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Abstract

A collection S of proper subgroups of a group G is said to be a cover
(or covering) for G if the union of the members of S is all of G. A cover
C of minimal cardinality is called a minimal cover for G and |C| is called
the covering number of G, denoted by o(G). In this paper we determme the
covering numbers of the alternating groups Ag and A11.
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1 Introduction

A collection S of proper subgroups of a group G is said to be a cover for G if
the union of the members of S is all of G. An immediate consequence of the
definition is that cyclic groups have no covers. A cover C of minimal cardinality
is called a minimal cover [15] for G, and |C| the covering number of G, denoted
by o(G) [5). Itis clear that any finite non-cyclic group has a finite cover, hence a
finite covering number.

C.E. Praeger [13] discussed group coverings of the form {H® : a € A} where
Inn(G) < A < Aut(G). In 1997, M.1. Tomkmson [15) showed that the covering
number of a solvable group is of the form p* +1 where p is a prime, and suggested
the investigation of the covering number for families of finite simple groups. D.
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Bubboloni in [4] investigated group coverings with members from only two con-
jugacy classes of subgroups. Covering numbers of several types of linear groups
and Suzuki groups are addressed in [2, 3] and [11], respectively.

For sporadic simple groups, the covering numbers for the Mathieu groups My,
Moo and Ma3, as well as for Ly and O’N were determined by P.E. Holmes in
[8]. In the same paper, Holmes gave estimates for the Janko group J; and the
McLaughlin group M<L. Recently, in [10], L. C. Kappe, D. Nikolova-Popova,
and E. Swartz determined the covering number for the Mathieu group M2, and
improved the Holmes estimate for J;.

In [12] Mar6ti investigates the covering numbers of symmetric and alternating
groups. It is shown that o(S,) = 2"~! if n is odd, unless n = 9, and o(S,) <
272 for n even. Concerning small values of n, it was shown in [1] that o(Sg) =
13, and for n = 8,9, 10, 12, covering numbers for S,, were established in [10].
In particular, showing that o(Sy) = 256 establishes that Mar6ti’s result holds
uniformly for all odd n.

Turning to alternating groups, it was already shown in [5] that ¢(As) = 10, and
it follows from [3] that o(Ag) = 16. For n # 7,9 it is shown in [12] that
o(A,) > 2™~? with equality holding if and only if n is even but not divisible
by 4. Furthermore, it is shown that ¢(A;) < 31, and o(Ag) > 80. In [9] it is
established that o(A7) = 31, 0(Ag) = 71, and 127 < 0(Ag) < 157.

One would think that the problem of determining o(G) for small groups like Ag or
Ay would be child’s play, but in fact, for these and other small simple groups, the
corresponding problems have proved to be rather hard, and remained unanswered
for a number of years. In this paper we determine the covering numbers of the
alternating groups Ag and Aj). In the case of G = Ay, although it was almost
trivial to establish a good upper bound for o(G), it was much harder to show that
this upper bound was in fact the covering number.

The topic of this paper is to show that 0(A;;) = 2751 and o(Ag) = 157.

2 Preliminaries

Throughout, we use standard notation and terminology about groups, as for exam-
ple in J.J. Rotman [14], M. Hall [7] or the ATLAS [6], except that we use N-C for
a split extension of a group NV by a group C, and N\C for a general extension of
N by C. If G| X is a group action and A C X, we denote by G|4) the pointwise
stabilizer of A in G, and by G (4) the setwise stabilizer of A in G.

Let G be a group. If z € G and (z) is maximal cyclic, we will say that (z) is
a principal subgroup of G, and that x is a principal element. We denote by S
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the collection of all proper subgroups of G, by M the collection of all maximal
subgroups of G and by P the collection of all principal subgroups of G. Further,
welets = [S|,m = [M|andp = |P|. If z € H € C C S, we say that C covers
xz, and also that C covers H. If X and Y are sets, an incidence relation between
X and Y isasubset T C X x Y. The elements (z,y) € T are also called the
flags of L. It is an easy task to establish the following:

Lemma 2.1 Suppose that G is a finite non-cyclic group, with S, M and P as
above. Then,

(i) ForC C S, Cisacoverfor G if and only if C covers all principal subgroups.
(ii) IfC is any cover for G, there exists a cover C' C M, such that |C'| < |C|.

(iii) There is a minimal cover C for G consisting solely of maximal subgroups of
G.

Proof. Statement (i) is obvious. To prove (ii), suppose that C is a cover for G.
If we replace each H € C by a maximal subgroup subgroup M in M containing
H we obtain a multiset C"” C M which covers all the subgroups H € C, and
therefore covers G. Further, if we keep all M of multiplicity 1, and a single
occurrence of those M which appear with multiplicity higher than 1 in C”, we
obtain a subcollection ¢’ C C” which also covers G. Then |C’| < |C”]| = [C], and
C’' C M. Statement (iii) follows immediately from (ii). O

In view of the above lemma, to determine o(G) for a given group G, it suffices to
determine a minimal cover consisting solely of maximal subgroups of G, that is
a collection C € M of minimal size, covering all principal subgroups. We begin
by ordering P and M in some arbitrary but fixed way, say P = {P1, Py, ..., P}
and M = {M;, M,, ..., Mn}.

Next, we proceed to define an incidence structure Z C P x M, where P; € P is
incident with M; € M if and only if P; < M;. This structure is equivalent to a
bipartite graph and a p x m incidence matrix A, where A(i, j) = 1if P; < M;,0
otherwise. The problem of determining o(G) can now be phrased in terms of A
as follows:

Problem 2.1 For X = (z1,...,2m) € {0,1}™, and C = (c1,...,cp) defined
by:
C=XAT @.1)

determine a lowest weight vector X suchthatall c; >0, 1 <j<p.
Essentially, the above formulation says: “ Select a smallest possible number of

columns of A whose sum is a vector with all entries positive”, that is, select a
minimal cover consisting of maximal subgroups of G.
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It is now clear that once the matrix A has been constructed for a given group
G, alinear programming approach could be used to provide a solution. Abusing
standard terminology, we will say that an n x m real matrix A is row-stochastic
(column-stochastic) if A has constant row-sums k (column-sums £) respectively.

The group action G|G of G on itself by conjugation induces actions G|P and
G|M. We now consider the decompositions of P and M into G-orbits under

these actions:
P=P;+---+P,, 2.2)

M=My+- +M,, (2.3)

respectively, and let |P;| = p;, |M;| = m;. The matrix A can be reorganized
according to G-orbits into an s x ¢ matrix of p; x m; block matrices Ap, r4;,
which describe the induced incidence between the principal subgroups in P; and
the maximal subgroups in orbit M;. It is not hard to see that each Ap, a4, is
row-stochastic, where the row sums depend only on ¢ and j, and represent the
number of maximal subgroups in M containing any P € P;. We denote by &; ;
the row sum of Ap, m; and form an s x ¢ fused matrix A = (@; ;). Each matrix
Ap,, Mm; is also column-stochastic with column sum b; ,j Which counts the number
of principal subgroups P in P; contained in any fixed M € M, thus we obtain
a second fused s x ¢ matrix B = (b; ;). By counting the number of flags joining
P to M; in two different ways we see that the following condition holds:

piGij = ij;,»'j 1<1<s, 1<j5<t. 2.4)

IfC C Misacover for G, let C; = C N M, and y; = |C;]. Since C covers P,
we must have that

¢
ZBi,jyj >p; foreachi, 1<i<s,
ot

that is, B
YBT > (pl,-w,Ps) (25)

where Y = (y1,...,%:), 0 < y; < m; . Since y; is the number of maximal
subgroups in M that are members of the cover C, the vectors X = (z,...,Zm)
andY = (y1,...,y:) are related in the following way: y; is the sum of all the z;
over all the indices ¢ corresponding to the members of M ;.

Let mg = 0 and consider the m x ¢ matrix D which in the j** column has 1’s for
the indices of rows in the interval [1+377-1 +=0 ™Mk » > k=0 ™k| and 0’s everywhere

else. Then
Y =XD. (2.6)

Putting equations (2.5) and (2.6) together yields XDBT > (p,,...,p,), thatis
XE Z (Pl:---,Ps)y (27)
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where E = DBT.

It is convenient to introduce some notation as follows: If R C {1,2,...,7} we
write Pgr = U;erP:, and Mp = U;erM;, moreover we further simplify no-
tation by dropping the brackets, for example we write My 4,7 for M(3.47) =
Mo UMyUMyq,and Pys for Py sy = P4 U Ps.

3 The Ag case

3.1 The maximal subgroups

Let X = {1,...,9}, G = Ay, and consider the action of G on X. There are
precisely 8 conjugacy classes of maximal subgroups of G (see [6]) which we
label as {M,,..., Mz}, listed in ascending order of the |[M;|. The vector of
cardinalities of the M; is (m4,...,mg) = (9, 36,84, 120,120, 126, 280,840). G
acts primitively on X, (), (¥X) and (%), and the members of M;, Ma, M3
and Mg are the stabilizers in the respective actions. If we select a representative
M; € M;, then My = Gy = Ag, My = G(19) & Sy, M3 = G =
(Ag x Z3) - Zy, and Mg = G(1,2,3,4) = (A4 X As) - Zy. There are two distinct
conjugacy classes of groups of order 1512, which are the normalizers of groups
isomorphic to PSLy(8), thus My & Ms = PSL,(8)-Z3. A representative Mz is
the normalizer in G of an elementary abelian group of order 27, a split extension
of Z3 by Sy, ie. My = Z§ - 84. Finally a representative Mg € Myj is of order
216, and is the normalizer of an elementary abelian group of order 9, a non-split
extension of ZZ by a group of order 24 and type Z\A4.

3.2 The principal subgroups

There are also 8 conjugacy classes of principal subgroups {P, ..., Pg} which
we list in ascending order of the |P;|, P; € P;. It is easy to establish that
generators of the P; are of cycle types 1'42, 112161, 127!, 9!, 91 225l
213141 and 1!'3!5! respectively, and that the vector of cardinalities of the P;
is (p1,...,ps) = (5670, 15200, 4320, 3360, 3360,2268, 3780, 3024). There
is a single conjugacy class of principal subgroups for each cycle type, except for
the case of cycle type 9! for which there are precisely two conjugacy classes, P4
and Ps of principal subgroups of order 9. Interestingly, P4 U Ps is covered by
MU Ms, but no members of P4 are covered by Ms, and similarly, no members
of Ps are covered by My, thus, Ap, ms = Aps,m, = (0)3360x120-
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3.3 The computation of incidence matrices

Computation of the incidence matrix A is undertaken by using the software sys-
tem “KNUTH” developed by S. Magliveras in APL to compute with permutation
groups and combinatorial objects. We begin by computing one representative
P; € Py, foreach i, 1 < i < 8, and one representative M; € M; for each
1 < j < 8. Further, for each (¢,5) € {1,...,8}? we store a single generator
for each of the distinct conjugates of P;, and a a set of generators for each of the
distinct conjugates of the M;. We then compute the matrix Ap, a ; by gener-
ating each conjugate of M using a variant of the Schreier-Sims algorithm, and
then running through all principal subgroups in P;, testing for membership of the
single generator of each of the conjugates of P;. We repeat this for each mem-
ber of the conjugacy class M;. Once the Ap, ; are computed, the matrices
Ap, m; consisting of the concatenation of all Ap, uq, : ¢ € {1,...,8} as well
the complete matrix A can be formed by splicing together the component matri-
ces Ap, m;. We considered trying to exhibit these matrices in this paper, but did
not find a reasonable way to concisely encode the 40902 x 1615 matrix A, or the
submatrices Ap, rq;. Instead, we exhibit below the fused matrices A, and B in
the form of two tables.

P\M; | My [ Mo | M3 [ My | Ms | Mg | M7 | Mg

{z)] type  pi\m; 9 36 84 | 120 | 120 | 126 | 280 | 840
P, 4 1142 5670 1 0 0 0 0 2 0 4
P2 6 11216115200 1 1 1 2 2 0 1 2
P2 7 1271 4320 2 1 0 1 1 0 0 0
Py 92 91 3360 0 0 0 3 0 0 1 0
Ps 9% 9! 3360 0 0 0 0 3 0 1 0
Pe 10 2251 2268 0 2 0 0 0 1 0 0
Pz 12 213141 3780 0 1 1 0 0 1 2 0
Ps 15 113151 3024 1 0 1 0 0 | 0 0

Matrix A for Ag

Pi\M; My | Mo [ Mz | Mg ] Ms | Mg | Mz | Ms

I(z)| type  pi\m; 9 36 84 | 120 | 120 | 126 | 280 | 840

P1 4 1147 5670 630 0 0 0 0 90 0 27

Pa 6 11216115200 1680 | 420 | 180 | 252 | 252 0 54 36

P 7 1271 4320 960 | 120 0 36 36 0 0 0

Ps 9a 9! 3360 0 0 0 84 0 0 12 0

Ps 9% 9! 3360 0 0 0 0 84 0 12 ]

Pe 10 2250 2268 0| 126 0 0 0 18 0 ]

Pe 12 213141 3780 0| 105 45 0 0 30 27 0

Ps 15 11315 3024 336 0 36 0 0 24 0 0

Matrix B for Ag
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3.4 An upper bound for o(Ag)

This upper bound for o(Ag) was first established in [9]. With the exception of
the elements of order 9, every principle element of Ag fixes a point or a subset
of size 2. Thus, the 9 + 36 members of AM; U M, cover all elements except for
the elements of order 9. There are two conjugacy classes of elements of order 9
corresponding to two classes of principal subgroups P4 = 9a, and P5 = 9b, each
of size 3360. Class P, is covered by members of M, and class P5 by members
of Ms. Also, M covers none of the members of Ps and M3 covers none of the
members of P4 (the classes of 9's split among the M4 and Ms5). Interestingly,
the elements of order 9 are also covered by Ma.

Proposition 3.1 There is a cover C for Ag consisting of M12U D U &, where
D C My, € C Ms, and |D| = |E| = 56. Consequently, o(Ag) < 157.

Proof. We construct a cover C = M; UMaUDUE, where D C My and
£ C Ms. We determine a collection D C My, which covers optimally Py
with |D| = 56 by running a small LP, using only the incidence matrix Ap, a1,
for minimizing the number of members of My which cover P4. Similarly, we
determine £ C Ms which covers optimally Ps with |€] = 56. Thus, |C| =
9 + 36 + 56 + 56 = 157, and o'(Ag) < 157. O

It will turn out that the cover constructed in the proposition above is indeed a
minimal cover for Ag. To begin with we observe that the above cover could
conceivably be non-minimal because the cover size could potentially decrease if
optimization is sought over a larger initial collection of maximal subgroups. We
note that My and M3 cover other principle subgroups besides the ones of order
9, hence it is conceivable that a smaller cover could be obtained if we seek an
optimal cover of P over M 2 45.

A new LP using the matrix Ap a4, , s yields the following result.

Proposition 3.2 Determining an optimal cover over the collection of maximal
subgroups in M 2,45 yields a cover of exactly the same size as the cover C above.

Up to this point we avoided running a “large” LP using the complete set of pos-
sible maximal subgroups, i.e. M 245 6,78 however, since M~ also covers the
elements of order 9, and since we were not able to rule out members of Mg, M7
or Mg in a minimal cover, we run a large LP using the full 40902 x 1615 inci-
dence matrix A. The resulting LP over all of M produced an optimal cover of the
same size as the cover C above.

Remark 3.1 Perhaps a note concerning the computational effort for the “large”
LP is in order here. We had altogether two independent runs, using two different

29



software packages, to determine a minimal cover, using the complete 40902 x
1615 incidence matrix. The two runs produced the same result for o(Ag), but
the second, using GUROBI, was much faster and took approximately one day to
complete.

Proposition 3.3 A minimal cover for Ag has size 157. That is, c(Ag) = 157.

4 The Ay; case

In what follows welet X = {j € Z |1 < j <11} and G = A;.

4.1 The maximal subgroups

There are seven conjugacy classes of maximal subgroups of A;; which we de-
note by M, ..., M4, with cardinalities 11, 55, 165, 330, 462, 2520, and 2520
respectively. We note that the natural action of A;; on X as well as the induced
actions of A;; on (),f), k = 2,3,4,5, are all primitive and that the maximal sub-
groups contained in classes Mj, ..., M are the stabilizers in the actions of A;;
on X, (%), (%), (%),and (¥) respectively. The isomorphism types of represen-
tatives M; € M;,i = 1,2,3,4,5, are as follows: M = Ao, My & So, M3 =
(Ag X Z3) . ZQ,M,; =] (A-( X A4) . Zg,and M5 =] (As X As) . Zg. The remain-
ing two classes, Ms, and My, consist of subgroups which are isomorphic to the
Mathieu group M), . Specifically, these subgroups are self-normalizing in A;;.

4.2 The principal subgroups

Aj; has 14 conjugacy classes of principal subgroups, Py, ..., P14, which are
generated bg elements of cycle types 1152, 213161, 132161, 112181 1291 111,
114161, 3142,12213141, 2271, 3251 133151 214151 apd 113171 respectively. We
also have (pl,. .., P14) = (199584, 554400, 277200, 623700, 369600, 362880,
415800, 103950, 207900, 118800, 55440, 55440, 124740, 158400).
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Pi\M; | M Mz | Mg | Mg | Ms | Mg | M2

Hz)|  type pi\m; 11 55 165 | 330 | 462 | 2520 | 2520
P15 1152 199584 | 18144 0 0 0 864 | 396 | 396
Py 6a 213161 554400 ] 0 3360 [ O 1200 | 660 | 660
Ps 6b 132161 277200 | 75600 | 20160 | 6720 | 2520 | 600 0 0
Py 8 112181 623700 | 56700 | 11340 | 3780 | © 0 495 | 495
Ps 9 129! 369600 | 67200 | 6720 0 0 0 0 0
Pe 11 11! 362880 ] 0 0 0 0 144 | 144
Py 12a 1l14l6! 415800 | 37800 0 0 1260 | 900 0 0
Pg 12b 3142 103950 0 0 630 | 630 ] 0 0
Pg  12¢ 12213141 207900 | 37800 | 7560 | 3780 | 2520 | 1800 0 0
P 14 2271 118800 0 4320 0 360 0 0 0
P 152 325! 55440 0 0 672 0 120 0 0
P12 156 133151 55440 | 15120 | 3024 | 672 | 504 | 480 0 0
Pis 20 214151 124740 0 2268 0 378 | 270 0 0
Pia 21 113171 158400 | 14400 0 960 | 480 0 0 0

Matrix B for A3

Proposition 4.1 The 2520 subgroups from class Me (or M=) are sufficient to
cover the cyclic subgroups of order 11. Moreover, any collection of maximal
subgroups of Ay1 which covers all of the elements of order 11 necessarily contains
at least 2520 subgroups from Mg 7.

Proof. Let H € Mg and let C < H be any cyclic subgroup of H of order 11.
Then C is a Sylow 11-subgroup of A;; and so is conjugate to all of the other
cyclic subgroups of order 11 in Ay;. Forany o € Ay, C7 < H? € M.

Note that the elements of order 11 in A;; appear only in the maximal subgroups
from classes classes Mg and My, so it suffices to show that if Hy,...,H, €
Mg U My is a collection of subgroups covering all of the cyclic subgroups of
order 11, then n > 2520. Now, there are a total of 10! elements of order 11 in Aj;
and each H; contains exactly 1440 of these. Consequently, 1440n > 10!, that is,
n > 101/1440 = 2520. O

We will now consider an arbitrary covering C of A;; by maximal subgroups. For
i€ {1,2,3,4,5} lety; = |CN M.

Proposition 4.2 The following inequalities hold:

i) y3+ys4>165
ii) y3+ys =83

Proof. The only maximal subgroups containing elements of type 3142 are those
from classes M3 and M. In particular, each subgroup H € M3 U M contains
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exactly 2520 elements of this type. Since C covers A1;, each of the 415800 ele-
ments of type 3142 is contained in some H € C N (M3 U M,). Consequently,
2520(ys + y4) > 415800, and thus y3 + y4 > 165.

The elements of type 325! in A;; appear only in the maximal subgroups from
classes M3 and Ms. Each subgroup from class M3z contains exactly 5376
of these elements, and each subgroup from class Mg contains 960 of them.
Since there are a total of 443520 elements of this type in A;;, we must have
5376y3 + 960ys > 443520, and hence 28y3 + 5ys > 2310. Now 28(y3 + ys) =
28y3 + Sys > 2310, s0 y3 + ys > 82.5. Since y3,ys € Z, y3 +y5 > 83. O

Proposition 4.3 If y, < 11 then ys +y4 + y5 > 330

Proof. Since y; < 11, there is G € M, \ C, which we may assume without
loss of generality is the stabilizer of 1 in A;;. Since G is not used in the cover,
there are 172800 elements of type 1371 fixing 1 which must be covered by some
collection of subgroups from classes M3 and My, and 151200 elements of type
11416! fixing 1 which must be covered by some collection of subgroups from
classes M4 and Mj.

i) If A € (%) then G 4 contains elements of type 11317! fixing 1 if and only
if 1 ¢ A, in which case G 4 contains exactly 1440 elements of type 11317!
fixing 1. There are 120 A € (%) such that 1 ¢ A.

ii) If B € (7) then Gp contains elements of type 11317! fixing 1 if and only
if 1 € B, in which case it contains exactly 1440 elements of type 1!317!
fixing 1. There are 120 B € (%) such that1 € B.

iii) Also, if B € () then G g contains elements of type 114161 fixing 1 if and
only if 1 ¢ B, in which case it contains 720 elements of type 11416 fixing
1. There are 210 sets B € (%) suchthat 1 ¢ B.

iv) If C € (%) then G¢ contains elements of type 11416! fixing 1 if and only
if 1 € C, in which case it contains 720 elements of type 1!416! fixing 1.
There are 210 sets C € ("5() suchthat1l € C.

Let y, be the number of Gg € C suchthat1 € B € (f) and y, be the number of

GpeCsuchthatl ¢ B € (¥). Then,

1440(ys + y,) > 172800, and 720(y; +ys) > 151200
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Consequently,
ya +y, > 120, and y; +ys > 210.

Therefore,

Ys +Ya +Ys = Y3 + yg +yg +¥s > 120 + 210 = 330.

Proposition 4.4 If 34 <y, <55 then y2+y3+ys+ys > 221

Proof. Let A = {1,2}. We may suppose without loss of generality that the
stabilizer G 4 of A in A, is not among the subgroups from class M3 used in the
cover C. Then the 18144 elements of type 214!5! fixing A must be covered by
some collection of subgroups from classes M4 and Ms.

i) For B € (%), Gp contains 144 elements of type 2'4'5! fixing A if BN
A =9, and none otherwise.

ii) Similarly, if C € (’5{), then G¢ contains 144 elements of type 214151
fixing A if C N A = 0, and none otherwise.

Thus, 144(ys + ys) > 18144 which implies that y4 + ys > 126. From
Proposition 4.2 we have that y3+y; > 165, and y3+ys > 83. Consequently,
2(y3 + ys + ys) > 165 + 83 + 126 = 374, and so y3 + ¥4 + ys > 187. Since
alsoyy > 34, wehaveyo +ys +ys +ys = 221. O

Proposition 4.5 If y, < 33, then there are three pairwise disjoint sets in (%)
whose stabilizers are not in C.

Proof. Consider the graph G = (V,E), where V = (%) and E = {{A4,B} C
V : |An B| = 1}. This is the well known triangular graph, 711, i.e. the line
graph of the complete graph K;;, with parameters (v, k, A, p) = (55, 18,9, 4) as
a strongly regular graph. We observe that :

i) G is regular of degree 18, and

iiy If z,y,z € X are distinct, then {{z,y}, {z, z},{y, 2}} is a maximal
clique in G. Consequently, if K is any clique in G with at least 4 vertices,
then there is z € X such that for all A € K, z € A, and a maximum clique
in G has 10 vertices.

Since yo < 33, there is T C V such that |T| = 22 and such that for all A € T,
GaécC.
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Let H be the subgraph of G induced by T. For A € T, let Ny(A4) = {B €
T|A#B,ANB # 0}, and N3, (A) = Ny (A) U {A}.

By degree considerations, there exist A,B € T'suchthat ANB =0. T #
N3 (A) U N3 (B) then the proposition follows, so suppose that T = Nj,(A) U
N7, (B). Necessarily then both N, (A) and Ny (B) are nonempty. We claim
that N7;(A) \ Ny (B) and Ny (B) \ Ny (A) cannot both be cliques in G.

Suppose by way of contradiction that they are both cliques. Then so are N3, (A) \
Nu(B) and N3(B) \ Nxn(A). Consequently, |N3;(A) \ Nx(B)| < 10 and
[N (B) \ N2 (A)] < 10. However, |Ny(A) N Ny (B)| < 4 so we must have
IN2(A)\ Nu(B)| + [N3(B) \ Ny (A)] 2 18.

Then, |N7,(A)\Ny(B)| > 8and |[N3;(B)\N#(A)| > 8. Since N3, (A)\ N(B)
and Ny, (B)\ N3 (A) are cliques of at least 8 elements, there are z € Aandy € B
such that for all C € N3, (A)\ Ny(B) and all D € N;;(B)\ Ny(A),z € C and
y€D. Then, 8 <|Nj(A)\ Nu(B)| < |{{z,2} € (3) |2€ X\ B} <8,
and 8 < |N7,(B)\ Nu(A)| < [{{y, 2} € (¥) | z € X\ A}| < 8. Thus, we have
22 = |T| = | N3 (A) \ N3 (B)| + N3 (B) \ Not(A)| + [N (A) N Nyy(B)| <
8 + 8 + 4 = 20, a contradiction, thereby establishing the claim.

Now one of N3 (A) \ Ny (B) and N3 (B) \ Ny (A) is not a clique in G. Without
loss of generality, suppose Ny (A)\ Ny (B) is not a clique. Then there are C, D €
N3 (A)\ N3(B) suchthat CND = §. Since C, D ¢ Ny(B),BNC = BND =
CnD=¢ 0O

Proposition 4.6 If y, < 33, then y3 + y4 + ys > 232.

Proof. By the previous proposition there are pairwise disjoint sets A, B, C € (%)
such that G 4,Gpg, G ¢ C. Then there are 18144 - 3 = 54432 elements of type
21415 in G4 U Gp U G that must be covered by subgroups from classes M
and Ms. If D € (¥) u (%), then Gp contains elements of this type fixing
A (respectively B or C) if and only if DN A = @ (respectively DN B = §
or DN C = 0), in which case it contains exactly 144 of them. Thus, Gp €
M4 U Ms will cover 144 - |{E € {A,B,C} | DN E = 0} of these 54432
elements. Let us define

F:(Hu@) » 2z, vy
F(D) = {E€ {A,B,C} : DNE =0}|.

Now fori = 4,5and j = 1,2,3,lety;; = |{D € (¥) | Gp € C, f(D) = j}|.
Theny; > yi1 +yi2 +yiafori =4,5. Also,

i) Thereareonly5 D ¢ (f) suchthat DNA=DNB=DNC =¥, so
y4,3 < 5.
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ii) There is only one D € ("5() suchthat DNA=DNB=DnNC =0,s0
ys3 < 1.

iii) There are a total of 90 D € (%) with f(D) =2, so ya,2 < 90.

iv) Thereare 60 D € (f,f) with f(D) =2, so ys,2 < 60.

Since all 54432 elements of type 214'5! in G4 U G U G¢ are covered by sub-
groups from classes Mgy or Ms, we have 432(y4,3 + ys,3) + 288(ys,2 + ys5,2) +
144(ya,1 +ys,1) > 54432. Then, 3(ys,3+¥5,3) +2(ya,2+ys,2) + (4,1 +¥s,1) 2
378. Butys a+ys3 < 6andygo+ys2 < 150, s0yq,3+Ya,2+Ya,1+Ys53+ys,2+
ys,1 > 216. Hence, ya+ys > ya,3+Y4,2+94,1+¥5,3+¥5,2+ys,1 = 216. Since
also ya+y4 > 165 and y3+ys > 83 by Proposition 4.2, 2(ys+ys+ys) > 464
which implies that y3 + y4 +ys > 232. O

Proposition 4.7 If C is a minimal covering of A1y, then y; = 11 and y2 = 55.
Consequently c{A11) = 2751.

Proof. Note that the union of classes Mj, M2, M3, and Mg is a cover of Aj; by
2751 maximal subgroups, so if C is a minimal cover, |C| < 2751. By Proposition
4.1, we must have ¥, + y2 + y3 + ¥4 + ys < 231. By Proposition 4.3, we must
have y; = 11, and by Propositions 4.4 and 4.6 y, = 55. Proposition 4.2 says that
y3 + y4 > 165, proving that y; + y2 + y3 + y4 > 231, and so by Proposition 4.1,
IC] =2 2751. O
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