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ABSTRACT. For a finite graph G with vertices {v;,..., v}, a repre-
sentation of G modulo n is a set {ay1,..., ar} of distinct, nonnegative
integers with 0 < a; < n, satisfying gcd(e; — aj,n) = 1 if and only
if v; is adjacent to v;. The representation number, Rep(G), is the
smallest n such that G has a representation modulo n.

Evans et al obtained the representation number of paths. They
also obtained the representation number of a cycle except for cycles
of length 2% + 1, k > 3. In the present paper we obtain upper and
lower bounds for the representation number of a caterpillar, and get
its exact value in some cases.

Keywords: Representation number of a graph, Product dimension, Caterpillar, Graph
labeling, Path, Cycle.

1. INTRODUCTION

For a finite graph G, with vertices {vy,...,v,}, a representation of G
modulo n is a set {ay,...,a,} of distinct, nonnegative integers, 0 < a; < n
satisfying ged(a; — aj,n) = 1 if and only if v; is adjacent to v;. P. Erdés
and A. B. Evans [1] have shown that any finite graph can be represented
modulo some positive integer. The representation number, Rep(G), of a
graph G, is the smallest n such that G has a representation modulo n.

Modular representations have appeared in several recent publications.
Erdés and Evans [1] obtained an upper bound for Rep(G) in terms the
number of edges in the complement of G and the order (i.e. the number of
vertices) of G.

D. A. Narayan [6] later refined this bound by proving that a graph of
order » > 1 can be represented modulo a positive integer less than or equal
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to the product of the first » — 1 primes greater than or equal to r — 1. This
bound is the best possible as it is attained by K,_; + K (disjoint union).
See ([3], Theorem 5.2) and [5], [6].

In this paper we shall obtain close upper and lower bounds for the rep-
resentation number for some classes of caterpillars. In some cases we are
able to get the representation number exactly. Section 2 contains results
regarding the representation number of general graphs in the literature.
In Section 3 we concentrate on the relation hetween dimension and repre-
sentation number for general graphs. In Section 4 we state the results for
paths and cycles obtained hy A. B. Evans et al [3]. In Sections 5 and 6,
we get lower and upper bounds (resp.) for the representation number of
a caterpillar. In Section 7, we present results regarding the representation
number of certain classes of caterpillar.

2. GENERAL THEORY

A graph G is reduced if no two vertices of G have the same open neigh-
borhood. A reduction of G is any reduced graph obtained from G by
repeatedly identifying pairs of vertices with common open neighborhoods.
Any two reductions of G are isomorphic.

We denote by G, the graph with representation {0,...,n — 1} modulo
n. Then Rep(Gn) = n. A a graph H is representable modulo 7 if and only
if H is isomorphic to an induced subgraph of G,,. Let n = pfl‘ .. p:-"':, Pi;
distinct primes, k; > 1. In G,, two vertices v; and v, are adjacent if and
only if their representations a,, a; have the property that a; —a; is coprime
to pi, ...pi,, . Also v1,v; have the same open neighborhood if and only if
a; = az (mod py, ...p;,. ). Gy is reduced if and only if n is squarefree.

Evans et al ([2], Lemma 2.2) proved that a graph is representable modulo
pfl' ...pf:, for some k), ..., ks > 1, where p;,,...,p;, are distinct primes, if
and only if its reduction is representable modulo Di, - .- Pi,. It follows that
the representation number of a reduced graph is squarefree. See also (3] for
more information and results about representation number of graphs.

3. DIMENSIONS AND REPRESENTATIONS

A product representation of length s of a graph G assigns distinct vec-
tors of nonnegative integers, of length s, to the vertices of G so that vertices
u and v are adjacent if and only if their associated vectors differ in every
position. The product dimension of a graph, denoted pdim(G), is the min-
imum length of such a representation of G.

There is a close relation between product representation and modular
representation. From a representation of a graph G modulo the product
of distinct primes p;, ..., ps, we obtain a product representation of length
s as follows. If the vertex v is represented by a modulo p;...p,, then



the associated s-tuple for v is (vy,...,vs), where v; = a (mod p;) and
v; € {0,...,pi~1} for1 <i<s. If (uy,...,u,) and (vy,...,v,) are the vec-
tors associated to u and v, then the modular representation implies that u
and v are adjacent if and only if u; # v; for all ¢, making this assignment
a product representation. Thus pdim(G) < s.

Conversely, given a product representation, a modular representation
can be obtained by choosing distinct primes for the coordinates, provided
that the prime for each coordinate is larger than the number of values used
in that coordinate. The numbers assigned to the vertices can then be ob-
tained using Chinese Remainder Theorem. The resulting modular represen-
tation generated from the product representation is called the coordinate
representation.

Thus we may think of pdim(G) as the smallest number of prime fac-
tors we can have in a representation of G modulo a product of powers
of distinct primes. A related representation parameter is given by Silva
[7]. The degree of a representation modulo n is defined to be the num-
ber of prime divisors of n, counting multiplicities. The representation
degree, d.(G), of a graph is the smallest degree of any representation of
G. Clearly pdim(G) > &,(G), and if G is reduced then pdim(G) = d;(G).
Also pdim(G) < the number of primes in the factorization of Rep(G).

The following result by A. B. Evans et al 3] tells us about the possible
size of the prime factors of Rep(G) in terms of the chromatic number x(G)
of G.

Theorem 3.1. (A. B. Evans et al) ([3], Theorem 2.11) IfG is representable
modulo n and p is a prime divisor of n then p > x(G). Thus, if G is reduced
then Rep(G) > pipi+1 - - - Pi+m—1, where p; is the smallest prime satisfying
pi > x(G) and m = 4,(G) = pdim(G).

Proof. See Theorem 1.2 in A. B. Evans et al [2] and Silva [7] and use the
observed fact that pdim(G) = d,(G) for reduced graphs. ]

An elementary but useful result is the following.

Proposition 3.2. If H is an induced subgraph of G, then
Rep(H) < Rep(G).

In this paper, as in [3], we denote hy P,, a path on n vertices. Note that
in [5], P, denotes a path on n edges, i.e. n+ 1 vertices.

Note that the inequality in Proposition 3.2 does not hold for non-induced
subgraphs. For example, the path P, of length 1 is represented by 0,1
(mod 2) and has Rep(P,) = 2, whereas its subgraph consisting of just 2
points and no edge (thus not an induced subgraph) is represented by 0,2
(mod 4) and has representation number 4.
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4. PATHS AND CYCLES

In this section we review the representation number of paths and cycles.
For most of our examples in this section we will have

Rep(G) = pipi+1 ... Pitm—1 where m = &(G) = pdim(G),

where p; denotes the i*® prime in the increasing sequence of primes 2,3, 5,. ...

Paths form an important class of graphs. They have a role to play in
determining lower bounds for representation numbers as, if P,, the path
on n vertices, is an induced subgraph of G, then Rep(P,) < Rep(G) by
Theorem 3.2. For paths the representation numbers are known. If n > 1,
then {0,1,...,n} is a representation of P, modulo n!. This is of course
also a representation modulo the product of all primes less than or equal
to n. However the representation number of a path is usually still smaller.
The representation numbers for P, for small n are

R'ep(Pl) = 11 Rep(P2) = 21 R'ep(PS) = 4,
Rep(P;) = 6, and Rep(Ps) = 6.

In all these cases, the representation {0,1,...,n — 1} works for P, for the
given modulus. The following theorem gives the representation numbers
for P,, n > 5.

In what follows, for = real, (z)* denotes the smallest integer > z.

Theorem 4.1. (A. B. Evans et al)([3], Theorem 3.1) Forn > 4,
R-ep(-Pn) =2X3x-.-x P(log, (n—1))+-

Remark 4.2. From Theorem 4.1 and Proposition 3.2, we see that for o
tree T of diameter d,
Rep(T) >2x3x.-0x p(log.z d)+-

Cycles form another important class of graphs and the representation
numbers are known for most cycles. For small values of n the representation
numbers are

Rep(Cg) = 3, Rep(C4) =4,
Rep(Cs5) =3 x5 x 7 =105, Rep(C7) =3 x 5 x 7 x 11 = 1155.
Rep(Cy) is not known at present.
For even values of n, the representation numbers are given in the following
theorem.

Theorem 4.3. (A. B. Evans et al)([3], Theorem 3.2) Rep(C4) = 4, and if
n2>3, Rep(Con) =2x3x---x P(logy(n—1))+ +1-

For the odd cases, 2n + 1, the representation numbers of cycles have
been completely determined when n is odd or an odd power of 2. These
results are given in the next theorem.
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Theorem 4.4. (A. B. Evans et al)([3], Theorem 3.3) Rep(Cs) =3 x5x7,
Rep(C7) = 3 x 5 x 7 x 11, and if n > 4 and n is not a power of 2 then
Rep(anH) =3x5x---x P(log, n)++1-

Note that the result of Evans et al [2] shows that when 7 is not a power of
2, pdim(Czn41) = (logy n)* +1. This had been left as a question in Remark
6.4 of Lovész et al [5]. Therefore by Theorem 3.1 (this paper) of A. B. Evans
et al [3] and by Theorem 3.2 in [2], Rep(C2n41) = 3 X 5 X - - X P(iog, n)+ +1
when 7 is not a power of 2. For the remaining cases Cany41, Where n is
of the form n = 2¢, the representation number is unknown. However, for
dimension, in Lovész et al [5], it is shown that for these cases

(logyn)* +1 < pdim(Con+1) < (logan)* +2

and upper bound holds for 7 of the form 22¥*1. Note that except for Ps and
C., paths and cycles are reduced graphs and their representation numbers
are squarefree. Rep(P3) = Rep(C4) = 4, is not squarefree.

5. A LOWER BOUND FOR THE REPRESENTATION NUMBER OF A
CATERPILLAR

A caterpillar is a tree in which there is a path (called a spine) that con-
tains at least one end-point of every edge. Such a path of minimum length in
a caterpillar is called an m-spine. Its vertex set consists of all non-pendent
vertices The m-spine is uniquely determined. There are many maximal
spines called M-spines which are spines of maximum length. These have
all the non-pendent vertices and also two pendent vertices of the caterpil-
lar as extreme vertices of the spine. The m-spine is the intersection of all
M-spine (see more in [4]). Note that a caterpillar is a reduced graph if and
only if it has exactly 1 M-spine.

In this paper we consider certain families of caterpillars R, of length
n — 1 and for all these families we get

2 X3 X X Pllogy(n-1))* < Rep(Ra) 2 X 3 X+ X P(log, (n+1))++1-
For particular families we get better bounds in which the upper and lower
bound differ by at most one prime. We get cases when the bounds become
equal and in those cases we are able to find Rep(R,).

To prove our results we mainly use the ideas of A. B. Evans et al (3]
(Theorem 3.1 in this paper). Thus, to get a result for the representation of
the caterpillar R,, the result for the dimension of the caterpillar R, from
[4] is required. Note that:

In [4], R, is a caterpillar on n + 1 vertices in M-spine whereas
here we use R, for a caterpillar on n vertices in M-spine.

Theorem 5.1. Let R,, n > 5, be a caterpillar of length n — 1 with
xl,...,z" as vertices of an M-spine and deg(z'), 2 < i < n—1, be at
most 3. Let the caterpillar R, contain to bunches of gap (non-leg) vertices
x' consisting of odd number vertices. Let t, = 1 provided at least one of
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the initial and final bunches of non-leg vertices consists of exactly 1 vertez
and t; = 0 otherwise. The representation number of such a caterpillar R,
satisfies the inequality,

2 X 3 X+ X Pllog,(IV]-to+t1))+ < Rep(Rn).

y4 y5 yG yn—2
l | ’ ‘ l ’ l ‘ xn-l
zl 22 23 24 5 26 27 8 ™2 gn
W—/ [ ~
initial bunch of bunch middle bunch final bunch
gap vertices of legs of gap vertices of gap vertices
Figure 1

Proof. By Theorem 2.5 of [4], we see that if n is the number of vertices of
an M-spine of such a caterpillar, then for n > 5, logy(|V| — to + 1))t <
dim(R,). Hence, hy Theorem 3.1 of this paper, as R, is a reduced graph
and x(Rn) = 2,50 2 X -+ X P(log, (1V|~ta+t:))+ < Rep(Ry). O

6. AN UPPER BOUND FOR THE REPRESENTATION NUMBER OF A
CATERPILLAR

Theorem 6.1. Let R,, n > 5, be a caterpillar of length n — 1 and let

,T" be the vertices of an M-spine of R,,. Let deg(z') =3 for3 < i <
n-— 2 anddeg( N=2fori=2n-1. For2 <i<n—2, it is given that
the caterpzllar R, has legs sta.rtmg from z* and these are paths of length 1
given by x*-y'. Such a caterpillar R, can be represented modulo the product
of the first f distinct primes, where f = dim(R,) = (logg(n — 1))* + 1.
Thus, asn > 5, we have f > 3, n < 2/~ + 1 and Rep(R,) is at most the
product of the first f primes,

Rep(R,) <2 x 3 X Xps.
y3

[ ]

I—.
h *r—=e Q

~—e

2! z2
Figure 2

Proof. It has been proved by the authors in 4], that

dim(R,) = (logy(n — 1))+ + 1.
Thus if n = 2/=! + 1, then dim(R,) = f. We first prove the required upper
bound for Rep(R,,) by induction for all n of the form 2/ + 1. We assume
that there is a representation of R, modulo the product of first f primes
for n = 2/~! + 1. Note that in any such representation modulo a product
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of f distinct primes ¢;, any associated number m corresponding to a vertex
of R, can be equivalently written as a vector of length f where the 3t*
entry is a number b;, 0 < b; < g;, and m = b; (mod ¢;). It is easily checked
that Rep(Rs) = 2 x 3 x 5, with V(z) = {2,9,16,27,14} and V(y) = {23}
where V(z) is the sequence of labeling of hase-leg vertices and V (y) is the
labeling of the pendent vertex y® which is adjacent to z3.

Note that each of the numbers could be represented by a 3-tuple consist-
ing of residues of the numbers modulo the 3 primes 2,3 and 5. Thus 2 cor-
responds to the 3-tuple (0,2,2) and 23 corresponds to the 3-tuple (1,2, 3).
In the chosen representation of R,, modulo the product of f = k41 distinct
primes we represent each vertex z* by the vector vi(é), 1 < i < 2¥ +1, and
the pendent vertex y' by the vector v} (i), 3 < i < 2% — 1. Here wv(3), vi(3)
are f-tuples (or (k - 1)-tuples) or strings of length f = k + 1 of integers as
above. Thus V(R,,) is represented by

(v (1), ..., k(28 +1),v4(3), ..., (2% = 1)).
Since z* is adjacent to 2**! and y¢, we can assume that there is no agree-
ment in any position hbetween vy (i) and vk (i & 1) as well as v(¢) and vy (3)
(i.e. the corresponding coordinates are different). For any other pair there
is at least one agreement.

Now we give a representation for R, with n/ = 2f +1 = 2¥+1+1 modulo
the product of first f + 1 primes by using (f + 1)-tuples. We construct a
sequence {vi+1(i)}, 1 <4 < 25+1 41, of distinct (f + 1)-tuples (or (k+2)-
tuples) as

v(1)0, vk (2)1, ..., v (2% — 1)0, v (2%)1, vg 1 (2% + 1)2,
vk(2k)0, ‘Uk(2k -11,..., vk(2)0, Uk(l)l,
(the beginning vy (3) for odd i are followed by 0 and for even i follows by 1;
the opposite in the last part) and a sequence {v} (i)}, 3 < i < 2%*! —1,
of (f + 1)-tuples as

Uy (3) = ¥4 (3)1, v}y, (4) = v} (4)0, ...,
U1 (28 = 2) = v (2% = 1)0, v}, (2% — 1) = vj(2k — 1)1,
Uk 1(2%) = 020...0...010,
v (28 +1)=121...1...101,
vp,1(25+2)=020...0...011,
b 1(25 + 3) = v (2F — 1)0, vi,, (2% +4) = v (2% - 2)1,
x v”fﬁul(QH1 ~-2)= Ul’c(4)1’v;c+l(2k+1 — 1) = v(3)0.

Now we have a sequence of length f + 1 that corresponds to a labeling of
Rys 41 modulo a product of f + 1 distinct primes. We see that the labeling
used in ([4], Theorem 4.1) for upper bound of the dimension of R,, has been
utilized here. We can see that this labeling works of R, as required. This
proves by induction that for n = 2/71 + 1, Rep(R,) <2 x 3 x -+ X py.

If n < 2/~! 41, then R, is an induced subgraph of Rys-14;, and so
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Rep(R,) < product of first f primes. Hence,
Rep(Rn) <2x3x .- x py
where f = (logy(n — 1))t + 1. 0O

7. REPRESENTATION NUMBER OF A CATERPILLAR

In this section we shall get results about the representation number of
certain types of caterpillars using results of Sections 5 and 6.
First we get close hounds for the representation number of a general cater-
pillar considered in Theorem 5.1. Then we consider special types of cater-
pillars for which we get representation number for most n.

Theorem 7.1. For a caterpillar R,, of diameter n — 1 considered in The-
orem 5.1,

2 X3 X X Pliog,(n-1)+ < ReP(Rn) < 2X 3 X -+ X Plrog, (1)) +1-
If one of the initial and final sets of gap vertices has 2 or more vertices, then
Rep(R,) <2x3x.-+X% P(logy n)*+ +1- If both the initial and final sets of gap
vertices have 2 or more vertices then Rep(Rp) < 2X3X X P1og, (n—1))+ +1-

Proof. In Theorem 4.1 of [4], it is shown that for the caterpillar R, on n
vertices in M-spine, (logy(n — 1))t < dim(R,). Thus by Theorem 3.1 of
this paper, as R,, is a reduced graph and x(R,) = 2, we get

2x---x P(log,(n—1))+ < R'eP(Rn)

Now R,, is an induced subgraph of the caterpillar considered in Theorem
6.1, but having length n+1. Hence Rep(R,) < 2x3x--- X D(logy(n+1))+ +1-
If any one or both (resp.) of the initial and final sets of gap vertices has 2
or more vertices, then n + 1 can be replaced by n or n — 1 (resp.). O

Theorem 7.2, For the caterpillar R,, n > 5, considered in Theorem 6.1
Rep(R,)=2x3x---x Plog,(n—1))++1 i 1 is not of the form 2% + 2.
Forn=24+22x3x-.. X pk+1 S Rep(Rp) <2x3 X -+ X pya.

Proof. By Theorem 4.2 from [4], (logy(n —2))* +1 < dim(R,,). As R, is a
reduced graph, so by Theorem 3.1 of this paper, 2x3x- - *XP(logy(n-2))+ +1 <
Rep(R,). By Theorem 6.1, Rep(R,) < 2x3 x --- x P(logy(n—1))++1- For
n # 2% 4+ 2, hoth the bounds are equal and we get

Rep(Rp) =2x3x--- x P(log, (n—1))++1-
Forn=2+2,2x3x-xpet1 <Rep(Rp) <2X 3 X -+ X Pya. a

Theorem 7.3. Let R,,, n > 3, be a caterpillar of lengthn—1. Ifz2?,23,...,
x"~1 are the vertices of the m-spine of R, and deg(z’) = 3 for2 < i < n—1,
then Rep(R,,) satisfies the inequality,

2X 3 X X Pliogy(n-1))++1 S ReP(Ry) £ 2 X 3 X +++ X Piog, (n+1))++1-
In particular,
Rep(R,) = 2X3 X -+ X P(iog, (n—1))++1 if N is not of the form 2k or 2F +1,
and 2 X 3 X -+ X prgp1 S Rep(Rp) S 2X3 X -+- X pryg if n=2F, 25 4 1,

54



Proof. In Theorem 4.3 from [4], it is shown that for the caterpillar R, on
n vertices in M-spine, (logy(n—1))* +1 < dim(R,). Thus by Theorem 3.1
of this paper, as R,, is a reduced graph and x(R,) = 2, we get

2% 3 X X Dllog,y(n-1))*+1 < Rep(Rn).

Now joining z! to a new vertex z° and z” to a new vertex z"*! by
an edge, we get a new caterpillar say R, which is of the same type as
Theorem 6.1. R,, being an induced subgraph of R}, 5, we get

Rep(R,) £ Rep(R{hLz).
By Theorem 6.1, Rep(Rj ) <2x3x -+ X p(log,(n+1))++l' Thus

2 X3 X+ X Plogy(n-1))*+1 < ReP(Rn) 2 X3 X+ X Plog, (n+1))++1-
Hence for n not of the form 2¥ and 2'c +1,

Rep(Rn) =2x3x:-X P(logy(n—1))++1-
For n = 2F or 28 41, 2x3x---xpk+1 < Rep(R,) <2X3X -+ Xpr42. O

Now we shall consider a caterpillar with sets of bunches with p —1 leg
vertices followed hy a gap vertex.

Theorem 7.4. Let R, n > p+1, be a caterpillar of length n — 1 and let
z2, x3, ..., 2" 1 be the vertices of the m-spine of R,. For2 <i<n-~1, let
deg(z') = 3 or 2 according as pt{ (i — 1) or p|(i — 1). Let n =r (mod p),
0<r<p-1,h=1ifr=2adh=0ifr=0,13,...,p— 1. Under
these conditions, Rep(R,) satisfies the inequality,
2x3 %X P(log,(n~[ 21 l]+h))++1 < Rep(Rn) <2 X3 X+ X P(log,(n+1))*++1-
Forr =2, Rep(R,) <2 X 3 X -+ X P(logy n)*++1-
In particular, for 25=1 £ =1 ’1 +1<n<2k-1
Rep(R )._2x3>< “ X Phkt1-
Ifn=2% where n =2 (mod p), i.e. 7 =2, Rep(Rp) =2X 3 X -+ X Pr41.
Forn=2+1,2x3x---x prs; <Rep(Rn) <2X3 X -+ X Prso.
1f2k—1 +2<n< 21:.—1 + 2*’;‘_11—2 + 1’
2x3x - Xpr <Rep(Rn) 2x3 X+ X Pryr1.

y2 y3 yp ,yn-l
! z? 2? l  pP¥l !z

p — 1 leg vertices

Figure 3

Proof. In Theorem 3.4 from [4], it is shown that for the caterpillar R,,
(logy(n — ["’;,l] +h))* +1 < dim(R,). Thus by Theorem 3.1 of this paper,
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as R, is a reduced graph and x(Rp) = 2, we get
2X 3 X X Plogy(n-[2z11+h))+41 S Rep(Ra).
Now the caterpillar R, is an mduced subgraph of the caterpillar R/,
which is of the same type as Theorem 7.3. Thus Rep(R,.) < Rep(RY). By
Theorem 7.3, Rep(R/) <2x3x --- x P(logy(n+1))++1- Thus

ZX X X P(rogy (o211 4np++1 S REP(Rn) S 2X3X -+ X Pllogy (nt1))+ +1-

By Theorem 3.4 from [4], if 261 + 21=2 =2 < n < 2%~ 2, so dim(R,) =
k + 1. In the notation of Theorem 3 4 from [4], n is the length of M-
spine whereas here n is the number of vertices of M-spine. Therefore, if

2k ‘+2p 1 +1<n<2%—1 Rep(Rn) =2x3X---Xpry;. Whenn =2
(mod p), the final set of non-leg vertices has two vertices, so by Theorem
7.1,

2X3x--- X Plogy(n=251]+h))+ +1 <Rep(R,)<2x3x-..--% P(log; n)* +1-

Ifn=2%and r =2, i.e. 2 =2 (mod p), then

Rep(Rn) 2% 3 x -+- X pryy. Thus Rep(R,) =2x 3 X -+ X pryy.
Also2x3x--.xpk+1sRep(Rn)s2x3x---xpk+2 ifn=2%41,

and 2 x 3 x - X pr SRep(Rp) <2x3 X oo Xppy if 251 4+2<n<

2k-1 4 2221 "’+1 D

Example 7.5. If p = 2 in Theorem 7.4, then for n = 2% we have
Rep(Rn) =2 X3 X +++ X pg.

If p =3, then for n = 2% with & odd, 2 —1=1 (mod 3). Hence
Rep(R,) =2%x3 X -+ X pryy.

In the following theorem we consider a variation of Theorem 7.4 for p=2.

Theorem 7.6. Let R,, n > 4, be a caterpillar of length n — 1 and let
zl,..., 2™ be the vertices of the M-spine. If for 2 <i<n—1, deg(z*) =3
or 2 according as i is odd or even, then Rep(R,,) satisfies the inequality,

2X 3% X Plogy (1)) < Rep(Rn) S 2X 3 X+ X Pliog, (ne1))+ +1-

In particular, if n = 2% + 1 or 2%,
Rep(Rn) =2 %3 X -+ X pry.
If2E=142 <1 <251, then2x3x- - xpy gRep(R,,) <2X3X: - XPry1-

Proof. By Theorem 4.6 from (4], (logy(n + 1))t < dim(R,) for the cater-
pillar R, of length n — 1. As the caterpillar R, is a reduced graph, so by
Theorem 3.1 we get 2 x 3 x -+ x Pllog,(n+1))+ < Rep(Ry).

Now by Theorem 7.1, since for n even R, has 2 initial gap vertices and
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one initial gap vertex, and for n odd R, has 2 initial as well as final gap
vertices, we have,

Rep(Ry) €2 X3 X+ X Pllog, n)++1 if n even,
Rep(R,) £2x3x---X P(logy(n—1))++1 if n odd.

But if n is even, (log, n)* = (logy(n — 1))*, so for all n > 4,
2% 3% X Pllogy(nt1))+ < Rep(Rn) S 2X 3 X -+ X Pliog,(n—1))++1-

Hence for 2-! +2 < n < 2% +1, Rep(Rn) =2 X 3 X - -+ X Pry1, if n = 2%
or 25 + 1, otherwise 2 x 3 x --- x pr < Rep(Rn) <2x3x -+ Xpr41. O
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