FRIENDLY INDICES AND FULLY CORDIAL GRAPHS

DONALD MCGINN

ABSTRACT. For a graph G = (V, E) with a coloring f : V(G) — Z2,
let vp(i} = |f~1(i)|. We say f is friendly if lus(1) —vs(0)| < 1.
The coloring f induces an edge labeling f : E — Z3 defined by
F+(uv) = f(u) + f(v) mod 2, for each uv € E. Let e5 = |f71(i)].
The friendly index set of the graph G, denoted by FI(G), is defined
by {lef(1) — es(0)| : f is a friendly coloring of G}. We say G is fully
cordial if FI(G) = {|E|,|E| - 2,]E| — 4, ..,|1E| — 2['E'}}. In this
paper, we develop a new technique to calculate friendly index sets
without labeling vertices, and we develop a technique to create fully
cordial graphs from smaller fully cordial graphs. In particular, we
show the first examples of fully cordial graphs that are not trees, as
well as show new infinite classes of fully cordial graphs.

INTRODUCTION

Throughout this paper, all graphs are assumed to be finite, simple and
connected. An outstanding conjecture in graph theory is the Ringel-Kotzig
conjecture, named after Gerhard Ringel and Anton Kotzig, which states
that all trees are graceful graphs (see [Gol72], [Ros67] for details on graceful
graphs and graceful labelings). Cahit introduced the concept of cordial
labelings as a weakened version of graceful labelings [Cah87]. There are
several papers on cordial labelings [CE00], [You09]. Hovey generalized this
concept to A-cordial labeling, where A is an abelian group {Hov91]. In this
paper, we focus on the group A = Z;, which leads us to the concepts of
friendly index numbers and fully cordial graphs.

For a graph G = (V, E) with vertex set V = V(G), edge set E = E(G),
and a binary coloring (vertex labeling)

f:V =z,

we let vs(i) be the number of vertices labeled ¢ under the map f. This is
equivalent to saying that

vp (i) = |F1 ).
Definition 0.1. We say that f is friendly if and only if |vs(1) —vs(0)] < 1.
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The coloring f induces an edge labeling f, : E — Z; defined by
f+(zy) = f(z) + f(y) mod 2, for all zy € E. Let es(s) be the number
of edges labeled i under the map f,.

Definition 0.2. We say N(f) = |ef(1)—es(0)] is the friendly index number
of f. We define the friendly index set of G, denoted FI(G), by the set
{N(f): f is a friendly labeling of G}.

See figure 1 below for an example of a friendly vertex label. There have
been many papers on friendly indices and friendly labels [LN08], [Sal10],
[SLO6]. It has been shown that

FI(G) C {e,e=2e—4,...e— 2 ]}.

If equality holds then G is said to be fully cordial. A similar definition
holds for fully product-cordial sets [Sal10]. In section 1, we show several
characteristics of fully cordial graph G. In section 2, we develop a new tool
for calculating friendly index numbers using degrees and adjacency of the
vertices. In section 3, we develop a method for combining two fully cordial
graphs into larger fully cordial graphs. Finally, in section 4, we find new
infinite classes of fully cordial graphs.

0 1

FIGURE 1. A graph with a friendly vertex label.

1. FuLLy CoRDIAL GRAPHS

Throughout this section, we use the notation n = |V(G)| and e = |E(G)|.
We also use the notation G = (n, €) to denote a graph with n vertices and e
edges. For any G = (n, €), let us consider a friendly vertex label f : V — Z,.
Since G is connected, there must be at least one edge connecting a vertex
labeled 1 and a vertex labeled 0. Hence, under any friendly vertex label
f, we must have ef(1) > 1. Therefore, the only way a graph can have
N(f) = eis if all of the edges are labeled 1. Recall that if G is fully cordial,
then FI(G) = {e,e—2,e—4,...,e — 2[§]}. Hence, if G is fully cordial then
it must have e as a friendly index number.



Lemma 1.1. A graph G has e as a friendly index number if and only if G
is isomorphic to a spanning subgraph of Km m or Kmm41-

Proof. Suppose e is a friendly index number of G. Then for some vertex
label f, we must have e;(0) = 0 and ef(1) = e, since ef(1) > 1. In
this labeling, since ef(0) = 0, none of the vertices labeled 0 connects with
another vertex labeled 0, and the same thing holds for vertices labeled 1.
Thus, G must be a bipartite graph for e to be a friendly index number.
Specifically, if n = 2m then G is isomorphic to a spanning subgraph of
Ko m to guarantee f is friendly, and if n = 2m 4 1 then G is isomorphic
to a spanning subgraph of K, m41 to guarantee f is friendly.

Now suppose G is isomorphic to a spanning subgraph of K m. Then
there exists two separate groups of m vertices, say Vo and Vi, such that
none of the vertices in V; connect to each other, for each i. We let g be the
friendly label defined as follows:

(v) = 0, vely
g - 1, veV,

Then |v,y(1) — vg(0)] = 0 < 1 and ey(1) = e,€,(0) = 0. Thus, g is friendly
and N(g) = e, as desired. The case when G is isomorphic to a spanning
subgraph of Ky, m+1 is proved in a similar manner. a

There are examples of complete bipartite graphs with e edges that do
not contain e as a friendly index number, such as K3 5. If G is a graph that
is not isomorphic to a spanning subgraph of a complete bipartite graph
of the form K, m or K m+1 then we know that G is not fully cordial.
Note that since a fully cordial graph must be isomorphic to a subgraph
of one of these complete bipartite graphs by lemma 1.1, it is easy to see
that e < [':: ]. Many examples of trees being fully cordial have been shown,
and it is known that complete graphs have only one friendly index number
[LNO8], [SL06]). This may suggest that the more edges a graph has, the
less friendly index numbers it should have. As far as I know, there has not
been a paper published on the existence of fully cordial graphs that are not
trees. We show later that there are infinitely many graphs that are not
trees which are fully cordial. In particular, we prove the following theorem
in section 4:

Theorem 4.1. For any k, there erists an n and a graph G = (n,n + k)
such that G is fully cordial.

This result shows that there cannot be an upper bound on e in the form
of n +k, where k is fixed. However, we can improve upon the upper bound
on the number of edges of a fully cordial graph. First, we need to establish
the following lemma.
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Lemma 1.2. Let G be the graph obtained by removing exactly x edges from
Kmm. Then FI(G) C ({m?—z}U{(m-2i)2+j:1<i< T,0<j<z)}).
Similarly, if G is the graph obtained from removing exactly = edges from
Knms1 then FI(G) C ({m2tm -z} U{(m—-2i)2 2 (m-2i)+j:1<
i<%,0<j<z}).

Proof. First, let G be the graph obtained from removing exactly z edges
from Kmm. It has been shown that FI(Kp ) = {m?, (m — 2)?, (m -
4)%,...,(m—2[%])}, but more specifically, for each (m —2i)? € FI(Km,m),
we have that eg = 2i(m — i) and e; = (m — 2i)? + 2i(m — i) [LN08]. When
z edges are removed, it is possible that z¢ of those edges were labeled 0
(pending on the vertex label) and z; labeled 1 where 0 < xp < z, with
zo+z1 = 2. We cannot guarantee that every combination can be achieved.
However, we know that at best, the friendly index number (m — 2i)? €
FI(K m) becomes at least one of the following friendly index number of
FI(G): (m—2i)?—z,(m—2i)2—(z—2), (m—2i)2—(x—4), ..., (m—2i) +z,
except that when i = 0 only m? — z is possible. Thus, the result follows in
this case.

Now, we let G be the graph obtained from removing exactly z edges
from Ky, my1. It has been shown that FI(Kmmi1) = {m? £ m,(m —
22 (m~2),(m—4)2+ (m—4),.., (m - 2[2])% £ (m — 2[2])}, but more
specifically, for each (m — 2i)2 + (m — 2i) € FI(Km m41), We have that
eo=(m—1)(2i+1)and ey = (m —i)>+i(i + 1), 0r ep = i(2m — 2i + 1)
and e; = 1% 4 (m — i)(m + 1 — i) [LN08]. When z edges are removed, it
is possible that xo of those edges were labeled 0 (pending on the vertex
label) and z; labeled 1 where 0 < zo < z, with z9 + z; = z. We cannot
guarantee that every combination can be achieved. However, we know that
at best, the friendly index number (m — 2i)? £+ (m — 2i) € FI(Kmn ms1)
becomes at least one of the following friendly index number of FI(G):
(m —26)? & (m — 2i) — z,(m — 2i)® & (m — 2i) — (z — 2), (m — 2i)2 £ (m —
2i) — (z — 4),...,(m — 2i)2 + (m — 24) + z, except that when i = 0 only
m? £ m — x is possible. Thus, the result follows in this case. a

Corollary 1.3. For any fully cordial graph G, if n = 2m then e < (m—
12+2 Ifn=2m+1 thene<m2+1.

Proof. First, let n = 2m. Then G must be obtained by removing = edges
from Ky m. Hence, by lemma 1.2, e = m? — z. When the expression
(m — 2)? + z is less than m? — z, then it is the second largest possible
friendly index number. If the expression (m — 2)? + z is greater than or
equal to e = m? —z, then the second friendly index number (which is e —2)
must be less than (m — 2)? + z since it cannot exceed the total number
of edges of the graph. Either case, we must have e — 2 < (m — 2)2 + z.
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Solving m2 —z — 2 < (m — 2)% 4+ z for = gives z > 2m — 3. Hence,
e,e—2€ FI(G) =z >2m —3. Thus,e < (m—1)2 +2.

Next, let n = 2m + 1. Then G must be obtained by removing z edges
from Kpmm+1. Hence, by lemma 1.2, e = m*+m —z. Since m* —m +z
is the second largest possible friendly index number or exceeds the total
number of edges of the graph, in order for e — 2 € FI(G) we must have
that e —2 < m2 —m+z. Solving m2+m —z —2 < m? —m+z for x gives
z>m—1. Hence, e,e—2 € FI(G) = z>m—1. Thus,e<m?2+1. O

The bounds obtained in corollary 1.3 cannot be improved upon since
there exists fully cordial graphs G = (5,5) and G = (6,6), and 5 = 22 +
1,6 = (3 — 1)2 + 2 (these two graphs are shown in figures 4 and 5, toward
the end of section 2).

2. DEGREES AND ADJACENCY

Next, we establish a tool to further investigate fully cordial graphs. Pick
any graph G such that e € FI(G) and let f be the vertex label such that
N(f) = e. Before continuing, we need to show that there is only two such
vertex labelings f where N(f) =e.

Lemma 2.1. Pick any graph G such that e € FI(G). Then there exists
only one vertex label f (and its inverse label g = 1 — f) such that N(f) =
N(g) =e.

Proof. Suppose by way of contradiction that there exists a third vertex label
h such that N(h) = e. Under f, we divide V(G) into two distinct groups
A and B, where f(z) =0 for all z € A and f(z) = 1 for all z € B (hence,
G is isomorphic to subgraph of K|, 8). Since we must have es(0) = 0,
no two vertices are adjacent in A and no two vertices are adjacent in B.
Under h, we divide A into two distinct groups Ao and A; and we divide B
into two distinct groups By and By, such that h(z) = 0 for all z € ApU By
and h(z) = 1 for all z € A; U B;. Since ex(0) must be 0, no two vertices
are adjacent in A¢ and By and no two vertices are adjacent in A; and
B,. However, this makes Ap U B; disjoint from A; U By, which makes G
disconnected, a contradiction. Thus, no such h exists. O

Since f and g = 1 — f basically behave the same (by which we mean
it results in the same isomorphic subgraph of K, m or Km m41), We can
let f be the vertex label such that N(f) = e. For a new vertex label
h, we label half the vertices uj,u2,...,um and the other half v1,vs,...,vm
(if n is odd then we also add either um41 or Um+1) such that f(u;) =0
and f(v;) = 1, for all ¢, and h(z) = f(z) for all z € V(G) except that
h(u1) = 1 and h(v;) = 0. If u; and v; are not adjacent then N(h) =
le — 2(deg(u1)+deg(vy))| since this results in eg(1) = e—(deg(u1)+deg(v1))
and e,(0) =deg(u;)+deg(vi). Similarly, if u; and vy are adjacent then
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N(k) = |e — 2(deg(u1)+deg(v;) — 2)|. Another way to say this is N(h) =
le — 2(deg(u,)+deg(v1) — 2A4(u1,vy))|, where

A(u,v) = {

More generally, if k is a vertex label such that h(z) = f(z) for all z €
V(G) except that there exists ui,...,u, and vy,...,vs such that h(y;) =
Lh(v;) =0,f(u;) =0,f(v;) =1forl1 <i<r1<j<sthen Nh) =
|e — 2K (r, s)|, where

K(r,s)= Zr:deg(u,-) + zs:deg(v,) -2 Z A(ui, vj).
i=1 i=1

1<i,j<s

Thus, e — 2k € FI(G) if and only if K(r,s) = k or K(r,s) = e — k for some
0 < 7,5 <m+1 with corresponding vertices u;, ..., uy, v1, ..., Us.

0, wu not adjacent to v,
1, u adjacent to v.

Remark 1. Note that for each fixed value of r and s, K (, s) is a multival-
ued function since the different choices of the vertices u,, ...ur, vy, ..., Us can
possibly lead to different values of K(r,s). Also, K(r,s) is only defined for
graphs that have e as a friendly index number, since it can only be applied
to graphs that are isomorphic to a spanning subgraph of Ky, m or K m41.-
Note that K(r, s) is the same as e (0).

Remark 2. In order for & to be friendly, [r —s| < 1, and |r — 5| = 1 only
in the case when n is odd. When n is even, we calculate K(r,r) only, and
when 7 is odd, we can calculate K (r,7) or K(r,7 +1). Also, if n = 2m and
we pick 7 > 7 vertices originally labeled 0 under f (where N(f) = e) and
we pick 7 > 7 vertices originally labeled 1 under f resulting in K (r,7) =k,
then picking the other m —r vertices labeled 0 under f and the other m —r
vertices labeled 1 under f results in K(m —r,m —r) = k (this is essentially
the same as how e;(0) = e;_¢(0)). A similar result holds for K (r,s) when
7,8 > Z in the n = 2m + 1 case. Hence, to find every friendly index

number, we only need to choose 0 < r,s < =z,

This allows us a way to find the complete friendly index set of a graph
without needing to label the vertices. We calculate the friendly index set
of a graph by observing the degree and adjacency of each vertex. The
following theorem is an application of this.

Theorem 2.2. Let G = (n,e) with n and e both even. If the degree of any
two vertices differs by an even number, then G is not fully cordial. More
specifically, if e € FI(G) then FI(G) C {e,e —4,e—8,...,e — 4(%]}-

Proof. First, if e is not an element of FI(G) then G is clearly not fully
cordial. Assume e € FI(G). Thus, G is isomorphic to a spanning subgraph
of Km,m. Let us label the vertices u,, ..., um and vy, ..., U such that f(u;) =
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0, f(vi) = 1, and N(f) = e. Let the maximum degree of the vertices be
d. Then for any 0 < r < &, since every vertex must have degree d minus
an even number, Z,_odeg(u,) = dr — (even number), and }_;_,deg(v;) =
dr — (even number). Thus, K(r,r) = 2dr — (even number), which can never
be odd. Thus, FI(G) C {e,e —4,e — 8,...}. Since e was even, there does
not exist a j so that |e — 45| = e — 2(2k + 1) (this is why we need e to be
even). O

Recall that hypercubes, denoted @, are defined by @, = K2 and @, =
Qn_1 x Ka, for all n > 2 (see figure 2 for an example). An immediate
consequence of theorem 2.2 is that all hypercubes are not fully cordial,
since each Q, is a graph with n2"~! edges and 2" vertices, all of which
have the same degree.

FiGURE 2. The graph of Q3.

Here is another application, proving a result already known.

Lemma 2.3. For any m, FI(Kp ;) = {m?,(m —2)%,. m 2[’"] )2}, and
FI(Kmm+1) = {m?+m,(m-2)2+(m-2),..,(m- 2["‘] (m—2[Z])}.

Proof. First, we consider Km m. Pick any 0 < r < 7. Notice that the
degree of each vertex is m. For any group of 2r vertices chosen to calculate
K(r,7), all 72 pairs of vertices are adjacent. Hence, regardless of our choice
of r,K(r,7) = 2mr — 2r%. Then e — 2K (r,7) = m? — 2(2mr — 2r%) =
(m — 2r)2. Thus, FI(Kpm) = {(m—2r)?:0 < r < 2}, as desired.

Next, we consider K m+1. Let A be the group of m vertices not adjacent
to each other and let B be the group of m + 1 vertices not adjacent to each
other. Notice that the degree of each vertex in A is m + 1 and the degree
of each vertex in B is m. First, pick any 0 < 7 < 3. Then all r2 pairs
of vertices are adjacent and K(r,7) = mr + (m + 1)r — 2r2. Next, pick
any 0 < 7 < 2 — 1. Then all 7(r + 1) pairs of vertices are adjacent and
K(r,r+1) = (m+1)r+m(r+1) —2r(r+1). Hence, since e = m?+m, we get
e—2K(r,v) = (m—2r)2+(m—2r) and e—2K(r,7+1) = (m—2r)2—(m-2r),
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for each 0 < r < 2. Hence, FI(Kmm+1) = {m*+m,(m-2)2+ (m ~
2), ..., (m —2[Z])2 + (m — 2[Z])}, as desired. a

The next application involves caterpillar graphs. Recall that a caterpil-
lar graph of diameter d + 1 can be represented as C(a1, a2, ...,aq) Where .
a; is the degree of the i*" inner vertex along the “spine” (see figure 3 for
an example). Caterpillars of diameter 3 and 4 have been fully classified
by Daniel Corral and Ebrahim Salehi [CS]. Next, we reproduce the classi-
fication of caterpillars of diameter 3 using the degree and adjacency trick.
Note that C(a, b) has a + b vertices and a + b — 1 edges.

NN

C@3,5,3)

FiGure 3. The graph of C(3,5,3).

Lemma 2.4. Let C(a,b) be a caterpillar of diameter 8 with a < b. Then
C(a,b) is fully cordial if and only if |a — b| <1 with a,b > 2.

Proof. Notice that e = a+ b — 1 is a friendly index number if and only if
|b —a] < 1. Also, if the degree of a or b is 1, then the diameter is at most
2, which is why we need a and b to have degree of 2 or more. Let u and
v be the vertices of degree a and b, respectively. First, let a + b be even
(hence, @ = b). We know e is a friendly index number if and only if there
exists a label f such that without loss of generality, f(z) = 0 for u and the
pendant vertices adjacent to v, and f(z) = 1 for v and the pendant vertices
adjacent to . For a new label h, without loss of generality, we assume that
u; vertices are chosen from u and the b— 1 degree 1 vertices adjacent to v,
and the v; vertices are chosen from the rest. Pick any 0 < r < [¢32]. If u
and v are not chosen then since none of the pendant vertices are adjacent,
K(r,r)=2rfor0<r < [“—P]. Hence,

a+b

4

If we choose u; = u and all the rest of the u;’s and v;’s are pendant, then
since every pendant vertex chosen for the v;’s are adjacent to u, we get
K(rr)=a+2r—1-2r=a—1, foreach 1 < r < [2tbte=1) Similarly,

{a+b-1,a+b-5,a+b—-09,...,a+b—-1—{4]

]} € FI(C(a,b)).
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K(r,r) =b+2r—-1-2r = b—1, if v1 = v and the rest are pendant vertices.
Hence, e — 2K (r,7) = |b—a+1|,Ja—b+1| =1 € FI(C(a,b)). Also, when
u; = u,v; = v, and the rest are pendant, K (r,7) = a+b+2r—-2-2(2r-1) =
a+b—2r foreachl <r < [9{—"], since we have 2r — 1 pair of adjacent
vertices. Hence, |e — 2K (r,7)] =a+b+1—4r, and

a+b

21} € FI(C(a,b).

Thus, C(a,b) is fully cordial. The a + b is odd case is proved in a similar
manner. O

{a+b-3,a+b-7,...,a+b+1—4]

The next theorem shows the existence of fully cordial graphs that are
not trees.

Theorem 2.5. Let G be a graph isomorphic to a spanning subgraph of
Kmms1 with A representing the m vertices not connected to each other
and B representing the m + 1 vertices not connected to each other. For
m = 2, if the degrees of the vertices of B are 1, 2, 2 then G is fully cordial.
For 3 < m, if the degrees of the vertices in B are 1, 1, 2, ..., m, the degrees
of the vertices in A are m+1,m —1,m — 2,...,1, and the vertex of degree
j from A is only adjacent to the vertices of degree m to m — j+ 1 from B,
then G 1is fully cordial.

Proof. Let G be a graph satisfying these conditions. Then we get K(0,1) =
4, for each 1 < j < m, by choosing v, to be the vertex with degree j. For
m = 2, this gives K(0,1) = 1,2. Since K(0,0) =0, FI(G) = {5,3,1}, and
G is fully cordial.

Now let m > 3. We know that e — 25 € FI(G) foreach 1 < 7 < m.
Since G = (2m + 1, -’”—zi'i"ﬁz), we also need to prove e — 25 € FI(G) for
m+1<j< [ﬂzi“’—"ﬁ]. Pick any 1 < r < [%]. Then choose uy, ..., ur
from A as the vertices of degree 1, ..., r, and choose v, ..., v, from B as the
vertices of degree m,m — 1,...,m —r + 1, and choose v, as any vertex of
degree j for 1 £ j £ m —r. Then there are ﬂié—*—ll pairs of adjacent vertices

and
)
K(r,r+1) = (r(r;- 1))+(2m1‘ 2r +7 +) _2(r(r2_+1)
where 1 <r < (%] and 1 < j < m — 7. Hence, K(r,7 + 1) achieves every
number from 1 to [ﬂzi‘,ﬁﬂ], which guarantees G is fully cordial. O

) =r(m-—r)+j,

Figure 4 below shows examples of fully cordial graphs that are not trees,
all of which come from theorem 2.5. The next theorem proves that there
exists a graph G = (6, 6) that is fully cordial.

Theorem 2.6. Let G = (6,6) be the graph isomorphic to e spanning sub-
graph of K3 3 with A representing the 3 vertices not connected to each other

91



FIGURE 4. Examples of fully cordial graphs that are not trees.

and B representing the remaining 3 vertices not connected to each other.
If the degrees of the vertices in A are all 2, and the degree of the vertices
in B are 1, 2, 8, then G is fully cordial.

Proof. Clearly, K(0,0) = 0. Pick u; to be the vertex of degree j from
B, and let v; be the vertex of degree 2 adjacent to u;. Then, for each
1<j5<3,

K(1,1) = (4) +(2) - 2(1) = j.
Thus, K(1,1) = j, for each 1 < j < 3, which proves that FI(G) =
{6,4,2,0}, as desired. O

Figure 5 gives the graph from theorem 2.6, which we denote by Hg (Hs
is used again in section 4).

I_16
FIGURE 5. Graph of Hg.

3. JoINING GRAPHS

In this section, we show how to construct larger fully cordial graphs from
two smaller fully cordial graphs. Pick any two graphs (not necessarily fully
cordial) G) = (n1,e1) and G2 = (n3,ez). Pick any vertex v, € V(G,) and
any vertex vz € V(G2). We denote the joining of two graphs by making
v1 = v2 by Gy * G (see figure 6 for an example). We denote the joining
of graphs G, and G, with the edge vjvs by G; * *G3 (see figure 7 for an
example). Note that for G = G; * G3,G = (ny + na — 1,€; + €3), and for
G =G *%%G2,G = (n; + ng,e; + ez +1).
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G Gz G'| * GZ

FIGURE 6. The joining operation *.

G, G, G, ** G,

FIGURE 7. The joining operation **.

Before continuing, it is important to emphasize that the joining of two
fully cordial graphs does not always result in a fully cordial graph. For
example, in figure 6, if G, is the fully cordial path P3, G2 is the fully
cordial path P, and we choose v; to be the inner vertex of G then G, *G2
is K13, which is not fully cordial. Also, if e — 2k € FI(G) then either
ef(1) = e — k,ef(0) = k, or ef(1) = k,ef(0) = e — k. If we want to join
two graphs, we need to be careful about how the vertex labels achieve the
friendly index number e — 2k. This leads us to the following definitions.

Definition 3.1. Let G = (n,e) be any graph. Then we say e — 2k, with
0 < k < &, is a positive friendly index number of G if and only if there
exists a friendly label f such that ef(1) = e — k and ef(0) = k. We define
FI.(G) = {N(f) : N(f) € FI(G) and N(f) is positive }. We say G is
positive if and only if FI(G) = FIL(G). For n odd, we say that vertex
v € V(G) is join-friendly if and only if for every e — 2k € FI,(G), there
exists a label f such that e;(1) = e—k,es(0) = k, and if vy (1) = vs(0) +1
(or v£(0) = v(1) + 1) then f(v) =1 (or 0).

Remark 3. Another way to say G is positive is that for every friendly index
number there exists a friendly label f such that ef(1) > ef(0). Notice that
not every graph is positive. For example, C(3,3) is not positive because
the only way to achieve the friendly index number 3 is with an f such that
ef(1) = 1 and e;(0) = 4. Also, if we examine the proof of lemma 2.4 closely,
we see that for each a > 2, {2a — 1,2a — 5,22 — 9,...,2a — 1 — 4[%]} C
FI,.(C(a,a)). We use this fact in section 4.

For an example of a join-friendly vertex, consider the path P3, where
we label the vertices as u, v, and w with v being the inner vertex. Then
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 (and similarly w) is a join-friendly vertex because for the friendly index
number 2, we use the label f so that f(u) = f(w) =1 and f(v) = 0, and
for the friendly index number 0, we use the label f so that f(u) = f (v) =1
and f(w) = 0. In both cases, vs(1) = vf(0) + 1 and f(v) = 1. v is not
join-friendly since the only way to obtain 2 as a friendly index number is
with f such that f(u) = f(w) =1 (or 0) and f(v) = 0 (or 1), and either
way, if vf(i) = vs(1 — i) + 1 then f(v) =1 — i, instead of f(v) = 1.

Recall that if f is a friendly label on G then so is ¢ = 1 — f, and
N(f) = N(g). More importantly, if e;(1) = e — k and ef(0) = k then
eg(1) = e — k and e4(0) = k. This fact is used in lemma 3.2.

Let us define A+; B ={a+b:a€ A,be B}, and define A +, B =
({a+b+1:a€ A,be B}u{a+b—1:a € A,be€ B}), for any sets A and B.
For example, if A= {1,3,7} and B = {2,4} then A+, B = {3,5,7,9,11}
and A+2 B = {2,4,6,8,10,12}. We are now ready to prove the following
important technical result, which immediately proves the main result in
this paper, theorem 3.3.

Lemma 3.2. Let G1 = (ny,e1) and Gy = (ng,e3) be any two graphs,
and let G = Gy * Go and GG = G, * *G,, where the joins use some
vy € V(G1) and some vo € V(G3). Then if ny and n, are both even,
FIL(Gy) +1 FI4(G3) C FIL(G), and if ny is even or nq is even then
FI.(G1) +2 FI.(G2) C FIL(GG). Ifny is odd (or n is odd or both) and
vy is join-friendly (or vp is join-friendly), then FI,(G:) +1 FI.(G3) C
FI.(G).

Proof. First, let us consider G = G, * G, where the join occurs at vertices
v; € V(G)) and vy € V(G,), and we call the resulting vertex vs. Pick
any e; — 2ky € FI4(G)) and any e; — 2k; € FI,.(G3). Then there exists
two vertex labels f and g such that es(1) = ¢; — ki1,ef(0) = ky, and
eg(l) = €9 — k2, 69(0) = kz.

Case 1: f(v1) = g(v2). Then we define a vertex label h on G as follows:

f(v), ifve V(G1)\ {v1}
h(v) = < g(v), ifve V(Gy) \ {va}
f)(=9(v2)), ifv=v3(=v; =vy).
Then N(h) = e; + ez — 2(k1 + k2) € FI,(G), as long as A is friendly, since
ef(1) 2 es(0) and eg(1) > €4(0) implies that ex(1) > en(0). If n; and n,
are both even then clearly h is friendly with v,(1) — vr(0) = %1, where the
plus or minus depends on whether h(us) = 1 or h(vs) = 0. If not, say n; is
odd, then we must have v; be join-friendly. This is enough to guarantee h
is friendly. Note that if n; and ny are both odd, we only need one of v; or
vz to be join-friendly, but we can have both be join-friendly.as well.
Case 2: f(v1) # g(v2). Then use f =1— f. Then N(f) = N(f) ef(i) =
ef(i) for i = 0,1, and we are back in case 1 with f and g. Notice that in
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the case when n; is odd, v; stays join-friendly even when we change f to

7.

In all cases, e; — 2k; € FI,(G;) and ez — 2k; € FI,(G2) implies that
e1 + ez — 2(k1 + k2) € FI,(G). Thus, FI,(G,) +1 FI+(G2) C FI,(G).

Next, we consider GG = G, * *G2, where the join occurs at vertices
v; € V(G1) and vz € V(Gy), using edge vyv2. Assume that n, is even or np
is even. Pick any e; — 2k; € FI.(G)) and any e; — 2k; € FI,(Gz2). Then
there exists two vertex labels f and g such that ef(1) = e; —k1,e5(0) = k1,
and eg(1) = ez — k2,€4(0) = k2.

Define vertex label h as follows:

_[f), ifvev(en)
o) = {g(v), ifv e V(Ga).

Then if we let f =1 ~ f, define vertex label & as follows:

o [Fw), ivevcy)
hv) = {g(v), if v € V(Ga).

The condition that n; is even or n; is even guarantees that both k and
F are friendly labels. Let h, and h, be the corresponding edge labels
to h and h. Note that N(f) = N(f), but f(v1) # f(v1). Thus, edge
vyvp will be labeled differently under hy and k. Recall that ef(1) =
e1 — k1,e7(0) = ky and e4(1) = ez — ka,e4(0) = kg. Either hy(vive) =
0,h4(v1v2) = 1, or hy(v1v2) = 1, hy (v1v2) = 0. Without loss of generality,
assume h+('U1'Ug) = 0, 71+(v1v2) = 1. Then N(h) =e;+e— 2(k1 -+ kz) -1
and N(h) = ey + ez — 2(k1 + ko) + 1. Thus, if e; — 2k; € FI(G;1) and
ez — 2ky € FI(G2) then e; + ez £ 1 — 2(ky + k2) € FI(GG). Therefore,
FI (G)) +2 FI,.(G3) C FI.(GG). O

Theorem 3.3. For any two graphs G and Gs, let G = G * G3 and
GG = G, **G,. If G, and G4 are both fully cordial and positive with n,
and ny both even then so is G; if G1 and G2 are both fully cordial and
positive with at least ny odd and vy join-friendly then so is G; and if Gy
and G4 are both fully cordial and positive with ny even or ny even then so is
GG. Also, if {e;,e;—4,e;—8,...,e;— 4[5} C FI.(G;), for each1 <i <2,
and n, is even or ny is even, then GG is fully cordial and positive.

Proof. If G; and G are hoth positive, then FI(G;) = FI(G;) for each ¢.
Thus, by lemma 3.2, if G, and G, are both fully cordial and positive with
ny and ng both even then so is G; if G; and G are both fully cordial and
positive with at least n) odd and v; join-friendly then so is G; and if G,
and G, are both fully cordial and positive with n; even or n even then so
is GG. If {e;,e; —4,e; — 8,...,e; — 4[5} C FI,(G;), for each 1 <1 < 2,
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then FI (G1) +2 FI, (G;) =

e1+ex+1
2

which proves the final statement in the theorem. g

{61+€2+1,€1+62—l,...,61+82+1—2[ ]}=FI(GG),

Remark 4. Going back to the example of G; being the path P; and G,
being the path P2, when we join (by using the * operation) at the inner
vertex vy of G; and any vz of G2, we have a label f and a label g so that
N(f) = 2,N(g) = 1, f(v1) = i,9(vz) = i, and then for any other vertex,
f(z) =1—1iand g(xr) =1 —¢. Then G = G; *x G; has a resulting label A
such that N (k) = 3 but vx(i) = 1,va(1 — i) = 3, so h is not friendly and
only 1 € FI(K}1,3). This is why we need to join an odd graph using the *
operation with a join-friendly vertex.

Remark 5. The last part of theorem 3.3 is important, because it allows us
to join two graphs that do not have all of its friendly index numbers being
positive, and still obtain a fully cordial and positive graph. We demonstrate
this in the next section.

4. APPLICATIONS

Recall that in section 2, we found a graph Hg of 6 vertices and 6 edges
that is fully cordial. Note that Hs is positive (we did not prove this but it
is easy to verify). We can join Hg with itself using the ** operation and
create a new fully cordial graph, say G,, with 12 vertices and 13 edges. If
we continue this process over and over again, we can create a fully cordial
graph G, = G, * Hg = (6n,7n — 1) (see figure 8 for an example). Thus,
we have the following result:

Theorem 4.1. For any k, there erists an n and a graph G = (n,n + k)
such that G is fully cordial.

Hence, even though fully cordial graphs have to satisfy the upper bound
in corollary 1.3, the value of e — n can be arbitrarily large for fully cordial
graphs. Recall that we showed previously that {2a—1,2a—5,2a—9, ..., 2a—
1-4[2]} c FI,(C(a,a)), for each a > 2. The ** join of C(a, a) with itself,
if we choose the correct vertices, results in C(a,a + 1,a + 1,a). Hence,
C(a,a +1,a + 1,a) is fully cordial and positive. We can arbitrarily join
any number of caterpillars of the form C(a;,a;) and get a fully cordial and
positive graph. We summarize this in the next corollary.

Corollary 4.2. For any positive integers a; > 2, and any i > 2, caterpillars
of the form C(ay,a1 + 1,62+ 1,02 + 1,a3 + 1,a3 + 1, ...,a; + 1,a;) is fully
cordial and positive.
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FIGURE 8. The graph of Gs.

D R

C3,4,3,3,4,3)

ey N

C(6,7,6,5)

FIGURE 9. Graph of C(3,4,3,3,4,3) and C(6,7,6,5).

Figure 9 shows some examples of these fully cordial caterpillars.

We can create more complicated graphs by ** joining caterpillars with
other caterpillars (see figure 10 for some example). We conclude by men-
tioning that we now have the technique in place to create many infinite
classes of fully cordial graphs by simply joining fully cordial graphs to-
gether over and over again (see figure 11 for an example).
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FIGURE 10. A fully cordial graph from joining multiple caterpillars.
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