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Abstract

For graphs F' and H, where H has chromatic index ¢, the proper
Ramsey number PR(F, H) is the smallest positive integer n
such that every t-edge coloring of K, results in a monochro-
matic F or a properly colored H. The proper Ramsey number
PR(F, H) is investigated for certain pairs F, H of connected
graphs when ¢t = 2, namely when F is a complete graph, star
or path and when H is a path or even cycle of small order. In
particular, PR(F, H) is determined when (1) F is a complete
graph and H is a path of order 6 or less, (2) F' is a complete
graph and H is a 4-cycle, (3) F is a star and H is a 4-cycle or
a 6-cycle and (4) F' is a star and H is a path of order 8 or less.
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1 Introduction

One of the major areas in Extremal Graph Theory is Ramsey Theory, which
is primarily the study of Ramsey numbers. For two graphs F and H, the
Ramsey number R(F, H) of F and H is the smallest positive integer n such
that every red-blue coloring of the complete graph K, of order n results
in a red F (a subgraph isomorphic to F, all of whose edges are red) or a
blue H. When F and H are both complete, the Ramsey numbers R(F, H)
are often referred to as classical Ramsey numbers. When s,t > 3, only a
handful of classical Ramsey numbers R(Kj, K;) are known. In particular,
R(K3,K3) = 6, R(K3,K4) = 9, R(K4, K4) = 18 and R(K4,K5) = 25;
while the exact value of R(Ks,Ks) is unknown. It is a consequence of
a theorem of Ramsey that R(F, H) exists for every pair F,H of graphs.
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Furthermore, it is a result of Erdés and Szekeres [6] that if F' is a graph of
order s and H is a graph of order t, then

R(F, H) < R(K., K.) < (s:t 1 2).

Indeed, for every k > 2 graphs G;,Ga, ..., Gk, there exists a least pos-
itive integer n such that for every edge coloring of K, with the colors
1,2,...,k, there exists a subgraph of K, isomorphic to G; for some i with
1 <4 < k such that every edge of this subgraph is colored i. This integer
n is the Ramsey number R(Gy,Ga,...,Gk).

Over the years, a number of variations of Ramsey numbers have been
introduced. For example, for every two bipartite graphs F and H, the
bipartite Ramsey number BR(F, H) is the smallest positive integer r such
that every red-blue coloring of the r-regular complete bipartite graph K.,
results in a red F or a blue H. It is known that BR(F, H) exists for
every two bipartite graphs F’ and H (see [2]). Furthermore, it is a result of
Hattingh and Henning (7] that if F C K, ; and H C K, ., then

BR(F,H) < BR(K, 0, K+.) < (S:t) ~1

Related to the bipartite Ramsey number is the 2-Ramsey number. For
every two bipartite graphs ' and H, the 2-Ramsey number Ry(F, H), de-
fined in [1], is the smallest positive integer n such that every red-blue color-
ing of the complete bipartite graph K |n/2),[n/2] of order n results in a red F'
or ablue H. In particular, Ry(F, H) is either 2BR(F, H) or 2BR(F, H) 1.
More generally, for every two bipartite graphs F and H and each integer
k with 2 < k < R(F, H), the k-Ramsey number Ry (F,H), also defined in
(1], is the smallest positive integer n such that every red-blue coloring of
the balanced complete k-partite graph G of order n (where the numbers of
vertices in every two partite sets of G differ by at most 1) results in a red
F or a blue H. Certain k-Ramsey numbers have also been shown to exist
when F and H are not both bipartite for some values of k.

Another Ramsey number of interest is the rainbow Ramsey number.
For graphs F" and H, the rainbow Ramsey number RR(F, H ) is the smallest
positive integer n such that every edge coloring of K,,, using an arbitrary
number of colors, results in a monochromatic F (all of whose edges are
colored the same) or a rainbow H (all of whose edges are colored differently).
The conditions under which RR(F, H ) exists is a consequence of a result
of Erdds and Rado [5).

Theorem 1.1 Let F and H be two graphs without isolated vertices. The
rainbow Ramsey number RR(F, H) exzists if and only if F is a star or H is
a forest.
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While edge colorings of a graph that result in certain monochromatic or
rainbow subgraphs have been the subject of much research, the edge color-
ings receiving the most attention are proper edge colorings, in which every
two adjacent edges are assigned different colors. The minimum number of
colors required of a proper edge coloring of a graph G is the chromatic in-
dez of G, denoted by x'(G). It is an immediate observation that for every
nonempty graph G, the chromatic index of G is at least as large as the
maximum degree A(G) of G, that is, x'(G) > A(G). The best known and
most useful result on edge colorings was obtained by Vizing (8.

Theorem 1.2 (Vizing’s Theorem) For every nonempty graph G,
X'(G) £ A(G) +1.

Thus, by Vizing’s theorem, for every nonempty graph G with maximum
degree A, either x'(G) =Aor X' (G)=A+1.

Let F and H be two nonempty graphs such that x'(H) = t. The proper
Ramsey number PR(F,H) of F and H is the smallest positive integer n
such that every t-edge coloring of K, results in either a monochromatic F' or
a properly colored H. Since the Ramsey number R(Fy, Fs, ..., F;), where
F,= Fforalll <i<t,existsand PR(F,H) < R(Fy, F3,..., F}), it follows
that the proper Ramsey number PR(F, H) exists for every two graphs F'
and H. Here, we investigate the proper Ramsey number PR(F, H) for
several pairs F, H of connected graphs of order at least 3 where x'(H) = 2.
For each such pair then,

|V(F)| < PR(F,H) < R(F, F). (1)

We refer to the book [4] for graph theory notation and terminology not
described in this paper.

2 Complete Graphs Versus Paths
We first determine PR(K,,, P.) for n > 3 and k € {3,4,5}.

Proposition 2.1 For each integer n > 3, PR(K,, P;) = n.

Proof. First, PR(K,,P3) > n by (1). Let there be given a red-blue col-
oring of K,,. If all edges of K,, are colored the same, then a monochromatic
K, results. If not, then there are two adjacent edges of K, whose colors are
different, that is, K, has a properly colored P;. Therefore, PR(K,,P3) <n
and so PR(K,, Ps) = n. =

Theorem 2.2 For each integer n > 3, PR(K,,P4)=n+1.
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Proof. Let v be a vertex of the graph K,. The red-blue coloring of K, in
which each edge incident with v is colored red and all other edges of K, are
colored blue has neither a monochromatic K,, nor a properly colored P;.
Hence, PR(K,,Py) > n+ 1.

It remains to show that PR(K,,Ps) < n+ 1. Assume, to the con-
trary, that there is a red-blue coloring of G = K,;; that avoids both a
monochromatic K, and a properly colored P;. By Proposition 2.1, there
is a properly colored Ps, say (u,v,w), where uv is colored red and vw is
colored blue. Let X be the set consisting of the remaining n — 2 vertices of
G. Since there is no properly colored P, in G, the edge zu is red for each
z € X and zw is blue for each z € X. Assume, without loss of generality,
that uw is red. Hence, zv must be blue for each z € X since there is no
properly colored P, in G. This is illustrated in Figure 1, where a red edge
is indicated by a solid line and a blue edge is indicated by a dashed line.

Figure 1: A red-blue coloring of G = K,

If n = 3, then there is a monochromatic K3, namely a blue K3. So, we
may assume that n > 4. If any edge of G[X] is red, then there is a properly
colored P;. Thus, all such edges are blue and the subgraph G[X U {v, w}]
is a blue K, a contradiction. Therefore, PR(K,,P;) < n+1 and so
PR(Kp,Py)=n+1. n

In order to evaluate PR(K,,, Ps) for n > 3, we first consider the special
case when n = 3.

Proposition 2.3 PR(Kj3,P;) = 5.

Proof. The red-blue coloring of K4 in which the red subgraph is C; and
the blue subgraph is 2K contains neither a monochromatic K3 nor a prop-
erly colored Ps. Thus, PR(K3, Ps) > 5.

Let there be given a red-blue coloring of G = Kj that avoids a monochro-
matic K3. Let Gr and Gp be the red and blue subgraphs, respectively, of
G. Suppose that the size of G is at least that of Gg. Thus, Gg contains
a cycle that is not Cs. If Gp = C5, then Gg = Cs and there is a properly
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colored Ps; while if Gg contains a 4-cycle C, then both of its diagonals are
blue and so the vertex of G not on C is adjacent to at least one vertex on
C by a red or blue edge, producing a properly colored Ps in either case and
so PR(K3, Ps) = 5. n

Theorem 2.4 For every integer n > 4, PR(K,,,Ps) = 2n — 2.

Proof. Since the red-blue coloring of K2, 3, in which every edge of some
(n — 1)-clique is colored red and all other edges are colored blue, contains
neither a monochromatic K, nor a properly colored Ps, it follows that
PR(K,,Ps) 2 2n—2. ‘

Next, we show that PR(K,,, Ps) < 2n—2. Assume, to the contrary, that
there is a red-blue coloring of G = Kan—2 avoiding a monochromatic K,
and a properly colored Ps. Let Gr and Gp be the red and blue subgraphs,
respectively, of G. We consider two cases.

Case 1. A(GR) = 2n—3 or A(GB) = 2n — 3, say the former. Let v be
a vertex of degree 2n — 3 in Gg. For each (n — 1)-subset S of V(G) — {v},
the subgraph G[S)] contains a blue edge; for otherwise, G[{S U {v}] is a red
K,. Hence, Gg contains £ > [%J independent edges. Suppose that z;y;
(1 € i < £) are independent edges in Gp. Since there is no properly colored
Ps in G, it follows z;y; is blue for all pairs 4,5 with 1 <4 # j < £. Thus,
the subgraph induced by W = {z;,y: : 1 < i < £} is a blue clique of order
2¢. If 2¢ > n, then G[W] contains a blue K, a contradiction. Hence, we
may assume that £ = | 2] and n is odd. Thus, £ = (n — 1)/2 and G[W]
is a blue Kp—y. Let G; = G[W] and G2 = G[V(G) — ({v} U W)]. Thus,
G; is a red K,_» and G[V(G) — W] is a red K,—;. Since G contains no
monochromatic K,,, there are two vertices p and q in G; and a vertex s in
G4 such that ps is red and gs is blue. Let t € V(G1) — {p,q}. However
then, (t,p, s, g,v) is a properly colored Ps in G, a contradiction.

Case 2. A(Gg) £ 2n —4 and A(Gp) < 2n — 4. We may assume that
A(GRr) > A(Gg) and so A(Ggr) > n — 1. Let v be a vertex of maximum
degree in Ggr. Suppose that vz; is a red edge of G for 1 < i < A(Gg) and
vz is a blue edge of G. Let S = {z; : 1 < ¢ < A(GR)}. Since G contains
no red K,, the subgraph G[S] contains a blue edge, say z;z2 is blue. First,
suppose that z is joined to a vertex x; € S by a red edge. We may assume
that i # 1. If i = 2, then (z;,z9,2,v,23) is a properly colored Fs; while
if i # 2, then (z1,72,v,7,%;) is a properly colored Ps. In either case, a
contradiction is produced. Thus, z is joined to every vertex in S U {v}
by a blue edge. However then, = has degree at least A(Ggr) + 1 in Gp,
contradicting the assumption that A(Gr) = A(GB)- (]

In order to determine PR(K,, Ps) for n > 3, we first consider the cases
when n = 3,4, 5.
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Proposition 2.5 PR(K3, P;) = PR(K4, Fs) = 6.

Proof. Since the red-blue coloring of K5 resulting in a red Cs and a blue
Cs produces neither a monochromatic K3 nor a properly colored P, it
follows that PR(K4, Ps) > PR(K3, Ps) > 6.

Next, we show that PR(K4, P;) < 6. Assume, to the contrary that,
there exists a red-blue coloring of G = Kj that avoids a monochromatic
K4 and a properly colored Ps. Let V(Ks) = {u,v,w,z,y,2}. Since
PR(K4, P;) = 6 by Theorem 2.4 and G contains no monochromatic Ky, the
graph G contains a properly colored Ps, say Ps = (u,v,w,z,y). We may
assume that uv and wz are red and vw and zy are blue and, furthermore,
that uy is blue.

* If zu is blue, then (z,u,v,w,z,y) is a properly colored Ps; so zu is
red.

* If yz is red, then (u,v,w,,y,z) is a properly colored Ps; so yz is
blue.

* If xz is blue, then (y,u,v,w,z,2) is a properly colored Ps; so zz is
red.

* If wy is red, then (z,z2,y,w,v,u) is a properly colored Ps; so wy is
blue.

* Similarly, if vy is red, then (v, z,y, v, w,z) is a properly colored Ps;
so vy is blue.

* If uz is blue, then (v,w,z,u,z,y) is a properly colored Ps; so uz is
red.

* If both wz and vz are blue, then G[{v,w,y, z}] is a blue Ky; so at
least one is red.

By symmetry, we may assume that wz is red.
* If uw is red, then G[{u,w, z, 2}] is a red Kj; so uw is blue.

* If vz is blue, then (v,z,w,u,2,y) is a properly colored Pg; so vz is
red.

* Now, if vz is red, then G[{u,v,r,z2}] is a red Ky; while if vz is blue,
then (2,v,u,w, z,y) is a properly colored P;. Hence, a contradiction
is produced in either case.

Therefore, PR(K3, Ps) = PR(K4, Ps) = 6.
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Proposition 2.6 PR(Kjs, Ps) =8.

Proof. Since the red-blue coloring of K7, in which every edge of some
4-clique is colored red and all other edges are blue, contains neither a
monochromatic K nor a properly colored P;, it follows that PR(Ks, Ps) 2
8. It remains to show that PR(K5, Ps) < 8.

Assume, to the contrary, that there exists a red-blue coloring of G = Kp
that avoids a monochromatic K5 and a properly colored Ps. Let V(Ks) =
{s,t,u,v,w,z,y,2}. Since PR(Ks, Ps) = 8 by Theorem 2.4 and G contains
no monochromatic K, there is a properly colored Ps, say Ps = (s,t,u, v, w),
where st and uv are red and tu and vw are blue. Furthermore, we may
assume that sw is blue.

* If sz is blue, then (z,s,t,u,v,w) is a properly colored Ps; so sz is
red. Similarly, vz is red. Likewise, the edges sy, vy, sz and vz are
red.

* If wz is red, then (s,t,u,v,w,z) is a properly colored Fs; so wzx is
blue. Similarly, wy and wz are blue.

* If uw is red, then (v,z,w,u,t,s) is a properly colored Fs; so uw is
blue. Similarly, tw is blue.

x If sv is blue, then (u, t, s, v, 2, w) is a properly colored Pg; so sv is red.

* If all of Ty, yz, and zz are red, then Gls,v,z,y, 2| is a red Ks; so at
least one of these three edges is colored blue, say xy is blue.

* If all of tx, ty, uz, and uy are blue, then G[t, v, z, y, w] is a blue K5s; so
at least one of these four edges is colored red, say tz is red. However
then, (u,t,z,y,s,w) is a properly colored Fg, a contradiction.

Therefore, PR(Ks, Ps) = 8. n
Theorem 2.7 For every integer n > 4, PR(K,, Ps) = 2n — 2.

Proof. By Propositions 2.5 and 2.6, we may assume that n > 6. Since
PR(K,, Ps) = 2n—2 by Theorem 2.4, it follows that PR(K,, Ps) > 2n—2.
It remains to show that PR(K,, Ps) < 2n —2.

Assume, to the contrary, that there is a red-blue coloring of G = Kan—2
avoiding both a monochromatic K, and a properly colored Ps. By The-
orem 2.4, there is a properly colored P in G, say P = (v, v2,v3, V4, Vs),
where vyvs and vavs are red and vyvs and vyus are blue. Furthermore,
we may assume that vjus is red. Let X = V(G) — V(P) where then
|X| = 2n — 7. Necessarily, v1z is red and vsz is blue for each z € X;
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for otherwise, either (z,v),v2,v3,v4,vs) or (z,vs,vs,vs,v2,v1) is a prop-
erly colored Ps, which is impossible. Likewise, voz is blue for each z € X.
This is illustrated in Figure 2, where a red edge is indicated by a solid line
and a blue edge is indicated by a dashed line.

Figure 2: Illustrating a step in a red-blue coloring of G = Ks,,—2

Since n > 6, it follows that 2n — 7 > n — 1. This implies that G[X]
contains a red edge and a blue edge, for otherwise, either G[X U {v;}] or
G[X U {v2}] is a monochromatic K,. Then G[X] contains nonadjacent
edges =12 and z324, where x5 is red and z3z4 is blue.

* If vyvq is blue, then (3, z4,v1,v4,v3,v2) is a properly colored Ps; so
U1y is red.

* If vpvs is red, then (i, z2, vs,v2,v3,v4) is a properly colored Pg; so
vgU5 is blue.

* If vyv3 is blue, then (vs,v4, v3, v1,v2,2;) is a properly colored Ps; so
v3v3 is red.

* If vavs is red, then (vy,v2,vs,vs,71,22) is a properly colored Pg; so
vgvy is blue.

* If wavy is red, then (v1,vs,v4,v2,Z1,Z2) is a properly colored Pg: so
Uavy4 is blue.

Consequently, every edge incident with v; is red and, with the exception
of the edges viv2 and vy vs, every edge incident with vy or vs is blue. (See
Figure 2).

We now consider the set Sy = V(G) — {v1, v, vs} where | S| = 2n -5 >
n + 1. Certainly, if G[Sz] is monochromatic, then G contains a monochro-
matic K, a contradiction. Thus, G{S,] contains a properly colored P, say
Ps = (y1,¥2,y3), where y1y is red and yoys is blue. Then (vy,vs, 1, y2, y3)
is a properly colored Ps, so, except for v1ys, every edge incident with y3 is
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blue (see Figure 3). Next, let S3 = Sz — {y3}, where [S3| = 2n -6 > n.
Again, if G[S3] is monochromatic, then G contains a monochromatic K, a
contradiction. Hence, G[S3] contains a properly colored P;. Applying the
argument above, there is a vertex in S3 that is joined to every vertex in
V(G) — {v1} by a blue edge. Deleting this vertex from S3, we obtain the
set 4.

Figure 3: Selecting the vertex y3 in G = Ko,,—2

In general, for each integer k with 2 <k <n—2, let
Sk = (V(G) - {'U]}) - {’UJ],‘LU2,. . ,’U)k}

(where {w;,ws, w3} = {v2,vs,y3}). Since {Si| =(2n-3) -k >n—1 and
G contains no monochromatic K, it follows that G[S] contains a properly
colored P; by Proposition 2.1. Thus, there is a vertex wi4+) € Sk such that
wy, is joined to every vertex in V(G) — {v1} by a blue edge. Let

Sk+1 = Sk — {wi}.

In particular, |S,_2| = n — 1. Since G contains no monochromatic Kp, it
again follows by Proposition 2.1 that G[S,_3] contains a properly colored
P;. Hence, there is w,,_1 € Sp_2 such that w,_; is joined to every vertex
in V(G) — {v1} by a blue edge. Let Sp_1 = Sp—2 — {wn—1} and let w, €
Sn—1. However then, the subgraph G[{w;,ws,...,w,}]is a blue K, in G,
a contradiction. Therefore, PR(K,, Ps) = 2n — 2.

3 Complete Graphs Versus a 4-Cycle

In Section 2, we have seen that PR(K,,H) = 2n — 2 for n > 4, where
H = P; and H = P;. We now show that this is also true H = Cj. In fact,
PR(K,,C4) =2n—2 whenn = 3.
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Proposition 3.1 PR(K3,C;) =4.

Proof. Since a red-blue coloring of K3 in which not all edges are colored
the same avoids both a monochromatic K3 and a properly colored Cy, it
follows that PR(K3,Cy4) > 4. Next, let there be given a red-blue coloring
of G = K, that contains no monochromatic K;. We may assume that the
size of the red subgraph GRr is at least 3. Thus, Gp either contains K 3 or
Py. If Gp contains K 3, then G has a monochromatic K3, a contradiction;
while if G contains Py = (v1,v2,v3,v4), then (v, vg,v4,v3,v1) is a properly
colored Cy4. Therefore, PR(K3,C4) = 4. n

Theorem 3.2 For each integer n > 3, PR(K,,C,) = 2n — 2.

Proof. We proceed by induction on n > 3. By Proposition 3.1, the
statement holds for n = 3. Assume that PR(K,—;,C4) = 2n — 4 for some
integer n > 4. We show that PR(K,,C4) = 2n — 2.

Since the red-blue coloring of Kj,_3 in which every edge of some (n —
1)-clique is colored red and all other edges are blue, contains neither a
monochromatic K, nor a properly colored Cj, it follows that PR(K,,C4) >
2n — 2. It remains to show that PR(K,,Cs) < 2n — 2. Assume to the
contrary, that there is a red-blue coloring of G = Kj,_» that avoids a
monochromatic K, and a properly colored C4. By the induction hypothesis,
G contains a monochromatic K,,_;. We may assume that G contains a red
K, with vertex set X = {z,z2,...,2,_1}. Let

Y = V(G) -X= {ylvy2v--~,yn—l}-

We claim that G[Y] is a blue K,_;. If this were not the case, then
G[Y] contains a red edge, say y1y2 is red. Since there is no red K, it
follows that each vertex in Y is joined to at least one vertex in X by a
blue edge. We may assume that zyy; is blue where z; € X. If 2y,
is blue for some ¢ € {2,3,...,n — 1}, then (z1,91,¥2,2i,71) is a prop-
erly colored C4. Thus, z;y> is red for each i € {2,3,...,n — 1}. Since
there is no red K,, it follows that z,ys is blue. Furthermore, y;z; is red
for 2 < i < n —1; for otherwise, (y1,z;,%1,%2,%1) is a properly colored
Cs. So, each edge in [{y1,¥2}, {z2,23,...,2n-1}] is red. However then,
G[{z2,3,...,Ta-1,%1,¥2}] is a red K, a contradiction. Thus, as claimed,
G[Y] is a blue K,,_;.

Next, we claim that the vertices of X can be labeled as uy, us, ..., un_1
and the vertices of Y can be labeled as vy, va,...,v,—1 in such a way that
for each integer k with 1 < k < n — 1, the edge u;v; (1 <i,j < k) is red if
and only if 1 < i < j. We verify this statement by induction on k.

Since G[Y] is a blue K,_1, every vertex in X must be joined to some
vertex in Y by a red edge. Let uyv; is a red edge where u; € X and
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v, € Y. Hence the statement holds for £k = 1. Assume for some integer k
with 1 € k < n—1 that X contains & vertices u;, ug,...,ux and Y contains
k vertices vy, v,..., v such that u;v; isred if 1 < i < j < k and u;v; is
blueif 1 <j<i<k.

We now show that the statement is true for k£ + 1. By assumption,
v is joined to uj,us,...,uxr by red edges. Since vy cannot be joined to
each vertex of X by a red edge, there must be a vertex ug4+; € X such
that ug41vx is blue. If ugyiv; were red for some ¢ with 1 < i < k, then
(vi, Ug+1, Yk, Uk, v;) would be a properly colored Cy4, which is impossible.
Thus, uk4+1v; is blue for all ¢ with 1 < ¢ < k. However, ug41 must be joined
to some vertex of Y by a red edge, say %x4+1vk+1 is red, where vy € Y. If
u;Uk4+1 were blue for some i with 1 < ¢ < k, then (vi41, i, Vi, Uk41, Vk+1)
would be a properly colored Cy, again impossible. Thus, u;vk41 is red for
all i with 1 < i < k. This verifies the claim. In particular then, v,,_, is
joined to every vertex of X by a red edge. However then, G[X U {v,_,}] is
ared K,, a contradiction. Therefore, PR(K,,,C,s) = 2n — 2. -

4 Stars Versus Cycles

We first determine the value of PR(K1,,,Cy) for each integer n > 3.

Theorem 4.1 For every integer n > 3, PR(K;.»,Cy) =n + 1.

Proof. Since the order of K, , is n + 1, it follows by (1) that
PR(K1,n,C4) 2 n+ 1.

It remains to show that PR(K}; ,Cs) < n+ 1. We proceed by induction
on n. For n = 3, let there be given a red-blue coloring of K4 that avoids
a monochromatic K 3. Thus, each vertex of Ky is incident with at least
one red edge and at least one blue edge. So, there is a 2K, Py or C; in
each color, which implies that there is a properly colored C4. Therefore,
PR(K, 3,C4) < 4, establishing the base step.

Next, suppose that PR(K) ,—1,C4) < n for some integer n > 4. We
show that PR(K;,,C4) £ n 4+ 1. Assume, to the contrary, there is a
red-blue coloring of G = K, avoiding both a monochromatic K , and a
properly colored Cy. Let u € V(G). By the induction hypothesis, G[V(G)—
{u}] = K, contains either a monochromatic K -1 or a properly colored
C4. Since G has no properly colored Cy, there is a monochromatic F' =
Kin—1. We may assume that F is a red K; ,—1 whose central vertex is
v. Because G has no monochromatic Kj n, it follows that wv is blue and
u is incident with at least one red edge, say ux. Necessarily, = is incident
with at least one blue edge, say ry is blue. However then, (u,v,y,z,u) is a
properly colored Cy, which is impossible. Thus, PR(Kin,C4) <n+1.

291



Therefore, PR(K} »,C4) =n+1 for each n > 3. (]

Theorem 4.2 [3] For integers s,t > 2,

s+t—1 ifs andt are both even
R(Ky,s K1) = { s+t otherwise.

Since PR(K,n,Cs) < R(K1n,K1n) =2n —1 when n > 4 is even by
(1), it follows that PR(K;,Cs) < 2n — 1 for all even integers n > 4.
In fact, PR(K; ,,Cs) = 2n — 1 for each integer n > 4, as we show next.
First, we introduce some useful definitions. Let G be a graph each of whose
edges is colored red or blue. For a vertex v of G, the red neighborhood
Npg(v) is the set of vertices each of which is joined to v by a red edge and
the blue neighborhood Np(v) of v is the set of vertices joined to v by blue
edges. Because the next result can be readily verified, its proof is omitted.
Nevertheless, it is useful so that a more complete result can be presented.

Proposition 4.3 PR(Kl,a, Ce) = 6, PR(K1'4, Cs) = 7, PR(Kl_s, Cs) =9.
Theorem 4.4 For every integer n > 4, PR(K) »,Cs) = 2n — 1.

Proof. By Proposition 4.3, we may assume that n > 6. Since the red-
blue coloring of K,_2, in which the red subgraph is 2K,,_; and the blue
subgraph is K, _1,n_1, avoids both a monochromatic K7, and a properly
colored Cs, it follows that PR(K} ,,Cg) > 2n — 1.

It remains to show that every red-blue coloring of K3,_; produces either
a monochromatic K, or a properly colored Cs. Assume, to the contrary,
that there is a red-blue coloring of G = K3,_; that avoids both a monochro-
matic K, and a properly colored Cs. Necessarily, each vertex is incident
with exactly n — 1 red edges and exactly n — 1 blue edges. Thus, both the
red subgraph Gg and the blue subgraph Gg are (n — 1)-regular graphs of
order 2n — 1. We first verify three claims.

Claim 1. There is no monochromatic K,,.

Proof of Claim 1. Assume, to the contrary, that G contains a monochro-
matic F' = K,,. We may assume that F is a red K,,. Let z € V(G) -V (F).
Since |V(G) — V(F)] = n— 1 and z is incident with exactly n — 1 red
edges, it follows that x is joined to at least one vertex y in F by a red edge.
However then, y is incident with at least n red edges, producing a red K lne
This is impossible; so Claim 1 holds.
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Claim 2. There is no monochromatic K,,—;.

Proof of Claim 2. Assume, to the contrary, that G contains a monochro-
matic F = K,,_;. We may assume that F' is a red K,_;. Let X = V(F)
and let Y = V(G) — X;so [X| =n—1and |Y| = n. Since each z € X
is incident with exactly n — 1 red edges, it follows that each z is joined to
exactly one vertex in Y by a red edge; so [X,Y] contains exactly n — 1 red
edges. This implies that at least one of the n vertices in Y, say y, is incident
with exactly n — 1 blue edges in [X,Y]. Thus, y is joined to each vertex in
Y by a red edge (see Figure 4). Consider the subgraph H = G[Y — {y}]
of order n — 1 in G. Either H is a monochromatic K,,—; or H contains a
properly colored Ps.

x If H is a red K,,_;, then G[Y] is a red K, which is impossible by
Claim 1.

* If H is a blue K,,_1, then each vertex in H is adjacent to exactly
n — 2 vertices in X by red edges. This implies that [X,Y’] contains
(n — 1){(n — 2) red edges. However then, (n — 1)(n —2) = n —1; so
n = 3, which is impossible since n > 6.

* If H contains a properly colored P3 = (u,v,w), where say uv is red
and vw is blue, then (u, v, w, y) is a properly colored P4 (see Figure 4).
First, suppose that u is joined to a vertex x € X by a blue edge. Let
¢ € X — {z}. Then (z',z,u,v,w,y,2’) is a properly colored Csg,
which is impossible. Hence, u is joined to all vertices in X by red
edges. However then, G[X U {u}] is a red K, which is impossible by
Claim 1.

Therefore, Claim 2 holds.
X

i

/ 4

Figure 4: A step in the proof of Claim 2
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Claim 3. There is a monochromatic K,_s.

Proof of Claim 3. Since PR(K,, P;) = 2n — 2 by Theorem 2.4, it follows
that G contains either a monochromatic K, or a properly colored Ps. By
Claim 1, the graph G contains a properly colored Ps = (u;, ua, u3, u4, us).
We may assume that ujus and ugu, are red and uous and u4us are blue
and, furthermore, u us is red (see Figure 5).

Let § = {v1,v2,...,v2n-6} = V(G) — V(Ps). Since (i) v, is incident
with exactly n — 1 blue edges and (ii) ujus and ujus are red, it follows
that u; is adjacent to at least n — 3 vertices in S by blue edges. Hence,
[Np(u1) NS} = n — 3. If us is joined to some vertex v € Ng(u;) NS by
a red edge, then (us,v,u1,us, us,uq,us) is a properly colored Cg, which
is impossible. Hence, us is joined to all vertices in Ng(u;) NS by a blue
edge. Hence, Np(u1) NS C Np(us) N S and so |[Np(us) N S| > n — 3 (see
Figure 5). Likewise, since (i) us is incident with exactly n — 1 red edges
and (ii) ujus is red, it follows that us is joined to at least n — 4 vertices
in S by red edges. That is, [Ng(us) N S| = n — 4 > 2. Furthermore, since
Np(u1) NS C Np(us) N S, it follows that Ng(u1) NS and Ng(us)N S are
disjoint. If %, is joined to some vertex w € Ngr(us) NS by a blue edge,
then (u;,w,us, uq, u3, uz, u1) is a properly colored Cg, which is impossible.
Thus, u, is joined to all vertices in Ng(us) NS by red edges (see Figure 5).

Np(u)N§ Nr(us)N S

Figure 5: A step in the proof of Claim 3

First, suppose that there is a red edge v’ in G[Ng(u1) N S]. If there is
also a blue edge in G[Ng(us) N S], say ww', then (v,v',u;, w, w’,us,v) is
a properly colored Cs, which is impossible. Hence, G[Ngr(us) N S] is a red
clique of order at least n—4. Thus, Gg[Ng(us)U{us}| contains a red K,,_.
Next, suppose that each edge in G[Np(u;)NS] is blue. Then G[Ng(u1)NS]
is a blue clique of order at least n—3. Thus, G[(Np(u1)NS)U{u,}] contains
a blue K,,_s.
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Therefore, there is a monochromatic K, _2 and so Claim 3 holds.

By Claim 3, the graph G = K3, contains a monochromatic K,_2.
Assume, without loss of generality, that G contains a red K,_s with ver-
tex set X = {uj,us,...,un—2}. Let Y = V(G) — X, where then |[Y| =
n+ 1. Since PR(K,.,C4) = n+ 1 by Theorem 4.1 and G contains
no monochromatic K}, it follows that G{Y] contains a properly colored
Cy = (vy, v2, v3, v4, v1), where say v1v2 and v3vs are blue and vovs and vyv4
are red. Consider the vertex u;. Since u, is incident with exactly n—1 blue
edges, u; is joined to n — 1 vertices in Y by blue edges. Thus, u; is joined
to at least two vertices of C4 by blue edges. We may assume, without loss
of generality, that u;,v; is blue.

x If there is £ € X — {u,} such that vz is blue, then (vq, uy, =, vo,
vs, V4, v1) is a properly colored Cg, which is impossible. Thus, v2z is
red for all z € X — {u;}. Since there is no red K,,_, by Claim 2, it
follows that veu; is blue.

* If there is £ € X — {u;} such that v;z is blue, then (v, v4, v3, v2,
uy, T, v1) is a properly colored Cs, which is impossible. Thus, vz is
red for all z € X — {u1}.

In particular, vjuz, v1u3, voug and voug are red (see Figure 6).

red Kn_g

Yj=n+1

Figure 6: A step in the proof of Theorem 4.4

Since vius and wvoug are red, it follows that us is joined to each of
the n — 1 vertices in Y — {v;,vs} by a blue edge. In particular, usvs
and uqus are blue. Likewise, usvs and uzvs are blue. However then,
(u2,us, va, V2, V1, V4, u2) is a properly colored Cg, which is impossible. There-
fore, PR(K1,,Ce) < 2n —1 and so PR(K15,Cg) = 2n— 1. n
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5 Stars Versus Paths

We begin with a preliminary result concerning stars and the path Ps.
Proposition 5.1 For each integer n > 3, PR(Ky n,P3) =n+ 1.

Proof. Since the coloring of K, in which each edge is colored red avoids
both a monochromatic K, , and a properly colored Ps, it follows that
PR(K\,n, P3) 2 n+ 1. For any red-blue coloring of K1, if all edges are
colored same, then there is a monochromatic K n; otherwise, there are
adjacent edges that are colored differently, producing a properly colored
P3. Therefore, PR(Ky,5, Ps) =n +1. ]

Next, we show that PR(K,, P) =n+1whenn>k—1>3fork <6.
Proposition 5.2 For each integer n > 3, PR(K) »,Py) =n + 1.

Proof. Since the coloring of K,, in which each edge is colored red avoids
both a monochromatic K, and a properly colored P; (and so a prop-
erly colored P,), it follows that PR(K;,,P;) > n + 1. To show that
PR(K) 5, Py) < n+1, let there be given a red-blue coloring of G = K, 4,
that avoids a monochromatic K ,,. Then every vertex of G is incident with
at least one edge of each color and there is a properly colored Ps in G. Sup-
pose that P3 = (u;,u2,us), where ujuy is red and upug is blue. We may
assume that ujugz is red. Since u; is incident with at least one blue edge,
there is z € V(G) — {u1,u2,u3} such that u;z is blue. Then (z, Uy, uz,us)
a properly colored Ps. Therefore, PR(K) ,P;) =n + 1. (]

Proposition 5.3 For each integer n > 4, PR(K; n,Ps) =n + 1.

Proof. By Proposition 5.2, PR(K; ,,Ps) > n + 1. It remains to show
that PR(K n, Ps) < n+ 1. Let there be a red-blue coloring of G = K,,4
that avoids a monochromatic K ,,. Then every vertex of G is incident with
at least one edge of each color. Furthermore, by Proposition 5.2, there is
a properly colored Py = (uj,us,u3,uq). We may assume that u;us and
uguy are red and upug is blue. Let X = V(K,4;) — V(P,;), where then
[X|=n+1-4=n—-32>1. If u; or uy is joined to a vertex in X by a blue
edge, then there is a properly colored Ps. Thus, we may assume that each
edge in {{u,u4}, X] is red. Since each of u; and u4 is incident with at least
one blue edge, it follows that either u,u4 is blue or both ujus and ugug
are blue. If uju4 is blue, then for each z € X, the path (z,u1, uq, us, us)
is a properly colored Ps; while if ujus and upu4 are blue, then, for each
z € X, the path (z,u;,us,u4,u2) is a properly colored Ps. Therefore,
PR(KL,,,P5) =n+1. [ ]

In fact, for k € {6,7,8}, PR(K1n,Px) =n+k—5whenn > k—1. We
verify this next.
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Proposition 5.4 For each integer n > 5, PR(Kn, Ps) =n+ 1.

Proof. By Proposition 5.3, PR(K},n, Ps) > n+1. It remains to show that
PR(K; n,Ps) < n+1. Let there be given a red-blue coloring of G = K,
that avoids a monochromatic K. Then every vertex of G is incident with
at least one edge of each color. Furthermore, by Proposition 5.3, there
is a properly colored Ps = (uy,u2,u3, u4,us). We may assume that ujuz
and ugu, are red, usus and ugqus blue and furthermore ujus is red. Let

X =V(G) - V(Ps), where then | X|=n+1-5=n—-42>1.1If
(i) u, is joined to a vertex in X by a blue edge or

(ii) one of uz and us is joined to a vertex in X by a red edge, then there
is a properly colored Ps.

Thus, we may assume that each edge in {{u;}, X] is red and each edge in
[{uz2,us}, X] is blue. Since u, is incident with at least one blue edge, it
follows that either ujus or ujug is blue, say ujuz. Now let £ € X. Then
(u2,,u1,u3,uq,us) is a properly colored Ps. Therefore, PR(K; n, Ps) =
n+ 1. ]

Proposition 5.5 For each integer n > 6, PR(K1,, Pr) =n+2.

Proof. Since the red-blue coloring of K, +1, in which the red subgraph is
K,_1 + K5 and the blue subgraph K>, 1, avoids both a monochromatic
K, » and a properly colored P, it follows that PR(K;n, P;) 2 n 4 2.

Next, we show that PR(K ,, Py) < n+2. Assume, to the contrary, that
there exists a red-blue coloring of G = K, that avoids both a monochro-
matic K , and a properly colored Pr. Thus,

each vertex of G is incident with at least two red and two blue edges.  (2)

By Proposition 5.4 , there is a properly colored Ps = (u1, u2, us, u4, us, Ug)-
We may assume that ujug, ugus and usug are red and ugug and uqus are
blue. Let X = V(G) — V(F%), where then | X|=n+2-6=n-42>2.
Since there is no properly colored P, each edge in [{u;,ug}, X] is red. Fur-
thermore, if ujug is blue, then for x € X, the path (z,u, ug, us, v, us, u2)
is a properly colored P;, a contradiction. Thus ujue is red. By (2), w1
is joined to at least two vertices in {u3,u4,us} by blue edges and ug is
joined to at least two vertices in {ug, u3,u4} by blue edges. Hence, at least
one of ujuz and ujuy is blue. If G[X] contains a blue edge, say z1z2 is
blue, then either (us, 2,1, us,us, s, us) or (us, T2, T1, U1, Ua, U3, Uz) is &
properly colored P;. Hence, G[X] is a red K, _4.
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First, suppose that at least one of u)u3 and uqus is blue, say ujus.

x If ugug is blue, then, for z € X, (z,uy, us, uq, us, us, u) is a properly
colored P7; so ugus is red. By (2), both ugus and ugu, are blue.

* If uyus is blue, then, for z € X, (z, ug, uq, us, u2,u1, us) is a properly
colored Py; so ujus is red. By (2), uju, is blue.

% If there exists 2 € X such that zup or zus is blue, say zus, then
(z,u2,us, uq,us,u1,us) is a properly colored P;; so each edge in
[{u2,us}, X] is red. By (2) then, each edge in [{us,us}, X] is blue.
Again, by (2), both usus and uqus are red and so ugus is blue. How-
ever then, (z,u2, us, u1, us, uq, ug) is a properly colored P;.

Next, both uju3z and usug are red. It follows by (2) that each of
U Uy, U1Us, U3, UgU2 IS blue. If there exists £ € X such that zuy or T us is
blue, say zus, then (z,ua, u1,uq, us, ug, us) is a properly colored P;. Hence,
each edge in [{ug,us}, X] is red. By (2) then, each edge in [{us,uq}, X] is
blue. Now let z;, 72 € X and z; # z2. Then (z2, 71, u3, u1,us, ug, ug) is a
properly colored P;, a contradiction. Therefore, PR(Kin,Pr)=n+2. =

Proposition 5.6 For each integer n > 7, PR(K) 5, Ps) = n + 3.

Proof. Since the red-blue coloring of K, 42, in which the red subgraph is
K,_1 + K3 and the blue subgraph K3 ,_;, avoids both a monochromatic
K),» and a properly colored P, it follows that PR(K 1, P8) 2 n+3.

Next, we show that PR(K ,, Ps) < n+3. Assume, to the contrary, that
there exists a red-blue coloring of G = K,, 13 that avoids both a monochro-
matic K, and a properly colored P3. Thus, each vertex of G is inci-
dent with at least three red edges and three blue edges. Furthermore, by
Proposition 5.5 , there is a properly colored P; = (u;, u2, us, us, us, us, uy).
We may assume that u;u;4; is red for ¢ = 1,3,5 and u;u;4+1 is blue for
i = 2,4, 6; furthermore, u uz is red. Let X = V(G) — V(P;), where then
|X| =n+3-7=mn—4> 3. Since there is no properly colored P, each edge
in [{w1}, X] is red and each edge in [{uz,u7}, X] is blue. Since v, is incident
with at least three blue edges, it follows that u, is joined to at least three
vertices in {u3, uq,us, ug} by blue edges. Hence, u, is joined to us or ug by
a blue edge. Let z € X. If uju3 is blue, then (u2, x,u1, us, ug, us, us, u7) is
a properly colored Ps; while if ujug is blue, then (u7, z, u1, ug, us, us, us, ua)
is a properly colored Ps. In each case, a contradiction is produced.

The results obtained in this section suggest the following conjecture.

Conjecture 5.7 For integers m and n with m > 4 and n > f';] +1,

rassn e |75 [717]
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