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Abstract

A graceful labeling of a graph G of order n and size m is a
one-to-one function f : V(G) — {0,1,...,m} that induces
a one-to-one function f’' : E(G) — {1,2,...,m} defined by
f'(uv) = |f(u) — f(v)|. A graph that admits a graceful labeling
is a graceful graph. A proper coloring ¢: V(G) — {1,2,...,k}
is called a graceful k-coloring if the induced edge coloring ¢’ de-
fined by ¢/(uv) = |e(u) — ¢(v)]| is proper. The minimum positive
integer k for which G has a graceful k-coloring is its grace-
ful chromatic number x4(G). The graceful chromatic numbers
of cycles, wheels and caterpillars are determined. An upper
bound for the graceful chromatic number of trees is determined
in terms of its maximum degree.
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1 Introduction

In 1967, Rosa [5] introduced a vertex labeling of a graph that he called
a B-valuation. In 1972, Golomb [4] referred to this labeling as a graceful
labeling - terminology that has become standard. Let G be a graph of
order n and size m. A graceful labeling of G is a one-to-one function f :
V(G) — {0,1,...,m} that, in turn, assigns to each edge uv of G the label
f'(uwv) = |f(u) — f(v)| such that no two edges of G are labeled the same.
Therefore, if f is a graceful labeling of G, then the set of edge labels is
{1,2,...,m}. A graph possessing a graceful labeling is a graceful graph. A
major problem in this area is that of determining which graphs are graceful.
One of the best known conjectures dealing with graceful graphs involves
trees and is due to Kotzig and Ringel (see (3]).
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The Graceful Tree Conjecture FEvery nontrivial tree is graceful.

The gracefulness grac(G) of a graph G with V(G) = {v1,v2,...,v,} is
the smallest positive integer k for which it is possible to label the vertices
of G with distinct elements of the set {0,1,2,...,k} in such a way that
distinct edges receive distinct labels. The gracefulness of every such graph
is defined, for if we label v; by 2¢~! for 1 < i < n, then a vertex labeling
with this property exists. Thus, if G is a graph of order n and size m, then
m < grac(G) < 2°~1. If grac(G) = m, then G is graceful. The gracefulness
of a graph G can be considered as a measure of how close G is to being
graceful — the closer the gracefulness is to m, the closer the graph is to being
graceful. The exact values of grac(K,,) were determined for 1 < n < 10 in
[4). For example, grac(K4) = 6, grac(Ks) = 11 and grac(Ks) = 17. The
exact value of grac(K,) is not known in general, however. On the other
hand, Erdés showed that grac(K,) ~ n? (see [4]).

Graceful labelings have also been looked at in terms of colorings. A
rainbow vertex coloring of a graph G of size m is an assignment f of distinct
colors to the vertices of G. If the colors are chosen from the set {0,1,...,m},
resulting in each edge uv of G being colored f/(uv) = |f(u)— f(v)| such that
the colors assigned to the edges of G are also distinct, then this rainbow
vertex coloring results in a rainbow edge coloring f* : E(G) — {1,2,...,m}.
So, such a rainbow vertex coloring is a graceful labeling of G (also see [7]).

The colorings of graphs that have received the most attention, however,
are proper vertez colorings and proper edge colorings. In such a coloring
of a graph G, every two adjacent vertices or every two adjacent edges are
assigned distinct colors. The minimum number of colors needed in a proper
vertex coloring of G is its chromatic number. denoted by x(G), while the
minimum number of colors needed in a proper edge coloring of G is its
chromatic inder, denoted by x'(G).

Inspired by graceful labelings, we now consider a natural and new type
of vertex colorings that induce edge colorings, both of which are proper
rather than rainbow. We refer to the book [2] for graph theory notation
and terminology not described in this paper.

2 Graceful Chromatic Numbers of Graphs

It is useful to describe notation for certain intervals of integers. For positive
integersa,bwith a < b, let [a,b] = {a,a+1,...,b} and [b] = [1,b]. A graceful
k-coloring of a nonempty graph G is a proper vertex coloring ¢ : V(G) — [k],

where k > 2, that induces a proper edge coloring ¢’ : E(G) — [k—1) defined
by ¢(uv) = Je(u) — e(v)|. A vertex coloring ¢ of a graph G is a graceful
coloring if c is a graceful k-coloring for some k € N. The minimum k for
which G has a graceful k-coloring is called the graceful chromatic number
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of G, denoted by x4(G). Note that in a graceful labeling of a nonempty
graph of size m, the colors are chosen from the set {0,1,...,m} and so the
color 0 could be used; while in a graceful coloring, each color is a positive
integer. There are immediate lower and upper bounds for the graceful
chromatic number of a graph.

Observation 2.1 If G is a nonempty graph of order n, then x4(G) ezists

and
x(G) £ x4(G) < grac(G) < on-1,

Figure 1 shows two graceful graphs K, and C, together with a graceful
coloring for each of these two graphs. In fact, x4(K4) =5 < grac(K4) = 6
and x4(Cy) = grac(Cy) = 4.

) (5 @

@ ® O

Figure 1: Graceful colorings of K4 and Cy4

We make some additional useful observations. For a graceful k-coloring
c of a graph G, the complementary coloring € : V(G) — [k] of G is a k-
coloring defined by &(v) = k41— c(v) for each vertex v of G. If zy € E(G),
then the color &(zy) of zy induced by ¢ is

d(zy) = [e(z) —2y)l =|[(k+1)—clz)] - [(k+1) —c)l
= |c(z) - ely)| = ¢'(zy).
This results in the following observation.

Observation 2.2 The complementary coloring of a graceful coloring of a
graph is also graceful.

If ¢ is a graceful k-coloring of a graph G, then the restriction of ¢ to a
subgraph H of G is also a graceful coloring. Thus, we have the following
observation.

Observation 2.3 If H is a subgraph of a graph G, then
Xg(H) < x4(G).
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If G is a disconnected graph having p components Gy, G, ..., G, for
some integer p > 2, then x4(G) = max{x4(G:) : 1 < i < p}. Thus,
it suffices to consider only nontrivial connected graphs. If ¢ is a graceful
coloring of a nontrivial connected graph G and v € V(G), then ¢ must
assign distinct colors to the vertices in the closed neighborhood N[v] of v.
Thus, if u,w € V(G) such that u # w and d(u,w) < 2, then c(u) # c(w).
Furthermore, if (z,y, 2) is an  — z path in G, where c(z) > c(z), say, then
c(z) — c(y) # c(y) — ¢(z) and so c(y) # c(“)“;"(z). We state these useful
observations next.

Observation 2.4 Letc: V(G) — [k], k > 2, be a coloring of a nontrivial
connected graph G. Then c is a graceful coloring of G if and only if (i) for
each verter v of G. the vertices in the closed neighborhood N{v] of v are
assigned distinct colors by ¢ and (ii) for each path (z,y,z) of order 3 in G,

o) # 1),

As a consequence of condition (i) in Observation 2.4, it follows that if
G is a nontrivial connected graph, then

xg(G) =2 A(G) + 1. (1)

As an illustration, we determine x,4(Q3z). Figure 2 shows a graceful 5-
coloring of Q3 and so x4(Q3) < 5. By (1), Xg(@3) > 4. Therefore, either
X9(@3) = 4 or x4(Q@3) = 5. We show that x,(Q3) # 4. Assume, to the
contrary, that Q3 has a graceful 4-coloring using colors from the set [4].
By Observation 2.4, the four vertices in a 4-cycle in Q3 must be colored
differently. Thus, some vertex v of Q3 is colored 3. However then, the three
neighbors of v must be colored 1, 2,4, which implies that two incident edges
of v are colored 1. This is impossible. Hence, x4(Q3) = 5.

Figure 2: A graceful 5-coloring of Q3

This example also illustrates the following observation.
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Observation 2.5 If G is an r-regular graph where r > 2, then
xg(G) 21 +2.

Since xg(Kin-1) = n = A(K1,n—1) + 1, the bound in (1) is attained
for all stars and consequently, the bound is sharp. By Brooks’ theorem
(1), x(G) < A(G) + 1 for every graph G and, when G is connected,
x(G) = A(G) + 1 if and only if G is a complete graph or an odd cy-
cle. Furthermore, by Vizing’s theorem [6], x'(G) < A(G) + 1 for every
nonempty graph G. Thus, x4(G) = max{x(G), x'(G)}. These observations
together with Observation 2.5 yield the following.

Proposition 2.6 If G is a nontrivial connected graph of order at least 3,
then

x¢(G) = max{x(G),x'(G)} + 1.

The diameter diam(G) of a connected graph G is the largest distance
between any two vertices of G. The following result is also a consequence
of Observation 2.4.

Corollary 2.7 If G is a connected graph of order n > 3 with diameter at
most 2, then x4(G) 2 n.

While the star Ky ,—1, n > 3, is a graph of order n and diameter 2
having graceful chromatic number n, there are infinite classes of connected
graphs having diameter 2 whose graceful chromatic number is its order.

Proposition 2.8 If G is a complete bipartite graph of order n > 3, then
Xq(G) =n.

Proof. Let G = K, be a complete bipartite graph of order n = s+t with
partite sets U and W, where U = {u1,us,...,us} and W = {w;, wa,...,w:}.
Since the diameter of G is 2, it follows by Corollary 2.7 that x4(G) = n.
Next, consider a proper coloring ¢ : V(G) — [n] defined by c(u;) = i for
1<i<sand c(w;) =s+jfor1<j <t Thus, (uiw;) = |s+ (5 — i)
for1 <i<sandl1<j<t Ifiisfixedand 1 < j; # j2 £ ¢, then
[s + (J1 = 9)| # |s + (j2 — ©)| and similarly, if j is fixed and 1 < i} # i3 < s,
then |s + (j — %1)| # |s + (§ — i2)]- Hence, ¢’ is a proper edge coloring and
c is a graceful n-coloring. Therefore, x,(G) = n.

In fact, there are also infinite classes of connected graphs G of order n
such that diam(G) = 2 and x4(G) > n.

Proposition 2.9 IfG is a nontrivial connected graph of order n such that
3(G) > nf2, then x,(G) > n.
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Proof. Since §(G) > n/2, it follows that diam(G) < 2. Assume, to the
contrary, that there is a graceful n-coloring ¢ of G. By Observation 2.4,
all vertices are assigned distinct colors by ¢ and so there is a vertex v of G
such that c(v) = [}]. Let $ = [1,[%] — 1] and T = [[2] + 1,n], where
then |S| < |T| =n— [§] = |2]. By Observation 2.4, at most one element
in each set {[2] —¢,[2] +i} (1 <i < [2] — 1) can be used to color the
vertices in N(v). Hence, there are at most |%| colors that are available
for the vertices in N(v). Since degv > n/2 > |%], this is impossible.
Therefore, x4(G) > n. ]

3 Graceful Colorings of Cycles and Wheels
In this section, we determine the graceful chromatic numbers of some well-

known graphs, namely cycles, paths and wheels. In order to determine
the graceful chromatic number of a cycle, we first introduce some useful

notation. Let C,, = (v1,v2,...,%n,Unt1 = v1) be a cycle of order n > 3
where e; = v;v;41 for i = 1,2,...,n. For a vertex coloring ¢ of Cp,, let
Se = (C('U]),C(’UQ), “en ,C(’Un)).

Similarly, for an edge coloring ¢’ of Cp,, let
Ser = (C'(el),c’(eg), R cl(en))'

Proposition 3.1 For each integer n > 4,

Xg(cn)={ 4 ifn#b

5 . ifn=>5.
Proof. Let C, = (v1,v2,...,Vn,Unt1 = v1) be a cycle of order n > 4
where e; = vviyy for i = 1,2,...,n. First, suppose that n = 5. Since

diam(Cs) = 2, it follows by Corollary 2.7 that xg(Cs) = 5. Define a
vertex coloring ¢ such that s, = (1,5,3,4,2). Then the induced edge col-
oring ¢’ satisfies s = (4,2,1,2,1). Thus ¢ is a graceful 5-coloring and so
Xg (Cn) =5.

Next, suppose that n # 5. First, we show that x,(C,) > 4. Assume,
to the contrary, that there is a graceful 3-coloring ¢ of Cy,, say c(v;) = 1.
Since ¢ is a graceful coloring, {c(v2),c(vn)} = {2,3}, say c(v2) = 2 and
¢(vn) = 3. However then, ¢(vs) = 3 and so ¢/(v1v2) = ¢/(v2v3) = 1, which is
impossible. Hence, x4(Cy) > 4. It remains to define a graceful 4-coloring ¢
of C,,.
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e n=0 (mod 4). For n =4, let sc =(1,2,4,3). Then s = (1,2,1,2).
Forn > 8, let s, = (1,2,4,3,...,1,2,4,3). Then so =(1,2,...,1,2).

en=1 (mod4). Forn=09,let s =(1,2,4,1,2,4,1,2,4).
So se = (1,2,3,1,2,3,1,2,3).
Forn > 13, let s. = (1,2,4,3,...,1,2,4,3,1,2,4,1,2,4,1,2,4).
Then se = (1,2,1,2,...,1,2,1,2,3,1,2,3,1,2,3).

e n=2 (mod 4). For n =6, let s =(1,2,4,1,2,4).
Then s =(1,2,3,1,2,3).
Forn > 10, let s. = (1,2,4,3,...,1,2,4,3,1,2,4,1,2,4).
Then s» =(1,2,1,2,...,1,2,1,2,3,1,2,3).
e n =3 (mod 4). In this case, n > 7.
Let s. =(1,2,4,3,...,1,2,4,3,1,2,4).
Then s = (1,2,1,2,...,1,2,1,2,3).
In each case, there is a graceful 4-coloring of C,. Therefore, x,(Cr) = 4
when n # 5. »
It is easy to see that x4(P4) = 3. For n > 5, the following is a conse-
quence of Proposition 3.1.

Proposition 3.2 For each integer n > 5, x4(P,) = 4.

Proof. Let P, = (v1,vs,...,v,) where n > 5. For n = 5, a graceful
4-coloring c¢* of Ps is defined by

(C‘(’Ul), c* (02)? C‘(T)s), c* (‘U4), C*('Us)) = (11 2,4,1, 2)

and so x4(Ps) < 4. For n > 6, since P, is a subgraph of Cy, it follows
by Observation 2.3 and Proposition 3.1 that x4(FP,.} < 4. We show that
Xg(Prn) # 3. Suppose that there is a graceful 3-coloring ¢ of P,. Necessarily,
c(vs) # 2 and so we may assume that c(vsz) = 1. Thus, {c(v2),c(w)} =
{2, 3}, say c(v2) = 2. However then, ¢(v1) = 3 and so ¢/(v1v2) = ¢/(vov3) =
1, which is impossible. Therefore, x4(Pn) = 4.

We now turn our attention to wheels W,, of order n > 6, constructed
by joining a new vertex to every vertex of an (n — 1)-cycle.

Theorem 3.3 If W, is the wheel of order n > 6, then xq(Wp) =n.

107



Proof. Let G = W,, where Cr_; = (v1,v2,...,Vn-1,v1) and whose cen-
tral vertex is vo. By Corollary 2.7, x4(G) > n. Thus, it suffices to show
that G has a graceful n-coloring. Figure 3 shows a graceful n-coloring of
W, for n = 6,7,8, where the central vertex is colored 1 and the graceful
n-coloring of W, for n = 7,8 is obtained from the graceful (n — 1)-coloring
of W,,_; by inserting a new vertex into the cycle C,,_2 of W,,_,, joining this
vertex to the central vertex and then assigning the color n to this vertex.

Figure 3: Graceful colorings of Ws, W, W

Next, we show that for a given graceful (n ~ 1)-coloring of W,,_; for
some integer n > 7, in which the central vertex is colored 1, there is an
edge xy on the (n—2)-cycle C,,_2 of W,,_; such that (1) a new vertex v can
be inserted into the edge zy and joined to the central vertex vy of W,,_; to
produce W, and (2) the color n can be assigned to v to produce a graceful
n-coloring of the resulting graph W,,. Now, let there be given a graceful
(n — 1)-coloring ¢ of W,_; for some integer n > 7, in which the central
vertex is colored 1. It suffices to show that there exists an edge zy on C,_
such that c(z) and c(y) satisfy the following two conditions:

(i) c(z) # 2L and c(y) # 241,

(ii) If («’,2,y,v’) is a path on Cp_j, then c(z) # csx;2+n and
oly) # “whtn,

Let Cr—a = (v1,v2,...,Vn-2,v1). Since the diameter of W,_; is 2, all
vertices of W, are assigned different colors by c¢. Hence, if c(vit1) =
w for some i, then c(v;) # &"""2—’& for all j # i 4+ 1 (where the
subscripts are expressed as integers modulo n — 2). We consider two cases.

Case 1. n is odd. Suppose that c(viy1) = "("‘+;)+" for some 4, in which
case the edge v;v;41 fails condition (ii). Since n = 2¢(viy1) ~c(vis2) is odd,
it follows that ¢(vi12) is odd. Because there are ™73 vertices of C,,_, that

are assigned odd colors by ¢ (as the central vertex is colored 1), at most ";3

108



edges on C,,_2 fail condition (ii). Hence, there are at least (n —2) — 253 =

"—;l > 3 edges on C,,_3 that satisfy condition (ii). Among these edges that
edges satisfy condition (ii), at most two of them fail condition (i). Thus,
there is at least one edge zy on Cr_2 such that ¢(z) and c(y) satisfy both
(i) and (ii).

Case 2. n is even. Suppose that c(viq1) = c("‘+2’)+" for some i. Since
n = 2¢(vi41) — c(vVis2) is even, it follows that c(vi42) is even. Because there
are ";2 vertices on C,_» that are assigned even colors by ¢, at most "'2‘2
edges fail condition (ii). Hence, there are at least (n —2) — ";% = ";2 >4
edges that satisfy condition (ii). Since (n + 1)/2 is not an integer, all of
these edges satisfy condition (i) Therefore, there is at least one edge zy
such that c(z) and c(y) satisfy both (i) and (ii).

4 Graceful Colorings of Regular Complete
Multipartite Graphs

For the regular complete bipartite graph K, ,, it follows by Proposition 2.8
that x4(Kp.p) = 2p. Since §(K,.,) = p = n/2, the result stated in Proposi-
tion 2.9 is best possible. This suggests considering other regular complete
multipartite graphs. For integers p and k where p > 2 and k > 3, let Kj(y)
be the regular complete k-partite graph, each of whose partite sets consists
of p vertices. Thus, the order of Ky is n = kp and the degree of regularity
isr= "(",: D= (k —1)p. The following result gives an upper bound for the
graceful chromatic number of Kj(,). Because the verification of this bound
is quite lengthy, we omit the proof.

Theorem 4.1 For integers p and k where p > 2 and k > 3,

2"31® 2)p -2 +1 if k is even
Xo(Kkpy)) < _
! ? (2k;3—3)p—2k2l+1 if k is odd.

The upper bound for x¢(Kk(p) presented in Theorem 4.1 is almost
certainly not sharp. While xo(Kppp) < 5p — 1 for p > 2 according to
Theorem 4.1, the following result gives an improved upper bound in this
case. First, we introduce some useful notation. For a vertex coloring ¢ of
a graph G and a set X of vertices of G, let ¢(X) = {c(z) : = € X} be the
set of colors of the vertices of X.

Theorem 4.2 For each integer p > 2,
dp—1 if pis even

K <
Xo(Kppp) < { 4p if p is odd.
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Proof. Let G = K, , , with partite sets V;, V5, V3, where |V;| = p for 1 <
t £ 3. First, suppose that p is even. Define a proper coloring ¢ : V(G) —
[4p—1] of G such that ¢(Vi) = [p], c(V2) = [p+ 1,2p - E]U[2p + &,3p — 1]
and ¢(V3) = [3p, 4p—1]. To show that ¢ is a graceful coloring of G, it suffices
to show that if (z, z,y) is a path of order 3 in G, then

c(x)+c

) L elt) o @
Letz e Vi,ye V;,z € V,, where1 <i,j,t < 3andt # i,j. We may assume
that j < i and c(y) < e(z). If t < j, then c(2) < c(y) < 22E® | 1f¢ >,
then ﬂf’%ﬂ < ¢(x) < ¢(z). Hence, we may assume that j <t < i and so
j=1,t=2and i = 3. Observe that

o(z) + c(y) 3p+1 p—1 P
b el ALk C A e L Iy, YO _£
) 2 TR =P
dp — -
C(w)ZC(y) < p+2p 1=2p+p21<2p+123_

Thus, (2) holds.

Next, suppose that p is odd. A proper coloring ¢ : V(G) — [4p] of G
is defined by ¢(V}) = [p], (V) = [p+1,2p— [B]] U [2p+ [2],3p] and
c(V3) = [3p+ 1,4p). Let (z,z,y) be a path of order 3 in G. Suppose that
reV,yeV;,zeV, wherel <4,j5t <3andt #1375 Byanargument
similar to the one used in Case 1, we may assume that j = 1,t = 2 and
i =3. Observe that

e(z) + c(y) Bp+1)+1 S 3p+1

p—1 P
> —9p_P " - |P
2 = 2 2 -5 > [2]
c(z) + c(y) p+4p p+1 P
" ¢ BT - = =
3 < ) <2p+ 2 2p + [2] .
Thus, (2) holds. n

Indeed, there is a reason to believe that the upper bound for x¢(Kp.p,p)
presented in Theorem 4.2 is the actual value of x4(Kp,p,p) for every integer
p=2.

Conjecture 4.3 For each integer p > 2,

4p—1 ifpis even

K =
Xo(Kp.p.) { 4p if p is odd.

Conjecture 4.3 has been verified when 2 < p < 6. As an illustration, we
verify this for p = 3.
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Proposition 4.4 x,(K333) =12.

Proof. By Theorem 4.2, x4(K3,3,3) < 12. Hence, it remains to show that
there is no graceful 11-coloring of G = K3,3,3. Let V1, V3, V3 be the partite
sets of G. Assume, to the contrary, that G has a graceful coloring c :
V(G) — [11]. Since diam(G) = 2, no two vertices of G are assigned the
same color. First, we claim that the color 6 cannot be used; for otherwise,
say 6 € ¢(V1). Then at least one color in each of the five sets {7,12 — i}
(1 < i < 5) is either not used by c or is in ¢(V3). Since |¢(V1)| = 3 and
exactly two colors in [11] are not used by c, this is impossible. Thus, 6 is
not used and so exactly nine of the ten colors in [11] — {6} are used by c.
We consider two cases.

Case 1. 5,7 € ¢(V(G)). If 5,7 € c(V;) for some i = 1,2,3,say i = 1,
then one color in each of the four sets {1,9}, {2,8}, {3,11}, {4,10} is
either in c(V}) or is not used by c. Since [¢(V})| = 3 and exactly one color
in [11) — {6} is not used ¢, this is impossible. Thus, we may assume that
5 € ¢(V1) and 7 € ¢(V2). Then the color 3 is either not used or is in ¢(V})
and the color 9 is either not used or is in ¢(V2). We may assume that
3 € ¢(V1) and so the color 4 is either not used or is in ¢(V1).

Subcase 1.1. 9 € ¢(V3). Then the color 8 is either not used or is in ¢(V2).
We saw that the color 4 is either not used or is in ¢(V;). By symmetry, we
may assume that 4 € ¢(V;). Then each of 10 and 11 is either not used or
in ¢(Vz). Therefore, each of the three colors 8, 10, 11 is either not used or
is in ¢(V2). Since (i) 7,9 € ¢(V2), (ii) at most one of 8, 10, 11 belongs to
c(V2) and (iii) at most one of 8, 10, 11 is not used by ¢, at least one of 8,
10, 11 is in ¢(V3), a contradiction.

Subcase 1.2. 9 is not used. Then the colors used by c are 1, 2, 3, 4, 5,
7, 8, 10, 11. Since 3,4,5 € c¢(V}), it follows that ¢(V;) = {3,4,5}. Because
2,8 ¢ c(V1), the vertex colored 5 is incident with two edges colored 3, a
contradiction.

Case 2. Exactly one of 5 and 7 is used by ¢, say 5. Then the colors
used by c are 1,2,3,4,5,8,9,10,11. We may assume that 5 € ¢(V1). Thus,
at least one color in {2, 8} and at least one color in {1,9} belongs to ¢(V}).
Assume that 2 € ¢(V}). Thus, exactly one color in {1,3} belongs to c(V1).
Since at least one color in {1,9} belongs to ¢(V7), it follows that 1 € ¢(V1)
and so ¢(V}) = {1,2,5}. However then, 3 € ¢(V2 U V3) and the vertex
colored 3 is incident with two edges colored 2, a contradiction. Thus, 2 ¢
¢(V1) and so 8 € ¢(1}).

Next, suppose that 1 € ¢(V;). Thus, ¢(V;) = {1,5,8}. However then,
3 € ¢(V2UV3) and the vertex colored 3 is incident with two edges colored 2,
a contradiction. Thus, 1 ¢ ¢(V}) and so 9 € ¢(V;). Hence, (V1) = {5,8,9}.
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We may assume that 1 € ¢(V2). Since 5 € ¢(V}), it follows that 3 € ¢(V%)
and so 2 € ¢(V2). Thus, ¢(V2) = {1,2,3} and ¢(V3) = {4,10,11}. However
then, the vertex colored 4 is incident with two edges colored 1, producing
a contradiction. =

The proof of Proposition 4.4 shows not only that x4(K3,33) = 12 but
that there is a vertex coloring ¢ : V(G) — [11) of G = K333 that is
a proper vertex coloring, namely ¢(V;) = {5,8,9}, ¢(V2) = {1,2,3} and
c(V3) = {4,10,11}, whose induced edge coloring ¢’ results only in one pair
of adjacent edges having the same color.

5 Graceful Colorings of Caterpillars

We now determine the graceful chromatic numbers of some well-known
trees. A caterpillar is a tree T of order 3 or more, the removal of whose
leaves produces a path (called the spine of T'). Thus, every path, every
star (of order at least 3) and every double star (a tree of diameter 3) is a
caterpillar.

Theorem 5.1 Let T be a caterpillar with mazimum degree A > 2. If T
has a vertez of degree A that is adjacent to two vertices of degree A in T,
then xo(T) = A + 2.

Proof. Since the theorem holds when A = 2 by Proposition 3.2, we may
assume that A > 3. First, we show that Xg(T) 2 A + 2. Assume, to the
contrary, that x4(7") < A+1. It then follows by (1) that x,(T) = A+1 and
so T has a graceful coloring ¢ using colors from [A +1]. Let v € V(G) with
degv = A. Suppose that ¢(v) = a. If 1 < @ < A + 1, then there are two
neighbors « and w of v such that ¢(u) = a + 1 and c¢(w) = a — 1. However
then, ¢'(uv) = ¢/(wv) = 1, which is impossible. Since ¢(N[v]) = [A + 1],
there is u € N(v) such that ¢(u) = a+A or ¢(u) = a—A. Becausea < A+1,
either a = 1 or @ = A + 1. Hence, every vertex of degree A is colored 1
or A +1. However, T has a vertex of degree A that is adjacent to two
vertices of degree A in T and so c is not proper, which is a contradiction.
Therefore, x4(T) > A + 2.

To verify that x4(T) < A +2, it suffices to show that there is a graceful
coloring ¢ of T' using colors in [A + 2]. First, we consider a caterpillar T*
with A(T™) = A such that each non-end-vertex of T* has degree A and the
spine of T* is a path (v1,v2,...,v3k41) of order 3k+ 1. Thus degr. v; = A
for each 7 with 1 < ¢ < 3k + 1. We show that Xxg(T*) < A+ 2. Define a
proper coloring ¢: V(T*) — [A + 2] of T* as follows. First, let

1 ifi=1 (mod 3)
c(vi)=< 2 ifi=2 (mod 3)
A+4+1 ifi=0 (mod 3).
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Let e; = v;vi41 for 1 < i < 3k. The induced edge coloring ¢’ satisfies
(c'(e1),c'(e2),..-,c'(en)) = (1,A—1,A,1,A-1,A,...,1,A-1,A).

For each integer i with 1 < i < 3k + 1, let L(v;) be the set of leaves that
are adjacent to v;.

« Let c(L(v1)) = [3, A + 1] and let c(L(vaes1)) = [2, A
*x Ifi=1 (mod 3) and i # 1,3k + 1, let ¢(L(v:)) = [3, A}
* If i = 2 (mod 3), let ¢(L(v;)) = [4, A]U {A + 2}.

* If i =0 (mod 3), let ¢(L(v;)) = [3,4A].

This is illustrated in Figure 4 for k = 1. For each vertex v; (1 <4 < 3k+ 1),
let E,, be the set of edges incident with v;. Then ¢/(Ey;) = [A]. Hence, ¢’
is proper and so ¢ is a graceful (A + 2)-coloring of T*. Therefore, x4(T*) =
A+2.

Figure 4: Illustrating the coloring ¢ for k =1

Next, let T be a caterpillar with maximum degree A > 3 such that some
vertex of degree A in T is adjacent to at least two vertices of degree A in
T. Then there is a caterpillar T* with A(T*) = A having the structure
as described above such that T is a subtree of T*. By Observation 2.3,
xg(T) < xo(T*) = & + 2. Therefore, xo(T) = A +2.

By Theorem 5.1, if T is a caterpillar with maximum degree 3 containing
a vertex of degree 3 adjacent to two vertices of degree 3 in T, then x4(T) =
5. If T has no such vertex, then we show that x4(T) = 4.

Theorem 5.2 Let T be a caterpillar with marimum degree 3. If every
vertex of degree 3 in T is adjacent to at most one vertex of degree 3 in T,
then x4(T) = 4.

113



Proof. Let P = (v;,vz,...,v;) be the spine of T. Thus, every vertex of
P has degree 2 or 3 in T and every vertex of T not on P is an end-vertex of
T'. Since the result holds for a star by Proposition 2.8, we may assume that
¢t 2 2 and at least one vertex of P has degree 3 in T. If P has only vertices
of degree 3 in T, then ¢t = 2 and both v; and v, have degree 3 in T'. Color
one of these vertices 1 and the other 4. We may assume that P contains a
vertex of degree 3 in T immediately followed by a vertex of degree 2 in T
(otherwise, we may let P = (v, ve—1,...,v1)).

Let va be the first vertex of degree 3 on P immediately followed by
a vertex of degree 2 in T. Assign v, the color 1 or 4. If v,_; also has
degree 3 in T, then assign this vertex a color such that Ug—1, Ug are col-
ored 1,4 or 4, 1. If no vertex of P following v, has degree 3, then color the
vertices Uo41,Va+2,- ..,V With 2,4,3,1,2,4,3,1,... if v, is colored 1; while
Va+1,Va+2,- ..,V are colored with 3,1,2,4,3,1,2,4,... if v, is colored 4. If
all vertices prior to v, on P have degree 2 in T, then color v,_1, Va=2,y...,U1
with 3,4,2,1,3,4,2,1,... if v, is colored 1; or 2,1, 3, 4,2, 1,3,4,...if v, is
colored 4. If vo_; has degree 3 and is colored 1, then Ug—2,Ua—3,...,V] are
colored 3,4,2,1,3,4,2,1,...; while if v;_; has degree 3 and is colored 4,
then v_2,v,-3,...,v; are colored 2,1,3,4,2,1,3,4,. ...

Thus, we may now assume that there are one or more vertices following
v, that have degree 3 in T. Let v, be the first vertex following v, that has
degree 3 in T. We now consider two cases.

Case 1. a and b are of the same parity. Then v,4y,va42,...,vp are
colored 2,4,3,1, 2,4,3,1, ... if v, is colored 1; while Va+1,Va42, - .,Vp are
colored 3,1,2,4,3,1,2,4,... if v, is colored 4.

Case 2. a and b are of opposite parity. If v,_; also has degree 3, then
Va+1,Ya+2, - - -, Up are colored with 3,2,4,3,1,2,4,3,1, ... if v, is colored 1;
while v441,va42,. .., s are colored 2, 3,1, 2, 4,3,1,2,4, ... if v, is colored 4.
If a =1 or vy_; has degree 2 in T, then Va+1,Va+2, - - ., Up ale colored with
4,3,1,2,4,3,1,2,4,... if v, is colored 1; while Ug+1: Uat2, - - -, Up are colored
1,2,4,3,1,2,4,3,1,... if v, is colored 4.

If there are vertices of degree 2 and 3 in T following v, on P, then relabel
Uy a8 Vg if vpy1 has degree 2 in T or relabel Up4+1 aS Vg if Up41 has degree 3
in T. We then proceed as above.

Since each vertex of degree 3 is colored 1 or 4, there is a color available
for each end-vertex of T that results in both a proper vertex coloring of T
and a proper induced edge coloring of T. Thus, xg(T) = 4.

Next, we show that a theorem analogous to Theorem 5.2 holds when
A >4
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Theorem 5.3 Let T be a caterpillar with mazimum degree A > 4. If no
vertex of degree A in T is adjacent to two vertices of degree A in T, then

Xo(T)=A+1.

Proof. Since x4(T) > A+1, it remains to show that xo(T) < A+1. Let
T be a caterpillar with maximum degree A > 4 in which

(i) no vertex of degree A in T is adjacent to two vertices of degree A

inT.
Adding leaves to the tree T if necessarily, we may further assume that

(ii) each vertex on the spine of T has degree A and A —1in T and that
no vertices of degree A —1 is adjacent to two vertices of degree A —1

inT.
We establish the following stronger statement:

If T is a caterpillar with maximum degree A > 4 that satisfies
(i) and (ii), then T has a graceful (A 4 1)-coloring ¢ such that
a vertex v on the spine of T is colored 1 or A + 1 by c if and
only if degprv = A.

We proceed by induction on the order £ of the spine of a tree. If £ =1,
then T is a star and the statement is true by Proposition 2.8. If £ = 2,
then T is a double star. Let v; and vy be the two central vertices (non-
end-vertices) of T. First, suppose that degrv, = degprvz = A. Assign
the color 1 to vy, the color A + 1 to vg, assign the colors in [2, 4] to the
vertices in N(v1) — {ve} and the vertices in N(vz) — {v1}. Next, suppose
that exactly one of v; and vs has degree A, say v;. Assign the color 1 to
v, the color 2 to v, the colors in [3, A + 1] to the vertices in N(v1) — {v2}
and the colors in [4, A + 1] to the vertices in N(v1) — {v2}. In each case, T
has a graceful (A + 1)-coloring with the desired property. This establishes
the hase step.

Assume that if T’ is a tree of maximum degree A’ > 4, the length
of whose spine is £ — 1 for some ¢ > 3 such that T” satisfies (i) and (ii),
then T has a graceful (A’ + 1)-coloring such that a vertex on the spine
of T is colored 1 or A’ + 1 if and only if degp v = A’. Let T be a tree
of maximum degree A > 4 the length of whose spine is £ such that T
satisfies (i) and (ii). Let P = (v1,v2,...,v¢) be the spine of T. We may
assume that there is i € {2,3,...,¢} such that degyv; = A; for otherwise,
vy is the only vertex of degree A in T and let P = (vg,ve—1,...,v1). Let
T’ be the caterpillar obtained from T by removing all leaves adjacent to
vi. Then T is a caterpillar of maximum degree A > 4, whose spine is
P’ = (vg,vs,...,ve) of length £ — 1. Since degy, v; = degpv; for 2<i < l,
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it follows that T” satisfies (i) and (ii). By the induction hypothesis, T/ has
a graceful (A + 1)-coloring ¢ such that a vertex v on P’ is colored 1 or A+1
by c if and only if degp, v = A.

Next, we show that that T has a graceful (A + 1)-coloring cr such that

a vertex v on P is colored 1 or A + 1 by cr if and only if degrv = A.
3)

We consider four cases, according to the degrees of v; and vs.

Case 1. degp v = degrve = A. Let Np(v)) = {va,z1,29,...,za-1}.
Then degrvs = A — 1. By the induction hypothesis, c(ve) € {1,A + 1}
and c(v3) ¢ {1, A+ 1}. By Observation 2.2, we may assume c(vp) = A+ 1.
Thus, one of the leaves adjacent to v is colored 1, say v,. Define a vertex
coloring cr of T by cr(v) = c(v) if v € V(T”) and cr(z:) = i + 1 for
z; € N(v1). Then cr is a graceful (A + 1)-coloring of T' that satisfies (3).

Case 2. degrv; = A and degrva = A—1. Let Nr(v)={ve, 71, 22, .. .,
za-1}. By the induction hypothesis, c(v2) ¢ {1, A + 1}. Furthermore, we
may assume that c(vs) # 1 by Observation 2.2. If v, is adjacent to a leaf
that is colored 1, then we may assume that this leaf is v;; while if v is not
adjacent to a leaf colored 1, then c(v2) = 2 and there exists a leaf adjacent
to vz colored 3. In this case, we may assume that this leaf is v; and change
the color of v; to 1 such that the resulting coloring is still graceful. Define
a vertex coloring er of T by cr(v) = ¢(v) if v € V(T”) and ep(z:) =i+ 2
for 2; € Nr(v1). Then cr is a graceful (A + 1)-coloring of T satisfying (3).

Case 3. degyvi = A —1 and degrv, = A. Let Nr(vy)= {v2, 73,
z2, ..., Za~2}. Then ¢(vz) € {1,A +1}. By Observation 2.2, we may
assume c(v3) # 2. Hence, v, is adjacent to a leaf adjacent that is colored
2, say v1. Define a vertex coloring er of T by cr(v) = c(v) if v € V(T),
and er(z;) = ¢ + 2 for each z; € Np(v;) — {z1}. If ¢(v2) = 1, then let
cr(z1) = A + 1; while if ¢(v2) = A + 1, then let cr(z1) =3. Thencr is a
graceful (A + 1)-coloring of T satisfying (3).

Case 4. degyv) = degpva = A—1. Let Np(v;) = {v2,z1,22,...,za-2}.
Since no vertex of degree A—1 is adjacent to two vertices of degree A—1, it
follows that degr v3 = A. Thus, ¢(vs) € {1, A+1}. By Observation 2.2, we
may assume c(vz) # 2. Then v, is adjacent to a leaf colored 2, say v;. De-
fine a vertex coloring er of T by er(v) = c(v) if v € V(T"), er(z;) = i+2 for
1<i< A-3andecr(ra-2) = A+1. Then ey is a graceful (A +1)-coloring
of T satisfying (3).

By the Principle of Mathematical Induction, if T' is a caterpillar with
maximum degree A > 4 that satisfies (i) and (ii), then T has a graceful
(A 4 1)-coloring ¢ such that a vertex v on the spine of T is colored 1 or
A+1 by cif and only if degyr v = A. Since every caterpillar with maximum
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degree A and satisfying (i) is a subtree of a caterpillar with maximum
degree A and satisfying (i) and (ii), the result follows by Observation 2.3.

By Theorems 5.1-5.3, the following result provides the graceful chro-
matic number of every caterpillar.

Theorem 5.4 If T is a caterpillar with mazimum degree A > 2, then
A+1<x(TY<A+2.

Furthermore, xo(T) = A + 2 if and only if T has a vertex of degree A that
is adjacent to two vertices of degree A in T.

6 An Upper Bound for the Graceful
Chromatic Number of a Tree

We have seen examples of trees T for which x4(T) = A(T) +1 and trees T
for which x4(T) = A(T) + 2. This brings up the question of whether there
exists a tree T such that x4(T) — A(T) > 2. To answer this question, we
consider the tree Ty with A(Tp) = 4 shown in Figure 5. First, we claim that
there is no graceful 6-coloring of Ty. Suppose that there is such a coloring
c¢: V(To) — [6]. The vertices in N[u] are then colored with five colors from
the set [6]. If c(u) = 3, then no two vertices in N(u) can be colored both
2 and 4 or both 1 or 5 by Observation 2.4. Similarly, it is impossible that
c(u) = 4. Thus, ¢(u) € {1,2,5,6}. The same can be said of v,w,z and y.
This implies that two vertices of N{u] are colored same, which is impossible.
Since the 7-coloring of Tp shown in Figure 5 is a graceful coloring, it follows
that x4(To) =7 = A(To) + 3.

Figure 5: A tree T with x¢(To) = A(To) +3
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For the tree Ty in Figure 5, observe that x4(Tp) = 7 = [%ﬂ’—)] Indeed,

for every tree T with maximum degree A, the graceful chromatic number
of T can never exceed [3£], as we now show.

Theorem 6.1 If T is a nontrivial tree with mazimum degree A, then
5A
%@ s 3]

Proof. Let S; = [[&]], S2 = [A+1, [22]] and S = S; U S,. In order
to show that T has a graceful coloring using the colors in S, we first verify
the following claim.

Claim. For each a € 5, there are at least A distinct elements
a1,a2,...,aa € S — {a} such that all of the A integers |a —
ail,la — az|,...,|a — aa| are distinct.

We consider three cases, according to the values of A modulo 3.

Case 1. A = 0 (mod 3). Let A = 3k for some positive integer k.
Then [22] = 2k and so S, = [2k] and S, = [3k + 1,5k]. Let a € S. By
Observation 2.2, we may assume that a € S;. For each i = 1,2,...,2k,
let a; = 3k +i. Then all of |a — ay],|a — az|,...,|a — ag| are distinct and
la—ai|=3k+i—-a>3k+i—2k=k+i>k+1for1 <i<2. Ifa< k,
then choose agkt+; = a +j for 1 < j < k; while if @ > k + 1, then choose

agk4j =a—jfor1 < j < k. Then all of |a— age1|,|a—agk+2|, .-, |a—azk
are distinct and |a—agk4;| = j < k. Since |a—a;| > k+1for 1 < i < 2k and
la—ai| < k for 2k+1 < i < 3k, it follows that |a—ay|,[a—a3),.. ., |a— a3k

are distinct.

Case2. A =1 (mod 3). Let A = 3k+1 for some nonnegative integer k.
Then [?%3] =2k +1 and so S; = [2k + 1] and S; = [3k + 2,5k + 2]. Let
a € S. As observed in Case 1, we may assume that a € S,. For each i =
1,2...,2k+1,let a; = 3k+1+4:. Then all of |[a—a,], la—as|,...,|la—agk41|
are distinct and la—a;| = 3k+1+i—a > 3k+1+i—-(2k+1)=k+i> k+1
for1 <i<2k+1. Ifa <k, then choose agt114j =a+jforl1 < j<k;
while if a > k + 1, then choose azk414+j =a— 7 for 1 < j < k. Then all of

la—azk42|, |a—aok4al,. .., |a—asks1| are distinct and la—agky145] =7 < k.
Since la—~a;| > k+1for1 <i < 2k+1and la—a;| < k for 2k+4+2 < i < 3k+1,
it follows that |a — a1|,|a — a2, ..., |a — aak41| are distinct.

Case 3. A =2 (mod 3). Let A = 3k+2 for some nonnegative integer k.
Then [32] = 2k + 2 and so S; = [2k + 2] and S; = [3k + 2,5k + 4]. The
argument is similar to the one in Case 2.

Therefore, the claim holds. It remains to construct a graceful coloring ¢
of T using the colors in S. Let v € V(T') such that degv = A and let V; =
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{w € V(T) : d(v,w) = i} for 0 < i < e(v), where e(v) is the eccentricity
of v. Thus, Vp = {v} and V; = N(v). Let ¢(v) = a for some a € S and let
ai,az,...,aa € S—{a} for which |a—ai|,|a—az|,...,|a—aa| are distinct.
Color the vertices of Vi such that {c(w) : w € Wi} = {a1,a2,...,aa}.
Thus each vertex in Vo U V; has been assigned a color from $ such that all
vertices and edges of the tree T} = T'[VpoUV;] are properly colored. Suppose
then, for some integer i where 1 < ¢ < e(v), that the colors of vertices in
the tree T; = T [U’_OV] have been assigned colors from S such that all
vertices and edges of T; are properly colored. Next, we define the colors
of vertices in Viy;. Let w € V; that is not an end-vertex of T'. Suppose
that degw =t < A and c(w) = b € S. Choose by, by,...,ba € S — {b}
such that |6 — b1|,|b — bal,...,|b — ba| are distinct. Let u € Vi, such that
uw € E(T). We may assume, without loss of generality, that b; # c(u)
and b; # 2c(w) —c(u) for 1 < j <t —1< A —1. Color the vertices in
N(w)—{u} C Viy1 such that {c(w) : w € N(w)—{u}} = {b1,b2,...,be-1}.

Continue this procedure for each non-end-vertex in V; to define the color of
each vertex in V;4;. Therefore, T has a graceful coloring using colors from
the set S C [[22]] and so x,4(T) < [52].
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