorem 11. For positive integers A > 2 and n > 4, there ezists a
(*Kn, G4)-design if and only if 14|An(n — 1) and X ¢ {3, 5}.

Proof. The necessary condition that 14|An(n — 1) is established by the fact
that the number of edges in G4 must divide the number of edges in *K,,.
The latter condition is proved in Lemmas 8 and 9. To show sufficiency, we
consider three cases.

CasE 1: A=0 (mod 7).

Let A = 7t. By Lemma 6, we need to show that G, divides "*K,, for n > 4.
By Lemma 10 there exists a ("K,,, G4)-design. Hence, we can obtain a
("*Kn, G4)-design from ¢ copies of a ("K,,, G4)-design.

CASE 2: A #0 (mod 7) and ) is even.

Let A = 2t. By Lemma 6, we need to show that G4 divides 2K, for n =0
or 1 (mod 7). By Lemma 7 there exists a (?K,,, G4)-design. Hence, we can
obtain a (*K,,, G,)-design from ¢ copies of a (2K, G4)-design.

CASE 3: A #0 (mod 7) and ) is odd.

We note that A = 9 is the least possible edge multiplicity that meets the
criteria for this case of the proof. Thus A = 2¢ + 7 for some integer ¢ > 1.
By Lemma 6, we need to show that G4 divides #+’K,, for n = 0 or 1
(mod 7). By Lemmas 7 and 10 there exist both a (?K,,, G4)-design and a
("Kn, G4) design. Hence, we can obtain a (2*+"K,,, G,)-design from t copies
of a (3K, G4)-design and a single ("K,,, G4)-design. a

2.3 (*K,, Gs)-designs

Since Gs is isomorphic to %Cy, we first give the index A spectrum for C,
(see [11] and [9)]).
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Theorem 12. For any positive integers A and n, there ezists a (*Kn,Cy)-
design if and only if (a) 2 divides A(n — 1), (b) 8 divides An(n — 1), and
(c) n>4.

It is easy to see that for all graphs G and K we have G|K if and only
if 2G|2K. Thus, we have the following.

Theorem 13. For any positive integers A and n, there exists a (*Kn, Gs)-
design if and only if (a) 4 divides A(n — 1), (b) 16 divides An(n — 1),
(c) n >4, and (d) X is even.
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