Generalized Stanton—type Graphs

Derek W. Hein

ABSTRACT. Stanton-type graphs were introduced recently. In this
paper, we define generalized Stanton-type graphs. We also identify
LO and OE graphs, find the minimum X for decomposition of AKn
into these graphs, and show that for all viable values of A, the neces-
sary conditions are sufficient for LO- and OE-decompositions using
cyclic decompositions from base graphs.

1. Introduction

A complete multigraph AK, (for A > 1) is a graph on n points
with A edges between every pair of distinct points. A complete bi-
partite multigraph AK,, » (for A > 1) has A copies of each edge in a
complete bipartite graph K, (also denoted AKg7 when S and T
are partite sets of Kpmn, or simply as AK(g, . s.}.(t1,...tn})-

Decompositions of graphs into subgraphs is a well-known classi-
cal problem; for an excellent survey on graph decompositions, see [1].
Recently, several people including Chan [4], El-Zanati, Lapchinda,
Tangsupphathawat and Wannasit (5], Hein [6, 7, 8], Sarvate (9],
Winter {11, 12] and Zhang [13] have worked on decomposing AKp,
into multigraphs. In fact, similar decompositions have been at-
tempted earlier in various papers; see Priesler and Tarsi [10]. Ternary
designs also provide such decompositions; see Billington (2, 3.

To this end, these authors have defined Stanton graphs (see [4])
and Stanton-type graphs (see [8)):
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DEFINITION 1. A Stanton graph S, onn > 2 vertices has ezactly
one edge of frequency i for every 1 <i < (3).
DEFINITION 2. Letn > 2 and m be fized integers such that n—1 <

m < (3). A Stanton-type graph S(n,m) on n vertices is a connected
graph that has ezactly one edge of frequency i for every 1 <i < m.

2. Preliminaries
We now introduce the concept of generalized Stanton-type graphs:

DEFINITION 3. Let n > 2, m and ¢ be fized integers such that
n—-1<m< (3) and1 <€ <m+2—n. A generalized Stanton-type
graph S(n, ¢, m) on n vertices is a connected graph that has ezactly
one edge of frequency i for every £ <i < m.

ExaMPLE 1. §(2,1,1); ——
This is the same as an S(2,1) or an Sy, which is of course a Ky. A

EXAMPLE 2. §(3,1,2): —=<—>
This is the same as an S(3,2). A

ExaMmPLE 3. 5(3,1,3): é

This is the same as an S3 or an S(3,3). A
EXAMPLE 4. 5(3,2,3): << A

EXAMPLE 5. 5(4,1,3) is the same as an S(4,3), and S(4,1,6)
is the same as an S(4,6) or an Sy. A

For simplicity of notation, we adopt the “alphabetic labeling”
used in (6, 7, 8, 11, 12, 13]:

DEFINITION 4. An LO graph [a,b,c] on V = {a,b,c} is a graph
with 3 edges where the frequencies of edges {a,b} and {b,c} are 1
and 2 (respectively).

a b c

DEFINITION 5. An OE graph |a,b,¢c| on V = {a,b,c} is a graph
with 5 edges where the frequencies of edges {a,b} and {b,c} are 2
and 3 (respectively). . .
L

NotE 1. An LO graph was called an H; graph in [9] and an
5(3,1,2) in Ezample 2 above. An OF graph was called an S(3,2,3)
in Ezample 4 above.
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DEFINITION 6. For positive integers n > 3 and A > 2, an LO-
decomposition of AK,, (denoted LO(n, A)) is a collection of LO graphs
such that the multiunion of their edge sets contains A copies of all
edges in a K,. Similarly, for A > 3, we have OE-decompositions of
MK, (denoted OE(n, \)).

One of the powerful techniques to construct combinatorial de-
signs is based on difference sets and difference families; see Stin-
son [14] for details. This technique is modified to achieve our de-
compositions of AK,, — in general, we exhibit the base graphs, which
can be developed to obtain the decomposition.

EXAMPLE 6. Considering the set of points to be V = Zs, the LO
base graphs |0,1,3] and |0,2,3]| (when developed modulo 5) consti-
tute an LO(5,3).

multiunion

decomposition

3 4 1 3 0 1
— o e — o e
4 0 2 4 1 2

EXAMPLE 7. Considering the set of points to be V = Zs, the OF
base graphs |0,1, 3| and |0, 2, 3| (when developed modulo 5) constitute
an OE(5,5).

multiunion

decomposition

3 4 1 3 0 1
- < Tme——»
4 0 2 4 1 2

We note that special attention is needed with the base graphs
containing the “dummy element” oo; the non—oo elements are devel-
oped, while oo is simply rewritten each time.

EXAMPLE 8. Considering the set of points to be V = Zz U {o0},
the LO base graphs |0,1,00]| and [00,0,1] (when developed modulo
3) constitute an LO(4, 3).
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multiunion

—
decomposition

EXAMPLE 9. Considering the set of points to be V = Z3 U {00},
the OF base graphs |0, 1, 00| and |00,0, 1| (when developed modulo 3)
constitute an OE(4,5).

0 1 00 oo 0 1
<TweT5e

multiunion

e .
decomposition

3. LO-Decompositions

We are now in a position to prove main results of the paper. We
first remark that an LO graph has 3 vertices; that is, we consider
n > 3. Also, necessarily A > 2. We note that we use difference sets
to achieve our decompositions of AK,. In general, we exhibit the
base graphs, which can be developed (modulo either n or n — 1) to
obtain the decomposition. We also note that the frequency of the
edges is fixed by position, as per the LO graph.

We first address the minimum values of A in an LO(n, \).

THEOREM 3.1. Let n > 3. The minimum values of A for which
an LO(n, \) exists are A = 2 whenn = 0,1 (mod 3) and A\ = 3 when
n =2 (mod 3).

PROOF. Since there are L;—ll edges in a AK,, and 3 edges in
an LO graph, we must have that An(n — 1) = 0 (mod 6) (where
A > 2 and n > 3) for LO-decompositions. By considering cases
on n (mod 6), we have that the minimum values of X for which an
LO(n, M) exists are A > 2 when n = 0,1 (mod 3) and A > 3 when
n =2 (mod 3).

We now show that these bounds are achieved. Let n > 3. We
proceed by cases on n (mod 6).

If n = 6t (for t > 1), we consider the set V' as Zg;_; U {o0}. The
number of graphs required for LO(6t,2) is 3@)16@ = 2t(6t — 1).
Thus, we need 2t base graphs (modulo 6¢ — 1). Then, the differences
we must achieve (modulo 6t —1) are 1,2,...,3t— 1. For the first two
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base graphs, use |00,0,3t — 1] and |00,0,3t — 2|. We also use the
2t — 2 base graphs (0,1, 3t—2], |0,1,3t-3], |0,2,3t-3], |0,2,3t -
4],...,10,t-2,2t+1], |0,t—2,2t], |0,t—1,2t| and [0,¢t—1,2¢ 1]
if necessary. Hence, in this case, LO(6t,2) exists.

If n = 6t+ 1 (for t > 1), we consider the set V as Zg+1. The
number of graphs required for LO(6t+1,2) is gft—'%m = 2t(6t+1).
Thus, we need 2¢ base graphs (modulo 6¢+1). Then, the differences
we must achieve (modulo 6t + 1) are 1,2,...,3t. We use the base
graphs |0,1,3t+1], |0,1,3¢}, 10,2,3t], |0,2,3t—-1},...,(0,t—1,2t+
3], 10,t — 1,2t + 2|, |0,¢,2¢t + 2] and |0,¢,2¢t + 1]. Hence, in this
case, LO(6t + 1, 2) exists.

If n = 6t + 2 (for t > 1), we consider the set V as Zg43 U {o0}.
The number of graphs required for LO(6t + 2,3) is 36e2)(6etl)
(3t + 1)(6t + 1). Thus, we need 3t + 1 base graphs (modulo 6¢ + 1).
Then, the differences we must achieve (modulo 6t+1) are 1,2, ..., 3t.
For the first base graph, use |0,00,1]. For the last 3t base graphs,
use |0,1,3t+1], [0,2,3t+1],...,]0,3t—2,3t +1), [0,3t— 1,3t +1]
and |0, 3t,3¢ + 1|. Hence, in this case, LO(6t + 2, 3) exists.

If n = 6t+3 (for t > 0), we consider the set V' as Zg;42U{co}. The
number of graphs required for LO(6t + 3,2) is w = (2t +
1)(6t +2). Thus, we need 2t + 1 base graphs (modulo 6t 4 2). Then,
the differences we must achieve (modulo 6t + 2) are 1,2,...,3t + 1.
For the first base graph, use |3t + 1,0,00]. We also use the 2¢ base
graphs |0,1,3t+1], |0,1,3¢], |0,2,3¢], [0,2,3t-1],...,[0,¢,2t+2]
and |0,t,2t+1] if necessary. Hence, in this case, LO(6t+ 3, 2) exists.

If n = 6t + 4 (for ¢ > 0), we consider the set V as Zgt44. The
number of graphs required for LO(6¢ + 4,2) is M%-@H'—Sz = (2t +
1)(6t +4). Thus, we need 2t + 1 base graphs (modulo 6t +4). Then,
the differences we must achieve (modulo 6¢ + 4) are 1,2,...,3t + 2.
For the first base graph, use |0,3t+2,6t+3]. We also use the 2t base
graphs |0,1,3t+1], |0,1,3¢], |0,2,3t], |0,2,3t-1],...,]0,t,2t 42|
and |0,t,2t+1] if necessary. Hence, in this case, LO(6t 44, 2) exists.

If n = 6t+5 (for t > 0), we consider the set V as Zg45. The
number of graphs required for LO(6¢ + §, 3) is ggise(eﬂ)- = (3t +
2)(6t + 5). Thus, we need 3t + 2 base graphs (modulo 6¢ +5). Then,
the differences we must achieve (modulo 6t+5) are 1,2, . ..,3t+2. For
the first two base graphs, use |0,3t+1,6t+3] and |0, 3t +2,3t+3].
For the last 3t base graphs, use |0, 1,3], |0,2,5], |0,3,7],...,10,3¢,
6t + 1] if necessary. Hence, in this case, LO(6t + 5, 3) exists. [ ]
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We now address the sufficiency of existence of LO(n, A).

THEOREM 3.2. Letn > 3 and A > 2. For LO(n, )\), the necessary
condition forn is that n = 0,1,3,4 (mod 6) when A = 1,2 (mod 3).
There is no condition for n when A =0 (mod 3).

PROOF. Since there are Mg;l—) edges in a AK,, and 3 edges in
an LO graph, we must have that An(n — 1) = 0 (mod 6) (where
A > 2 and n > 3) for LO-decompositions. The result follows by
considering cases on A (mod 6). [ ]

LEMMA 3.1. There ezists an LO(n,2) for the necessary n > 3.

PROOF. From Theorem 3.2, the necessary conditionisn = 0,1, 3,
4 (mod 6). In these cases, LO(n,2) exists from Theorem 3.1. [

LEMMA 3.2. There exists an LO(n,3) for any n > 3.

PRrOOF. From Theorem 3.2, there is no condition for n. We
consider cases when n > 3 is odd or even.

If n =2t +1 (for t > 1), we consider the set V as Zy;,;. The
number of graphs required for LO(2¢t + 1, 3) is ﬂ?ielm =t(2t+1).
Thus, we need t base graphs (modulo 2t + 1). The differences we
must achieve (modulo 2t + 1) are 1,2,...,¢. We use the base graphs
0,1,t+1], [0,2,t+1],...,]0,t — 1,t + 1], [0,t,t + 1]|. Hence, in
this case, LO(2t + 1, 3) exists.

If n = 2t (for t > 2), we consider the set V as Zg 1 U {o0}.
The number of graphs required for LO(2t, 3) is ﬂzt)—(sg‘—_l—) =t(2t—1).
Thus, we need t base graphs (modulo 2t — 1). The differences we
must achieve (modulo 2¢t—1) are 1,2,...,t—1. For the first two base
graphs, use |t ~ 1,0,00] and |00,0,¢ — 1]|. For the last t — 2 base
graphs, use |0,1,t-1], {0,2,¢t-1},...,|0,t—3,t—1], |0,t—2,¢t—1]
if necessary. Hence, in this case, LO(2t, 3) exists. n

THEOREM 3.3. An LO(n, ) ezists for all X > 2 and necessary
n > 3.

PROOF. We proceed by cases on A (mod 3).

For A = 0 (mod 3) (so that A = 3t for ¢ > 1), by taking t copies
of an LO(n, 3) (given in Lemma 3.2), we have an LO(n, 3t).

For A=1 (mod 3) (sothat A=3t+1=3(t—1)+4fort > 1),
we first take two copies of an LO(n,2) (given in Lemma 3.1). (This
gives us A = 4 thus far.) We then adjoin this to t — 1 copies of



an LO(n, 3) (given in Lemma 3.2) if necessary. Hence, we have an
LO(n,3t +1).

For A = 2 (mod 3) (so that A = 3t + 2 for ¢t > 0), we first take
an LO(n,2) (given in Lemma 3.1). (This gives us A = 2 thus far.)
We then adjoin this to ¢ copies of an LO(n, 3) (given in Lemma 3.2)
if necessary. Hence, we have an LO(n, 3t + 2). [ ]

4. OE-Decompositions

We are again in a position to prove main results of the paper. We
remark that an OE graph has 3 vertices; that is, we consider n > 3.
Also, necessarily A > 3. We again use difference sets to achieve our
decompositions of AK,,. We also note that the frequency of the edges
is fixed by position, as per the OE graph.

We first address the minimum value of A in an OE(n, A).

Evidently, there exists an LO(n, 3) if and only if there exists an
OE(n, 5). (Compare Example 6 with Example 7, and Example 8 with
Example 9.) This observation is the basis of the following result:

THEOREM 4.1. Let n > 3. The minimum value of A for which
an OE(n, )\) ezists is 5.

PROOF. Suppose that G is an OE graph in some OE(n,3). Let
edge e have frequency 2 in G. Then, e yet needs a frequency of 1,
which cannot occur with OE graphs. Hence, the minimum A cannot
be 3. Now, suppose that G is an OE graph in some OE(n,4). Let
edge e have frequency 3 in G. Then, e yet needs a frequency of 1,
which cannot occur with OE graphs. Hence, the minimum A cannot
be 4. Thus, the minimum A in all cases of n must be at least 5.

We now show that this bound is achieved. Let n > 3.

Take an LO(n, 3) (as given in Lemma 3.2). We replace each LO
graph |a,b,c| by the corresponding OE graph |a,b,c|. Hence, we
have an EO(n, 5). [ |

We now address the sufficiency of existence of OE(n, A).

THEOREM 4.2. Letn > 3 and A > 5. For OE(n, \), the necessary
condition for n is that n = 0,1,5,6 (mod 10) when A # 0 (mod 5).
There is no condition for n when A =0 (mod 5).

PROOF. Since there are M’—;——l) edges in a AK,,, and 5 edges in
an OE graph, we must have that An(n — 1) = 0 (mod 10) (where
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A > 5 and n > 3) for OE-decompositions. The result follows by
considering cases on A (mod 10). ]

LEMMA 4.1. There exists an OE(n,5) for any n > 3.

ProoF. From Theorem 4.2, there is no condition for n. Thus,
OE(n, 5) exists from Theorem 4.1. [

LEMMA 4.2. There ezists an OE(n,6) for necessary n > 3.

PROOF. From Theorem 4.2, the necessary conditionisn =0, 1, 5,
6 (mod 10).

If n = 10t (for t > 1), we consider the set V as Zjo;—1U{oo}. The
number of graphs required for OE(10t, 6) is MMIM = 6t(10t—1).
Thus, we need 6t base graphs (modulo 10t — 1). The differences we
must achieve (modulo 10t — 1) are 1,2,...,5¢ — 1. For the first six
base graphs, use |00, 0,5t — 1| twice, |oo,0,5t — 2|, |0,1,5¢ — 1| and
0,1, 5t — 2| twice. For the last 6t — 6 base graphs, use |0, 2, 5t — 2|
twice, |0,2, 5t — 3|, |0,3,5¢ — 2|, 0,3, 5t — 3| twice, ..., |0, 2t — 2, 4|
twice, 0,2t — 2,4t — 1|, |0,2t — 1,4¢| and |0,2¢ — 1,4t — 1| twice if
necessary. Hence, in this case, OE(10¢, 6) exists.

If n = 10t + 1 (for t > 1), we consider the set V as Zjpr41.

The number of graphs required for OE(10¢ + 1,6) is ﬂ&%&-@ =
6t(10t + 1). Thus, we need 6¢ base graphs (modulo 10t + 1). The
differences we must achieve (modulo 10 + 1) are 1,2,...,5t. We
use the base graphs |0, 1, 5¢ + 1| twice, |0, 1, 5¢|, |0,2, 5t + 1|, |0, 2, 5¢
twice, ...,[0,2t — 1,4t + 2| twice, |0,2¢ — 1,4t + 1|, |0, 2t,4¢ + 2| and
[0,2¢, 4t + 1| twice. Hence, in this case, OE(10t + 1, 6) exists.

If n =10t +5 (for t > 0), we consider the set V' as Zjq¢4q U {o0}.
The number of graphs required for OE(10t + 5, 6) is ﬂ%&tﬁ =
(6t+3)(10t +4). Thus, we need 6t + 3 base graphs (modulo 10t +4).
The differences we must achieve (modulo 10t +4) are 1,2,...,5t+2.
For the first three base graphs, use |oo,0,5t + 2| and |00, 0, 5¢ + 1|
twice. For the last 6 base graphs, use |0,1,5¢ + 1| twice, |0, 1, 5¢|,
10,2,5¢+1}, |0, 2, 5¢| twice, ..., |0, 2t—1, 4t+2| twice, |0, 2t~ 1, d¢+1],
|0, 2¢, 4t + 2| and |0, 2¢, 4¢ + 1| twice if necessary. Hence, in this case,
OE(10t + 5, 6) exists.

If n = 10t + 6 (for ¢ > 0), we consider the set V as Zjg146-
The number of graphs required for OE(10¢ + 6, 6) is w e
(6t+3)(10t + 6). Thus, we need 6t + 3 base graphs (modulo 10t + 6).
The differences we must achieve (modulo 10t+6) are 1,2,...,5t+3.
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For the first three base graphs, use |0,1,5t + 4| and [0,1,5¢ + 3|
twice. For the last 6¢ base graphs, use (0,2, 5¢ + 3| twice, |0, 2, 5t + 2|,
0,3, 5t + 3, |0, 3, 5¢ + 2] twice, ..., |0,2t, 4t + 4| twice, |0, 2t, 4t + 3],
0,2t + 1,4t + 4| and [0,2¢ + 1,4t + 3| twice if necessary. Hence, in
this case, OE(10t + 6, 6) exists. [ |

LEMMA 4.3. There does not ezist an OE(n, 7).

PRrooF. The only edge frequencies in an OE graph are 2 and 3.
The only way to write A = 7 asasumof 2s and 3sisas 7= 3+2+2.
In an OE(n, 7), the number of times each edge needs to occur triply
is half the number of times it needs to occur doubly. However, as
there are equal numbers of double edges and triple edges in an OE
graph, such a decomposition is not possible. ]

LEMMA 4.4. There ezists an OE(n,8) for necessary n > 3.

ProOF. From Theorem 4.2, the necessary conditionisn =0, 1, 5,
6 (mod 10).

If n = 10t (for ¢ > 1), we consider the set V as Zjp;—1U{oo}. The
number of graphs required for OE(10t, 8) is ﬂﬁ&gﬁl = 8t(10t—1).
Thus, we need 8t base graphs (modulo 10t — 1). The differences we
must achieve (modulo 10t — 1) are 1,2,...,5t — 1. For the first eight
base graphs, use |0, 00, 1|, |4t,0, 00|, |0,4t — 1,8t — 2|, |0, 4¢, 8¢t — 1,
|0, 4t — 2,8t — 4}, |0, 4t, 8¢t — 2|, |0, 4t — 3,8t — 6] and |0, 4t,8t — 3|. For
the last 8t — 8 base graphs, use |0,1,2|, |0, 5t — 1, 5t}, [0, 2, 4], |0, 5t —
1,5t+1|,10,3,6], |0,5t— 1,5t +2], |0, 4, 8}, |0, 5t — 1,5t + 3, |0, 5, 10],
0,5t —2,5t+3|, |0,6,12], |0, 5t — 2,5t +4], |0, 7, 14|, |0, 5t — 2, 5t + 5|,
|0,8,16], |0,5t ~ 2,5t + 6],...,|0,4t — 7,8t — 14, [0,4t + 1,8t — 6],
0,4t — 6,8t — 12|, |0, 4t + 1,8t 5], |0, 4t — 5,8t — 10|, [0, 4t +1,8t — 4],
|0, 4t — 4,8t — 8| and |0, 4t + 1, 8¢ — 3| if necessary. Hence, in this case,
OE(10¢, 8) exists.

If n =10t + 1 (for t > 1), we consider the set V as Zjor41.
The number of graphs required for OE(10t + 1,8) is M—%M =
8t(10¢ + 1). Thus, we need 8t base graphs (modulo 10t + 1). The
differences we must achieve (modulo 10t + 1) are 1,2,...,5t. We use
the base graphs [0, 1, 2|, |0, 5¢, 5¢ + 1}, |0,2,4], |0, 5¢,5¢ + 2], |0, 3, 6],
|0, 5t, 5¢+3], |0, 4, 8|, |0, 5¢, 5t +4], |0, 5, 10}, |0, 5t —1, 5t +4], |0, 6, 12|,
|0, 5¢ — 1,5¢ + 5|, |0,7, 14, |0,5¢t — 1,5t + 6], |0, 8, 16], |0,5¢ — 1,5¢ +
7,...,[0,4t — 3,8t — 6|, |0, 4t + 1,8 — 2|, 0, 4¢ — 2,8t — 4|, [0,4t +
1,8t—1{, [0,4t—1,8t—2], |0, 4¢+1,8¢|, |0, 4t,8¢| and |0, 4t+1,8t+1|.
Hence, in this case, OE(10¢ + 1, 8) exists.
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If n =10t +5 (for t > 0), we consider the set V as Zjgz4.4 U {00}
The number of graphs required for OE(10t + 5, 8) is —8(10%%—) =
(8t+4)(10t +4). Thus, we need 8¢+ 4 base graphs (modulo 10t + 4).
The differences we must achieve (modulo 10t +4) are 1,2,...,5t+2.
For the first four base graphs, use |0,4t + 1,8t + 2|, |0, 5¢ + 2,9 + 3],
|0,00,1| and |5t + 2,0, c0|. For the last 8t base graphs, use |0, 1,2,
|0,5¢ + 1,5t + 2|, [0,2,4], |0,5¢t + 1,5¢ + 3], |0,3, 6], |0, 5¢ + 1, 5¢ + 4|,
0,4,8|, |0,5¢t+1,5t+5|, |0, 5, 10, |0, 5¢, 5¢+5|, |0, 6, 12|, |0, 5¢, 5¢+ 6],
[0,7,14, |0,5¢,5t + 7|, |0,8, 16|, |0, 5¢, 5t + 8|,...,]0,4t — 3,8t — 6],
0,4t + 2,8t — 1}, |0,4t — 2,8t — 4|, |0,4¢t + 2,8¢|, |0,4t — 1,8t — 2|,
|0,4¢ + 2,8t + 1|, |0, 4¢, 8| and |0, 4¢ + 2, 8t + 2| if necessary. Hence,
in this case, OE(10¢ + 5, 8) exists.

If n = 10t + 6 (for t > 0), we consider the set V as Zjgsrs-
The number of graphs required for OE(10¢ + 6, 8) is ﬁl—m—'*'%(—l—oﬂ =
(8t+4)(10t +6). Thus, we need 8t +4 base graphs (modulo 10t +6).
The differences we must achieve (modulo 10t +6) are 1,2, ..., 5¢ + 3.
For the first four base graphs, use |0,4¢ + 1, 8¢ + 2|, |0, 5¢ + 3, 9t + 4],
|0,4t+2,8t+4} and |0, 5t+ 3,9t +5|. For the last 8t base graphs, use
0,1,2], |0,5¢ + 2,5t + 3|, ]0,2, 4|, |0,5t + 2,5t + 4, |0,3,6], |0, 5t +
2,5t+5|, 10,4,8, 10,5t +2,5t+6], |0,5,10|, |0, 5t +1, 5t +6|, |0, 6, 12|,
0,5t + 1,5t + 7|, 0,7, 14|, |0,5¢ + 1,5¢ + 8, |0, 8, 16|, |0, 5¢ + 1, 5¢ +
9,...,10,4t-3,8t—6|, |0,4t+3,8t|, |0, 4t —2,8t—4|, |0, 4t+3, 8t +1],
0,4t — 1,8t — 2|, |0,4¢t + 3,8t + 2|, |0,4¢,8¢t| and |0, 4¢ + 3,8t + 3| if
necessary. Hence, in this case, OE(10t + 6, 8) exists. [ |

EXAMPLE 10. The OF graphs Ibl,bg,b;;l, lbl,bz,b4|, |b1,b2,b5|,
b1, b3, b2, [b1,b3,b4], [b1,b3,bs], |b1,ba,ba|, |b1,b4,b3], |b1,bs,b5], |ba,
b51b3|; lb47b5abl|) ,b4a b5’b3|; |b5)b1)b2|7 Ib57b17b3|: |b5,bl3b4|: |b5’b2’
bs|, |bs,bo,bs| and |bs, by,bs| constitute an OE(5,9) with point set
V={b1,...,b5}. A

EXAMPLE 11. The OE graphs Ibl,bg,b;;l, |b1,b2,b4|, lbl,bz,bsl,
|b11b61b2|} |blab61b3|r lb17b67 b4|: |b27b67b1|r 'b21b61b3|: 'b2,b6,b5|, Ib3:
bS)bll; Ib3)b5,b4|: |b47b37b1|: Ib4:b3)b2|7 |b4ab3:b5|; lb41b63b3|: |b41 b6;
b5|; |b4abﬁab5|) |b5$blab3|1 |b5a bl’b4|: |b57blab4|, |b5,b2abl|; 'b5)b2$b3l:
|b5,b27b4!: |b5)b3ablll |b5ab41b1|! |b57b4,bZl and |b5ab4ab3| constitute
an OE(6,9) with point set V = {by,...,bg}. A

EXAMPLE 12. We see that the OF graphs |a1,b, az|, |a1,b,a3|,
|ala b’ 0,4|, |a2)b1 a3|; |a2aba a4l) 'a2aba ‘15|; Ias,b, all: Ia5yb7 a'3| and |a'5?
b,a4| constitute an OE-decomposition of 9K {0, ,00,03,04,05}, {6} - A
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LEMMA 4.5. There ezists an OE(n,9) for necessary n > 3.

PRroOF. From Theorem 4.2, the necessary conditionisn = 0,1, 5,
6 (mod 10).

If n = 10t (for ¢ > 1), we consider the set V as Zp;—1U{oo}. The
number of graphs required for OE(10t, 9) is ML%—O‘;D = 9¢(10t—1).
Thus, we need 9¢ base graphs (modulo 10t — 1). The differences we
must achieve (modulo 10t — 1) are 1,2,...,5¢ — 1. For the first nine
base graphs, use |0, 3t—2, 6t—4|, |0, 3t—2, 6t—1| twice, |0, 3t—1, 6¢t—2],
|0, 3t - 1,6¢|, |3t — 1,0, 00|, |0, 3t, 6¢| and |3¢,0, co| twice. For the last
9t — 9 base graphs, use [0, 1, 2|, |0, 1, 5t| twice, |0,2,4], |0,2,5t + 1],
0,2, 5t,10,3,6|, 0,3, 5t+1| twice, |0, 4, 8|, |0, 4, 5t+1| twice, |0, 5, 10|,
|0,5,5¢t + 2|, |0,5,5¢ + 1{, |0,6,12|, |0,6,5t + 2| twice, ...,|0,3t —
5,6t — 10}, |0, 3t — 5,6t — 2| twice, |0,3t — 4,6t — 8|, |0,3t — 4,6t — 1,
|0,3t—4,6t—2|, |0,3t—3,6t—6| and |0, 3t—3, 6t—1| twice if necessary.
Hence, in this case, OE(10¢,9) exists.

If n = 10t + 1 (for ¢ > 1), we consider the set V as Zjot+1. The
number of graphs required for OE(10¢+1, 9) is %Lﬁm = 9t(10t+
1). Thus, we need 9t base graphs (modulo 10¢+1). The differences we
must achieve (modulo 10t+1) are 1,2, ..., 5t. We use the base graphs
10,1,2], [0, 1, 5¢ + 1| twice, |0,2,4], |0,2,5¢ + 2|, [0,2,5¢ + 1], |0,3, 6],
0,3, 5¢ + 2| twice, |0,4,8]|, 0,4, 5t + 2| twice, |0,5,10], |0, 5,5t + 3|,
0, 5,5t +2], 0,6, 12|, {0, 6, 5t + 3| twice, ..., |0,3t — 2,6t — 4], |0,3t —
2, 6t| twice, |0,3t — 1,6t —2|, |0,3t — 1,6t +1], |0,3t — 1, 6t|, |0, 3t, 6¢|
and |0, 3¢, 6t + 1| twice. Hence, in this case, OE(10¢ + 1,9) exists.

Recall that an OE(5,9) on {b1,...,bs} is given in Example 10.
If n = 10t + 5 (for t > 1), we consider the set V as {a1,...,a10: b1,
...,bs}. To obtain an OE(10t + 5,9), use an OE(10¢,9) on {a,.. .,
a0t} (given two cases above), an OE(5,9) on {b1,...,bs} (given in
Example 10), and an OE-decomposition of 9K gy, ,,....as:}.{;} for all
i=1,...,2t and for all j = 1,...,5 (given in Example 12). Hence,
in this case, OE(10t + 5,9) exists.

Recall that an OE(6,9) on {bi,...,bs} is given in Example 11.
If n = 10t + 6 (for t > 1), we consider the set V as {a1,...,a10t, b1,
...,bg}. To obtain an OE(10t + 6,9), use an OE(10t,9) on {a, ...,
ai0t} (given three cases above), an OE(6,9) on {b1,...,b6} (given in
Example 11), and an OE-decomposition of 9K, , ..as:}.{5;} for all
i=1,...,2t and for all = 1,...,6 (given in Example 12). Hence,
in this case, OE(10¢ + 6, 9) exists. |
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THEOREM 4.3. An OE(n,\) ezists for all A > 5 (exzcept A = 7,
according to Lemma 4.3) and necessary n > 3.

PROOF. We proceed by cases on A (mod 5).

For A =0 (mod 5) (so that A = 5t for t > 1), by taking ¢ copies
of an OE(n, 5) (given in Lemma 4.1), we have an OE(n, 5¢).

For A=1 (mod 5) (so that A=5t+1=5(t—1)+6 for t > 1),
we first take an OE(n, 6) (given in Lemma 4.2). (This gives us A = 6
thus far.) We then adjoin this to t — 1 copies of an OE(n, 5) (given
in Lemma 4.1) if necessary. Hence, we have an OE(n, 5t + 1).

For A = 2 (mod 5) (so that A =5t+2 =5(t —2)+12 for t > 2),
we first take two copies of an OE(n, 6) (given in Lemma 4.2). (This
gives us A = 12 thus far.) We then adjoin this to ¢t — 2 copies of
an OE(n,5) (given in Lemma 4.1) if necessary. Hence, we have an
OE(n, 5t + 2).

For A =3 (mod 5) (so that A=5t+3=5(t—1)+8fort > 1),
we first take an OE(n, 8) (given in Lemma 4.4). (This gives us A = 8
thus far.) We then adjoin this to ¢t — 1 copies of an OE(n, 5) (given
in Lemma 4.1) if necessary. Hence, we have an OE(n, 5¢ + 3).

For A =4 (mod 5) (so that A=5t+4=5(t—1)+9 fort > 1),
we first take an OE(n,9) (given in Lemma 4.5). (This givesus A = 9
thus far.) We then adjoin this to ¢ — 1 copies of an OE(n,5) (given
in Lemma 4.1) if necessary. Hence, we have an OE(n, 5¢ + 4). [ |

5. Conclusion

We have introduced generalized Stanton-type graphs S(n, ¢, m),
identified LO and OE graphs, found the minimum X for decompo-
sition of AK, into these graphs, and showed that for all viable val-
ues of A, the necessary conditions are sufficient for LO- and OE-
decompositions. We note that we mostly used cyclic decompositions
from base graphs; however, OE-decompositions of bipartite graphs
were needed in two cases of Lemma 4.5.

Since decompositions of AK, using near-triangle graphs H;, Ho
and H3 (see (9]) as well as generalized Stanton-type graphs S(3, 1, 2),
5(3,1,3) (see [4]), S(3,2,3) and S(4,1,3) (see [6, 7, 8]) have been
done, we leave it as an open problem to construct decompositions of
AK, using the generalized Stanton-type graphs S(4,1,4), S(4,1,5)
and S(4,1,6).
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