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Abstract

The domination polynomials of binary graph operations, aside from union, join
and corona, have not been widely studied. We compute and prove recurrence for-
mulae and properties of the domination polynomials of families of graphs obtained
by various products, including both explicit formulae and recurrences for specific
families.

1 Introduction and Definitions

This paper discusses simple undirected graphs G = (V,E). A vertex subset W C V of
G is a dominating set in G, if for each vertex v € V of G either v itself or an adjacent
vertex is in W.

Definition 1.1. Let G = (V, E) be a graph. The domination polynomial D(G, x) is given
by .
\d|

D(G,x) =Y di(G)¥,
i=0

where d;(G) is the number of dominating sets of size i in G. The domination number
of a graph G, denoted 7(G), is the smallest i such that d;(G) > 0.
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In [20] we showed that there exist recurrence relations for the domination polyno-
mial which allow for efficient schemes to compute the polynomial for some types of
graphs. A recurrence for the domination polynomial of the path graph with n vertices
(P,) was shown in [3] to be

D(Pyy1,x) = X(D(Ppn,x) + D(Pp—1,x) + D(Py-2,x)) m

where D(Py,x) = 1, D(Py,x) = x and D(P, x) = x*> + 2x. Note that the complete graphs
K;=Pjfor0< j<2andthat D(K,,x) = (x+1)"—1.

Given any two graphs G and H we define the Cartesian product, denoted G O H,
to be the graph with vertex set V(G) x V(H) and edges between two vertices (uy,v;)
and (u2,v,) if and only if either u; = u; and viv; € E(H), or uyu; € E(G) and v; = v;.
As in [14], if u € G then the subgraph of G O H induced by the vertices (u,v) such
that v € H will be the H-layer through u and this will be denoted by H*. We define G*
analagously.

The Cartesian product is well known to be commutative and, if G is a disconnected
graph with components G| and G, then GOH = (G; OH)U (G, O H), so that

D(GOH,x) = D(G, OH,x)D(G, OH,x).

Despite these properties, it is difficult to determine much about this product, even in
such simple cases as the grid graphs P, O Py, especially in the case of dominating
sets. The strong product (G® H) is the graph which is formed by taking the graph
GO H and then additionally adding edges between vertices (;,v;) and (u2,v;) if both
uuz € E(G) and viv; € E(H).

The domination numbers of graph products have been extensively studied in the
literature, see e.g [1, 5,9, 10, 12, 13, 16, 19, 22, 23, 25, 26). In particular, a large num-
ber of papers have addressed the domination number of Cartesian products, inspired by
the conjecture by V. G. Vizing [27] that (GO H) > ¥(G) x y(H) (see [6] for a recent
survey). In contrast, although the domination polynomial has been actively studied
in recent years, almost no attention has been given to the domination polynomials of
graph products.

The closed neighbourhood Ng[W] of a vertex set W in G contains W and all vertices
adjacent to vertices in W. When W = {v} we will write Ng[v] or just N[v} if the graph
we are working in is obvious. We define Ng(W) as the open neighbourhood which
includes all neighbours of W that are not in W, so that Ng(W) := Ng[W]\W. If Sis a
set of vertices from G we use G — S to mean the graph resulting from the deletion of
all vertices in § from G, and let G — v be G — {v}. The vertex contraction G /v denotes
the graph obtained from G by the removal of v and the addition of edges between any
pair of non-adjacent neighbours of v.

The general reduction formula for any u € V(G) given in [20] is the following:
D(G,x) =xD(G/u,x) + D(G — u,x) + xD(G — N[u],x) — (1 +x)pu(G,x), (2)

where p,(G,x) is the polynomial which counts the dominating sets of G — u which do
not include any vertex from Ng(ut). Note that if the vertices of N(u) induce a complete
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graph then G/u = G —u and so
D(G,x) = (x+ 1}D(G — u,x) + xD(G — N(u],x) — (1 +x) pu(G,x) . 3

An outline of the paper is as follows. In section 2 we give decomposition formulae
for the domination polynomials of the Cartesian product of an arbitrary graph G with
K> and of the strong product of G with K, then generalise these results. Section 3
gives a recurrence relation for the domination polynomial of any graph which contains
P, 0K, that uses only six smaller graphs. A generalisation of the result in section 3 is
given in section 4, where we give a recurrence for P, O K;. In section 5 we give the
polynomial for a family of graphs which generalise path graphs.

2 Domination Polynomials of Products with
Complete Graphs

Let us suppose that V(K3) := {«,v} in the product G O K3 and let G be any non-null
graph. We will concentrate first on the vertices in G*: every vertex subset W of G*
can be a subset of some dominating set S in G O K; if some vertices in G¥ are also
in S. Let W C V(G), so, by definition, all vertices (y,u) are dominated for y € Ng[W)
as well as the vertices (w,v) for w € W. If S is a dominating set for G (J K> such that
SNV(G*) = W, all vertices (y,u) such that y € V(G)\N[W] must then be dominated
by (y,v), their only neighbour outside of G*.

Theorem 2.1. Let Jy be formed from the subgraph of G induced by Ng|W| by adding
a new vertex z joined to the union of W and N(V(G) — Ng[W]). The domination poly-
nomial for D(GO K5, x) is then equal to

xV{G > (D(Jw /2,x) + D(Jw — Ny, [2], %) + D(Jw,x) — D(Jw —z,x))
x+1 wivic) xINa(W)| ’
Proof. Suppose that W C V(G), so that we know that, in any dominating set for GOK3,
if the only vertices from G* are W then we must also include all vertices (y,v) € G*
where y & Ng[W)]. In this way all vertices in G* are dominated by

IW|+|V(G)\Ng[W]| = [W|+|V(G)| —|Ng[W]| = [V(G)] —| No(W)

vertices, giving the powers of x as in the theorem.

It now remains to ensure that all of the vertices in G are dominated. Using the
vertices forced to dominate G* we see that, in G', every vertex in either W or in
N[V(G) — N[W]] is dominated. The only vertices not dominated are therefore those
which are in N(W) but have no neighbours outside of N{W]. Let us call this set Ty .

We now introduce the graph Jy which is formed by taking the subgraph of G in-
duced by N[W] and adding a new vertex z which is adjacent to every vertex either in
W or N(V(G) — N{W)). The vertices which z is joined to are exactly those not in Tiy.
Thus we want to count all sets of vertices in Jw \ {z} such that Tiy is dominated.
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As defined in Equation (2), p,(Jw,x) generates the dominating sets for Jw — N[z|
which additionally dominate the vertices of N(z). Each of these sets when combined
with z is a dominating set for Ji in which Ty is dominated and z is only dominated
by itself. All other sets which dominate Ty must then include a vertex from N(z)
and hence they will be a dominating set for both Ji and Jw — z. The difference of
domination polynomials D(Jw,x) — D(Jw — z,x) generates all such sets which include
z and so p;(Jw,x) + D(Jw,x) — D(Jw — z,x) generates all sets of vertices in Ji that
dominate Ty and include z.

Since z is not adjacent to any vertex of Tiy the generating function counting all sets
of vertices in Jw \ {z} such that Ty is dominated satisfies the following relation, using
Equation (2) for the expansion of p,(Jw,x):

P(Jw,x) + D(Jw,x) — D(Jw — 2,x)

X
xD(Jw /2,x) +xD(Jw — Ny, 2],x) + DUJw —2,%) — D(Jw,x)
x(x+1)
4 D(Jw,x) = D(Jw — 2,x)
x
_ DUw/z,x)+D(Jw — Ny, [g,x) + D(Jw,x) — D(Jw —z, x)
x+1 x+1
Putting this together with our first observation finishes the proof. a

Since the graphs involved in the summation have at most around half the number
of vertices of the product it is significantly faster to use Theorem 2.1 to calculate the
domination polynomial even with the summation over all subsets. Additionally, it can
be used to get a closed form solution for some highly symmetric graphs as we show in
Corollary 2.2.

Corollary 2.2. Forr> 1, D(K,OKz,x) = ((x+1)" = 1)2+ 2x".

Proof. When G = K, we have Jy /z =Jy —z for all W since all vertices in G are joined
to all others. Unless W = @ or W = V(G) the sum is therefore (x+ 1)((x+1)"—1)
since Jw is then K, with z joined to the vertices in W; if we combine any non-empty

subset of W with or without z we get a dominating set for exactly one of Jy or Jy —
Ny, [z). By Theorem 2.1 we then have

DX, 0Ky,x) = irl (x+l+(x+1)r+1+z (1) (-"+1)((X+1)'—1))

i=1 X

= <1+(x+l)’+((x+l)’ 1)2( )xrl_ )

]—

- x’+x’(x+l)’+((x+l)’—1)((i() )-(1+f))

= X +((x+1)-12+x". a
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The following result was also proven independently in [7] as their Lemma 3:
Theorem 2.3. For any graph G
D(GHK,,x) =D(G,(x+1)" -1).

Proof. Let u be a vertex of G and v € V(K;); the closed neighbourhood of the vertex
(u,v) is (Ng[u],K;). For any X C V(G), let {A; | x € X} be a family of arbitrary non-
empty subsets of V(K,). We then have that such a set X is a dominating set of G if and

only if
U{xv) Ivead
xeX

is a dominating set of G® K,. Consequently, each vertex u of a dominating set of G
corresponds to all non-empty subsets of the K, through « in G&® X, which are counted
by the generating function (x+1)"— 1. O

Theorem 2.3 can be used to generalise recurrence relations for the domination poly-
nomial of any families of graphs, such as for H,,, := P, X K, as follows:

Corollary 2.4. For any integersn>3andr > 1,
D(Hn-i-l,r)x) = ((X+ ])r - l) (D(Hn.rax) +D(H -l,r,x) +D(Hu—2.rax)) .
Proof. From Equation (1) and using Theorem 2.3 we have
D(Hpt1,,X) = D(Ppyy BK;,x)
D(Pas1,(x+1)" = 1)
= ((x+1)Y = 1}(D(Pn,(x+1)" = 1)+ D(Py=y, (x+1)" = 1)

+D(Pya, (x+1) = 1))
((x+ 1) = 1)(D(HarrX) + D(Hn—1 r,x) + D(Hn2.,x))

as required. a

Note that, as shown in [3], the same recurrence as Equation (1) holds for the cycle
graphs C, hence there is an identical generalisation for the domination polynomial of
G.RK,.

Corollary 2.5. For any integersn >3 andr > 1, D(Cyy) R K, ,x) =

((x+ 1) = 1) (D(Ca B Ky, x) + D(Co1 R Ky, X) + D(Cy_2 B Ky, x)) .

Corollary 2.2 can be generalised in the following way:

Theorem 2.6. The domination polynomial for K, OK; is, forr > 2 and s > 2,

DK, OK;,x) = ((x+1) — 1)’—3‘: (z)(~1)* ((x+ 1y - 1)’.

k=1
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Proof. We can imagine the vertices of K, 0 K; as elements of an r x s matrix; for a
dominating set in this graph we need to have at least one element in every row and
column. The simplest way this can be achieved is to have at least one vertex in every
column and the ordinary generating function that generates such sets is ({(x+ 1)" —1)*.
However, it is also possible to have empty sets in some columns, so long as each row
contains at least one element:

There are s choices for the case of one empty column and, given that choice, the
generating function counting non-empty rows of s — 1 elements is ((x+1)*! - 1)'.
However, some of the sets counted in this way will have more than one empty column;
by the principle of inclusion-exclusion, we now need to subtract the (3) ways to choose
a pair of columns to be empty.

The polynomial counting dominating sets with at least two columns empty is
(x+1y72-1)

but this then includes sets with more than two empty columns and so the inclusion-
exclusion process will continue. The final case will be when we have all but one column
empty, in which case the only possible dominating set contains all r vertices from
one column. The term counting all such sets will be sx” = (_*,)((x+ 1) — 1)", which
matches the term in the sum in the theorem when k = s — 1. Combining all of these
cases together completes the proof. a

Corollary 2.7. The domination polynomial for K, QK3 is, for r > 1,
((x+1) =13 43 ((x+2)" - 1).

Proof. Substituting s = 3 into Theorem 2.6 we get

(41 —1) - )fj (i)(—l)" (G+1p*-1)

k=1
(17 =12 4+3((@+ 12 =1) = ((x+ 1) =1))
((x+ 1) = 1) +3(((x(x +2)) = %)
= ((x+1)" =1 3¢ ((x+2) -1) ]

D(K, 0K, x)

3 The Domination Polynomial for P, ] K,

Let L, be the graph P, J K> and label the vertices of the two copies of P, as uy,...,u,
and vy,...,v, where &; and v; are adjacent, i = 1,...,n. Note that the graph L, is
formed from L, by deletion of u, and v,. The domination polynomials of the first six
graphs in the family are given in Table 1.

We first prove a small result which will be used in the main theorem of this section.
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Table 1: The domination polynomials for the graphs P, O K>
D(P, 0K, x)
X +2x
P +4x} +6a2
B +6x5+15x4 +16x3 +322
x4+ 8x7 +28x0 +52x° +48x% + 123
%10 410X + 4538 + 116x7 + 17825 + 148x5 +47x% +2x°
x12 41201 +66x10 +216x° +453x8 + 604x7 + 47025 + 16815 + 17x*

A B W=

Lemma 3.1. The polynomial Ap(x) counting the dominating sets of Ln such that both
un and v, are included is

An(%) := 2 (D(Lp-1,%) + D(Ln—2,x) — An—2(x)) .

Proof. Every dominating set for either L,; or L,_, will be a dominating set for L,
when combined with u, or v, since these two vertices dominate themselves and their
neighbours. Any set S which is a dominating set in both L, and L,_» cannot contain
either u,_, or v,_; since they are not in L,—> and hence S must contain both u,_, and
Va2 in order for the former pair of vertices to be dominated. Thus exactly x*A,_(x)
sets are counted twice and this is subtracted to give our result. O

Theorem 3.2. The domination polynomial for L, satisfies this recurrence for n > 6:

D(Ly,x) = x(x+2)D(Lp-1,x)+x{(x+1)D(Lp_2,x)
+22(x+1)D(Ln-3,%) = ©*D(Ln-4,%) — ¥’ D(Ln-5,)

Proof. Let T be a dominating set for L, and set T} := T\ {uy,v,}. If T} =T then (in
order to have u, and v, dominated) we can conclude that |T N {u,—,vp—1}| =2 and
the polynomial counting such sets will be A,_;(x) as in Lemma 3.1. This gives us the
contribution x? (D(L,—2,x) + D(L,_3,x) — As—3(x)) for our summation.

Now suppose |T M {up,v,}| > 1; if T; is a dominating set for L,_; then T will be a
dominating set for L,. Thus we get the term x{x +2)D(L,_;,x), the x(x + 2) coming
from that we can use u, and/or v, with 7} to form a dominating set.

However, there are circumstances under which T; does not have to be a dominating
set for L,_j, since u,—| and v,—; in L,—; might be only dominated by u, or v, in T.
Let us now consider the ways that exist such that u,_; and v,_; are not dominated in
T but dominated in T.

If both u,_; and v,_ are undominated by 7} then we must have |T N {un,va}| =2
to dominate those vertices and also |T N {un—3,Va—3}| = 2 to dominate u,_> and v,_2,
(and neither u,_; nor v,_;) giving the term x?A,_3(x) which will cancel that term
introduced at the start of the proof.

We are now left to count just the dominating sets for L, which include only
one of u,_ and v,_,. These sets will make a previously uncounted dominating set



for L, when combined with v, and/or u, respectively. These are the four different
possibilities, defining S := T N {uy, Va, ¥n—1,Vn—t,Un—2,Vn—2}:

() S={un,vn,vn-2}
(ii) S= {un,vn-2}
(iii) $= {vn,un-2}
Gv) S= {un,vn,un-2}

To count these possibilities we can now consider the different ways that exactly
one of u, or v, can be combined with a dominating set for L,_, which will lead to the
contribution of the term xD(L,-3,x) to our sum. Suppose Q is a dominating set for
Ly_>; we will split into subcases depending on r := |Q N {u,—2,vn-2}| as follows:

Every set Q satisfying r = 2 can be converted into a set of the type of possi-
bility (i) (by adding u, and switching v, for u,_3), but this new set will not be a
dominating set for L, when u,_3 is solely dominated by u,_; in Q; that is when
0N {uy_3,Vn-3,Upn—4} = 2. Let the sets of this form which have v,_4 € Q be counted
by the polynomial J(x) and such sets which also do not include v,_4 are necessarily
x?An_5(x) as in Lemma 3.1.

When r = 1 we can add u;, or v, as appropriate and have possibilities (ii) and (iii)
for S. In the case when r = 0, Q must include both u,_3 and v,_3 to be dominating. No
such set can be combined with just one more vertex to make a dominating set for Ly,
and we can count the sets with » = 0 (and one additional unspecified vertex) using the
polynomial xA,_3(x). Putting these terms together, we see that possibilities (i),(ii) and
(iii) are counted by

x(D(Lp-2,%) = J(x) _szn-S —Ap_3(x)).

Finally, we can count the dominating sets for L, with S as in possibility (iv) by
using x*D(L,-3,x) + xJ(x). We make a slight adjustment in the same way as in the
subcase when r = 0 since a set in which only u,..3 is not dominated in L,_3 will still be
a dominating set in L, when combined with this S, and the polynomial counting such
sets exactly matches the definition of xJ(x).

Using Lemma 3.1 again, we get that

BAn_s(x) +xAn-3(x) = x> (D(Lp-4,%) +D(Ly_s,x))

and so, summing all of our terms together, we can count all possible dominating sets T
for L, by using the polynomial in the statement in the theorem. O

Note that at no point did we either concern ourselves with the structure beyond
up_s and v,_s or utilise the symmetry of P, ] K3, and hence this same recurrence also
holds for any family of graphs with P;0K; as a pendant subgraph.

We can again use Theorem 2.3 as in Corollary 2.4 to find the domination polyno-
mial for the strong product Z,, := L, X K,:
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Corollary 3.3. Forany integersn>6andr>1,

D(Z,,,x) = ((x+ I)Zr - ]) D(Zp-1,r,%)
+((x+ 1) =1)(x+1)D(Zys-2,,%)
H(@+1) =12+ 1)D(Zn-3,.%)
—((x+1) - 1)3(D(Z,,_4,,,x) +D(Zn—5,nx))'

Proof. Let us substitute y := (x+ 1)” — 1 to simplify calculations.

D(Zprx) = D(Ln(x+1)"—1)
D(Ly,y)
y(y+2)D(Ln-1,y) +y(y + 1)D(Ln-2,)
+2(y+1)D(Ln-3,y) = ¥’ D(Ln_4,y) = y’D(La-5.)
= y(y+2)D(Zy- ,r’x) +y(y+ I)D(Zn-Z,nx)
+y2(y + ])D(Zn—&rw‘) - y3D(Z,._4,,,x) —)’3D(zn—5,ryx)-

It

Utilising now that y + 1 := (x+ 1)" we get the desired result. a

4 The Domination Polynomial for P, (] K,

We denote by M, , := P, O K, the Cartesian product of the path P, and the complete
graph K,, where n and r are non-negative integers. We will utilise the linear structure
of P, and refer to the copy of K, corresponding to one of the vertices of degree one
in P, as at the first K, layer and the copy of K, adjacent to it as the second K, layer.
Let m}, .(x) be the polynomial counting the vertex subsets of M, such that all vertices
outside of the first K, layer are dominated and a particular subset of ¢ of the r vertices
of the first K, layer is not necessarily dominated.

Let &, := [t = r] denote the Kronecker delta function. The graph Mo, is the null
graph and M, , = K; and so only the case of the empty dominating set needs to be
considered carefully. For n = 2 the case = 0 and r > 0 corresponds to Corollary 2.2
and the proof of Theorem 2.6 can be generalised to give the result here.

’"B,r(x) =1
m(x) = (x+1)-1+8, @
mh, (x) = A+ D¥ =20+ 1) 1" + 142D (x+1) - &,

From these equations we can establish the following recurrence relations for m;, ,
in general and D(M, ;,x) = m) (x) in particular.

Theorem 4.1. The domination polynomial for P, O K, (withn > 3 and r > 3) satisfies

r Lo/ o
D)= 5, (7)ot o+ 3 ()it 0+ B, i)

p=1
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where the m'; (x) terms can be evaluated recursively.

Proof. We consider the graph M, , for n > 3 and note that, on deletion of its first X,
layer, we get a copy of the graph M}, ». For m, ,(x) we are looking for sets of vertices
in which all of the vertices of the first X, layer of M,, are not necessarily dominated
but all other vertices are. We can combine a set of g vertices in the first X, layer with
a set in M,_; , counted by mz_,’, (x) and form a subset of the vertices in M,, , such that
none of the vertices in the first X, layer of M, , are necessarily dominated but all other
vertices are and so

)= X (7). 0. )

q=0

Now suppose that 0 < ¢ < r and note that this implies that, in every subset S of M,,
which is counted by mj, .(x), there must be at least one vertex in the second X, layer
and therefore all vertices outside of the first X, layer are automatically dominated. We
need to consider two cases as to whether or not there is a vertex in S from the first K,
layer.

1. If not then it will be possible to have a set in M,, in which the ¢ particular
vertices are not necessarily dominated by adding a set including all of the other
r —t vertices (and perhaps some others) from the second X, layer to a subset of
M2, in which the corresponding vertices in the first X, layer of M,_3 , are not
necessarily dominated; this will contribute a term equal to

ot )i (; ) ©mi 5 x) = z': (i) 5, (%)

2. Now we can assume there is at least one vertex in the first K, layer of § and so
all vertices will be dominated and the value of ¢ becomes immaterial. We can
take any p > 0 vertices in the first K, layer and combine them with a set counted
by m,’:_l,,(x) to count such sets. Putting these cases together we get that, for
0<t<r,

)= X (7)ot o)+ z; ( Jemaw®

p=1

It is possible to combine these two results as follows, after noting that, when = r
we can apply Equation (5) as follows:

v (rmtm = % ()i,

i=0
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Thus, combining Equations (5) and (6) using the Kronecker delta and noting that
the first summations in the two equations differ only by one term,

r ! . ,
my(x) =Y (;)xpmrll,-l,r(x) + g (i)x"‘m{;‘z’r(x) + 8y (md_y , —mpy ) (D

=1
Equations (4) and (7) can produce all polynomials necessary for this result. O

5 Domination Polynomials of k-path graphs

A different way of combining complete graphs and paths was introduced by Beineke
and Pippert in [4]. The k-path graph of length n > k is defined as follows; Pt is an
n-vertex graph with vertices v; to v all being joined to each other and for j > k add
edges from vertex v; to all vertices from v;_j to v;_y.

In [17] the domination polynomial was given for PX with n < 2k + 6, but we can
simplify and extend the results given as follows:

Theorem 5.1. Fork >2 and k < n < 2k + 1 there is the following recursion:
D(P¥,x) = D(P] %) +x(1 +x)" 1.

Proof. Since k+1 < n < 2k+ 1, vy is adjacent to every other vertex and its removal
leaves the (k — 1)-path graph with n — 1 vertices. Any other vertices when combined
with v, give a dominating set, leading to the term x(1 +x)"~! and vy will be dom-
inated by any other vertex in a dominating set without it, giving us D(A",:‘_'l ,X). O

It is possible to find a recursive formula for the polynomial for large n compared to
k:
Theorem 5.2. For n > 3k + 2 we have
D(Pf,x) = (x+ 1)D(Py_1,x) = xD(Pf_y 4.4 1:¥)-

Proof. We use Equation (3) with vertex u := v,, after noting that u is adjacent to all
vertices from v,_; to v, we thus have P,',‘ —Nlvn) = P,f_ 1 and hence

D(PF¥,x) = (x+1)D(PX_y, x) + XD(Ft_y_y,x) = (1 + X)pul P, %) . ®

By the definition of P¥, the polynomial p,(P¥,x) counts the dominating sets for PX_,
which do not include any of v,_; to v,—1. Aside from these vertices v, is only
adjacent t0 v,_s_; and so p,(Pk,x) actually counts the dominating sets for PX_, ,
which include v, _;_;.

Let S be such a set; either S — v,_; is a dominating set for P,f_ % OF it does not

contain any of the vertices v,_z¢— to v,—x—2 and thus is a dominating set for P,f_zk-z-
Therefore we can say that, by counting both the sets S and § — v,_x—1,

(L‘*_ﬁ}j:,,_(”ff»i) = D(Pt_g_1,%) + D(PE_3_3.%),
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and so we have the relation in the theorem by substituting this into Equation (8). O

For n = 2k + 2 the expression given is correct:
D(Pfiy2,%) = (x+ 1)D(P 1, %) +xD(PE, 1, %) — x(1 + x)*.
Theorem 5.3. The expression given in [17] for the range 2k + 3 < n < 2k + 6 which
simplifies to
D(Py,x) = (x+ 1)D(Py_,x) +xD(Py__1,%) = x(1 +x)" " *72((1 +x)*' —1)
is actually true for 2k +3 < n < 3k+3.

Proof. After using Equation (8) in this case,
Pun (X, x) = x(14+x)""273((1 4 x)¥1 - 1).

This is because, as in Theorem 5.2, vertex v,—;—; has to be in our dominating set
S for P,f_k_,. and the vertices v,—2;—2 to v,—x—2 are therefore dominated by v,_x.
However, since n > 2k + 3, vertex v; is not dominated by this vertex.

The vertices vy to v+ form a clique and so will be dominated so long as there is
at least one of these vertices in $, giving the factor of (1 +x)**! — 1 in our expression.
As n < 3k+3, we have n — 2k — 2 < k+ 1 and hence all of the other (n—k—-1)—1 -
(k+1) = n— 2k — 3 vertices are dominated, and so any combination of them can be in
S, giving the term (1 + x)"~2-3, O

This completes the calculation of D(P¥, x) for all n and .

6 Future Work

In this paper we investigated the domination polynomials of families of graphs given
by products. In a future paper we will be outlining why such recurrence relations can
be deduced to exist for many graph products and show implications of their existence
to properties of sequences of coefficients of the domination polynomial. Additionally
the computional complexity of domination polynomial can be studied and, intriguingly,
the evaluation of D(G, —2) can be shown to be potentially significant.

While our results cover some important families of graphs obtained by products,
there remain some open problems which we believe deserve attention.

Problem 6.1.

1. How can Theorem 2.1 be extended to deal with basic Cartesian product families
such as GOK;, GO P, GIIC;, etc.?

2. Can analogues of Theorem 2.3 be found for GR P;, GR C;, etc.?

3. What other families of graphs obtained using graph products have simple explicit
formulae in the spirit of Theorem 2.6?
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