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Abstract

The size of a minimum total dominating set in the m x n grid graph is
denoted by 74 (Pn(P,). Here a dynamic programming algorithm that com-
putes % (PnOP,) for any m and n is presented, and it is shown how properties
of the algorithm can be used to derive formulae for a fixed, small value of
m. Using this method formulae for % (P»01Py), m < 28 are obtained. Formu-
lae for larger m are further conjectured, and a new general upper bound on
% (Pa0Py) is proved. Keywords: total domination, grid graph

1 Introduction

The Cartesian product graph G = P,0P,, where P; denotes a path with i vertices
(and length i — 1), is said to be an m x n grid graph. We here label the vertices and
edges of the graph G = (V, E) as follows:

Vv
E

il

{vij:0<i<m—1,0< j<n—1},
{{vijovept:(i=iand|j—j|=1)or (j=j and |i-i| =1)}.

A total dominating set of a graph G = (V,E) is a subset V/ C V such that
every vertex in V is adjacent to at least one vertex in V'. The total domination
number %(G) of a graph G is the minimum size of a total dominating set in G.
The total domination number of the m x n grid graph is denoted by % (PuP,). By
symmetry, % (PnP,) = % (P,OP,). Two related types of sets are dominating sets,
where every vertex in V\V’ is adjacent to at least one vertex in the dominating set
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V', and independent dominating sets, which are simultaneously dominating sets
and independent sets.

For dominating sets we say that a vertex v dominates a vertex v’ if v is adjacent
to v or v='. Similarly, for total dominating sets we say that v dominates V' if v
is adjacent to /. A (total) dominating set is said to be perfect if every vertex of
the graph is dominated by exactly one vertex.

In early studies of the domination number of grid graphs, domination numbers
for small grids were obtained [1], general bounds were improved (2, 4, 5, 7, 13),
and formulae with one of the parameters fixed were proved (3, 15, 17, 16, 18, 21,
22,23, 25, 26]. Recently, the entire problem of determining the domination num-
ber of grid graphs was finally settled [12]. As a result, the problem of determining

the independent domination number of grid graphs could also be settled [9].

The concept of total domination number was introduced quite early, but the
first study devoted to the total domination number of grid graphs did not appear
until 2002 [14], where among other things % (P,,00P,) was determined for m < 3
and a formula was claimed for m = 4 without proof. The seminal work was later
extended to m < 6 in [19, 24], which unfortunately contain some incorrect results.
Correct results for m < 8 are presented in [10). In 2005, all grid graphs that
have perfect total dominating sets were characterized [20]. The total domination
number of those grid graphs is easy to get from the constructions provided and
gives us

—1)(m? .

%(P.OR) = - ;%ms_rl"lz:hzm + ifm=0 (mod4)andn=1 (mod m+1)
o) ;1 , ifm=2 (mod4)andn=1 (mod m+1),

(n+1)(m? +2m)
4(m+1)

#(PaOOP,) = "#%}n”%'?ﬂ—% ifm=0 (mod4)andn=m-2 (mod m+1)
, =
e ‘#ﬁ%@-?—l, ifm=2 (mod4)andn=m—2 (mod m+1).

In Section 2 new upper bounds for %(P,0IF,) are obtained. In Section 3 an
algorithm that can be used to obtain formulae for % (P,0P,) with one of the pa-
rameters (say m) fixed and small is developed. Such formulae are later derived
and presented for all m < 28. These formulae further inspire a general conjecture
regarding the exact value of %(P,0PR,).

%(PaOF,) = ifm=0 (mod2)andn=m (mod m+1),

2 An Upper Bound

The set of vertices dominated by a vertex naturally leads to a formulation of the
problem of (total) domination of a grid graph in terms of covering an m x n rect-
angle by different shapes. In Figure 1 we show the shapes for domination and
perfect domination, and—since the middle square in the latter shape is outside the
shape and can only be covered in one way up to symmetry—the shape coming
from two adjacent vertices in a total dominating set. The first and the last shape
in Figure 1 are known as polyominoes [11]. Perfect domination and perfect total
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domination can then be viewed as tilings of an m x n rectangle (allowing shapes
to go outside the rectangle) with these polyominoes.

Figure 1: Shapes for geometric packings

One way of getting small (total) dominating sets is to consider a rectangle in
a tiling of the plane (or some infinite part of the plane). With the first shape in
Figure 1 there is, up to symmetry, only one tiling of the plane.

For the last shape in Figure 1, however, there are an infinite number of sym-
metry classes of tilings of the plane. One example of such a tiling is shown in
Figure 2 as a total dominating set, with vertices at the intersections of lines and
vertices in the dominating set drawn as dots. Diagonals with adjacent pairs of
vertices in the dominating set can be shifted to get further dominating sets.

é—T > ¢

Figure 2: Perfect total dominating set in the plane

Work aiming at improving the best known general upper bound on the total
domination number of a grid graph can now be carried out by considering different
infinite tilings with polyominos, and extracting different rectangles out of these.
The best known general lower and upper bound on the total domination number
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for grid graphs [14] are

3m”+i22(m+") —1 < %(P0OPR) < l.(mL‘)‘(n-'-zlJ —4. 1)

The upper bound in (1) will be improved in Theorem 1, the result of which is
divided into four different cases.

In figures throughout this paper, we denote the vertex in the lower left corner
vo0, with the first index corresponding to columns and the second to rows.

Theorem 1.

(| (n+2)(m*+2m)—4 o —
li—KT—;——""'z 'Z;i"l' -2"”4.’, ifm=2 (mod4)

W (PnOPy) < < [MJ, ifm=1 (mod4)andn#0 (mod 4)
orifm=3 (mod 4)
\l‘”’—“%’izl—lj, ifm=1 (mod4)andn=0 (mod 4).

Proof. We will give a proof by construction, considering the cases of odd and
even m separately.

m odd: Consider the perfect total dominating set in the plane {v;;: j =0
(mod 2),i+j=1o0r2 (mod 4)} (Figure 2) and extract the m x n grid induced by
v, 0<i<n—-1,0<j<m—1.

The vertices vp244; are not dominated in the extracted grid, and neither are
the vertices vn—1,2+4; when n = 0,3 (mod 4) nor the vertices vp_ 4; When n = 1,2
(mod 4). For each of these vertices, one additional vertex is required in the domi-
nating set. When m =3 (mod 4) this means we get (m + 1)(n+2)/4 dominating
vertices. For m = 1 (mod 4) we also get (m + 1)(n +2)/4 dominating vertices
when n = 2 (mod 4), when n = 3,0, or 1 (mod 4) we get (m+ 1)(n+1)/4+
m—1, (m+1)n/d+m—1+m+3, and (m+1)(n—1)/4+m—1+2(m+3),
respectively. Summing up the number of vertices in the dominating set in each
case gives the following upper bounds:

(mt)nt2) _ 1, ifm=1 (mod4)andn=0 (mod 4)
(B < d T2, ifm=1 (mod 4)andn=1,3 (mod 4)
= | ) ifm=1 (mod 4)andn=2 (mod 4)
orifm=3 (mod 4).

m even: We treat the cases m = 0 (mod 4) and m = 2 (mod 4) separately.
For m = 0 (mod 4), consider the following perfect total dominating set for the
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m x (m+2) grid [24]:

{v202¢,+4b+, 0<a<m/4 0<b<m/4 a lG{] 2}}U
{Vm+1-202044p+i 10 < a<m/4,0<b<m/4—a,i€ {1,2}} U
{v2a+4,,+,,2a 0Sa$m/4 0<b<m/ad—a,ic {2 3}}U
{vaasabsim—1-20:0<a<m/4,0<b<mf4—a,ic {2,3}}.

The instance for m = 8 is shown in Figure 3. By shifting and copying this
graph and the dominating set according to Vi j — Viyms1,j» We get a perfect total
dominating set for the m x (2m+ 3) grid, and this shifting can be repeated to give
perfect total dominating sets for the m x n grid when n =1 (mod m+ 1). A part
of such a graph is shown in Figure 4 for m = 8.

Agamweextractthemxngndmducedbyv,,,0<z<n—l 0<J<m—1
leading to a perfect total dominating set in the m x n grid of size ((n+ 1)(m? +
2m) —2m)/(4(m+1)) when n=1 (mod m+ 1) and a total dominating set of size
((n +2)(m?+2m) — 4m)/(4(m+ 1)) when n =2 (mod m+1). The remaining
m—1casesn=1+i (mod m+1),2 <i<m+1, can be handled by the following
argument. For even i (the case odd i is similar) and n = 1 (mod m+ 1), there is a
dominating set in the n’ x m = (n+i) x n grid of size at most

(' —i+1)(m?+2m)—2m Lim

4(m+1) 4
(n' +2)(m? +2m) —4m _i(m?+2m)+m? im _
4(m+1) 4(m+1) 4
(W +2)(m* +2m) —4m _ i(m*+m—m?>—2m)—m? _
4(m+1) 4(m+1)
(0’ +2)(m* +2m) —4m _ m(m+i)
4(m+1) 4(m+1)
(' +2)(m? +2m) —4m
4(m+1)

A similar calculation when i is odd and the inequality ((n + 2)(m? +2m) —
am)/(4(m+1)) > ((n+ 1)(m? + 2m) — 2m)/(4(m + 1)) implies that the former
expression in this inequality is an upper bound in the case m =0 (mod 4).

For m =2 (mod 4), consider the following perfect total dominating set for the
m x (m+2) grid:

{vaa2a4ap+i:0<a<(m—2)/4,0<b< (m—2)/4—a,ic {0,1}}U
{Vms1-2020+ab+i: 0 <a < (m—2)/4,0< b < (m—2)/4—a,i€ {0,1}}U
{Vaat+ab+i2a:0<a<(m—6)/4,0<b< (m—6)/4—a,i€ {3,4}}U
{vaatab+im—1-2a:0<a<(m—6)/4,0<b< (m—6)/4—a,ic {3,4}}.
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The instance for m = 8 is shown in Figure 5. We can repeat this structure in the
same way as for m = 0 (mod 4). Once more we extract the m x n grid induced by
vi,j,0<i<n—1,0< j<m—1 toobtain a perfect total dominating set in the m x n
grid of size ((n+ 1)(m? +2m) +2m+4)/(4(m+1)) when n =1 (mod m+ 1)
and a total dominating set of size ((n +2)(m? +2m) —4m)/(4(m+1)) when n =
2 (mod m+1). All other cases modulo m+ 1 can be handled as we saw for
m =0 (mod 4), to arrive at an overall upper bound of ((n+ 2)(m? +2m) —2m +
4)/(4(m+ 1)) dominating vertices when m =2 (mod 4).

To summarize, when m is even we have

¥(PuOP,) < {Lﬂ%m"—rw ifm=0 (mod 4)

(n+z)(r:i;i";))-2m+“, ifm=2 (mod 4).

Figure 3: Perfect total dominating set in the 8 x 10 grid.

T T

Figure 4: Perfect total dominating set in an infinite graph.
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Figure 5: Perfect total dominating set for the 10 x 12 grid.

3 Formulae for m < 28

3.1 Preliminaries

Here we present some theorems for total dominating sets that are analogous to
those presented for dominating sets in [1]; consult that paper for proofs.

Theorem 2. Every minimum total dominating set can be constructed by an ex-
haustive search where in each step any undominated vertex is picked, after which
all possible ways of dominating this vertex are considered in turn.

‘We now define an order of the vertices of an m x n grid graph with vertices v; j,
0<i<m-—1,0< j<n-—1, asdefined in the introduction. This notation gives
a lexicographic order of the vertices, where v; j is smaller than v, if i < k or if
i=kand j <. As we can pick the vertices to be dominated in any order, we have
chosen to always consider the lexicographically smallest undominated vertex.

We will next introduce some notations that are useful in the following theo-
rems and in the description of the algorithm. Consider a grid graph G = (V,E).

o For a vertex v € V, the set of vertices dominated by v is denoted by D(v).

e For a set V/ C V, the set of vertices dominated by (the vertices in) V' is
denoted by D(V'). In other words, D(V') = U,y D(v).

e Foraset S C V, the lexicographically smallest vertex in V \ S is denoted by
s(S).

We can now present the remaining theorems that will help us in developing
the algorithm.
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Theorem 3. Consider an m x n grid graph G = (V,E), andletVy CVandV, CV
such that V|| = |V;| and D(V;) C D(V»). To find a minimum total dominating set
in G, one may ignore Vi and only consider total dominating sets that extend V5.

The automorphism group Aut(G) of an m x n grid graph has order 4 if m #
n and order 8 if m = n. It turns out that in particular the subgroup of order 2
generated by the mapping of v; j to v; 54.1—; will be useful.

Theorem 4. Consider an m x n grid graph G = (V,E) and a mapping f :V =V
such that f(vi ;) = Viny1-j foralli,j. Let Vi CV and Vo CV such that f maps
the set Vy to V. To find a minimum total dominating set in G, one may ignore V)
and only consider total dominating sets that extend V5.

3.2 The Algorithm

The algorithm to be presented is an exhaustive breadth-first search (BFS) algo-
rithm with the features of dynamic programming [8, Chapter 15] and is similar
to that in [1]. The input parameter is the value m, for which we will construct a
formula for the total domination number in terms of 7.

On each level of the BFS, we have a collection . of sets of dominated vertices
(starting from the empty set), and for each S € % we consider all vertices that
dominate s(S). When we form a new collection % of sets of dominated vertices
from an old collection ¥, we use Theorem 3 whenever possible to prune the
search. Also a combination of Theorems 3 and 4 can be used for pruning.

By applying the algorithm described so far, we calculate % (P,0F,) for all n
in increasing order. We determine ¥ (P,,0P,) simply by checking at what level of
the BFS the first set § is created for which s(S) is larger than vj_y ;. Implemen-
tation details of this algorithm can be found in [1].

To give further details of the developed algorithm, the following theorems are
necessary. Given a fixed m, we first define

n; .= max{n: %(P,0P,) < i}.

Theorem S. Every set of dominated vertices on level i of the BFS is completely
defined by its intersection with the set {Vg:ni—1<k<n+3,0<I<m— 1}.

Proof. Let & be a collection of sets of dominated vertices and let vt be the
smallest undominated vertex for some fixed set in % on level i. By definition,
k<n;+1.

On each earlier level of the search, a vertex vy y with kK’ < n; + 1 has been
dominated by some vertex v. Such a vertex v does not dominate any vertices vy
with &/ > n; +4.

Assume that there is a set § € & for which there is an undominated vertex vy y
with &' < n; —2. Then on all earlier levels of the search, extension of a substructure
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has been carried out by dominating some vertex vi g with k” < n; — 2. It then
follows that necessarily S C {vy y: 0 <k <n;,0 <! <m~1}, and would have
been excluded by Theorem 3, a contradiction.

To sum up, the sets in & contain all vy with 0 < K¥<n-20<l/<m-1,
and no sets contain vertices vy with &' > n; +4. ]

When saving a collection of sets of vertices of an m x 5 subgraph, we relabel
the vertices to get the same labelling for all such subgraphs and make it possible to
compare sets of vertices on different levels. Such a collection on level i is denoted
by .%,. Obviously, we need to detect when n; > n;_; and the m x 5 subgraph to be
considered has to be changed.

Theorem 6. Forany k>0, if & = &}, then Sy = Fjyp and njpy —ni =nj —
nj.

Proof. The algorithm is deterministic for a given m, and n; and the collection &
contains sufficient information to continue from an intermediate stage. Moreover,
ni+1 — n; depends only on %

By induction this means that if % equals .}, then &, will equal & for
all k > 0, and since n;,; — n; depends only on % and k, we get that nj .y —n; =
Njrx—nj. 0

We now have a procedure for determining a formula for % (P,CP,) when m is
fixed.

Theorem 7. If % equals & and nj = ni+k, with k > 0, then %(P,0P,) =
L((Jj = i)n+xn mod k) /k) for n > nj, where xn mod « is to be determined by the spe-
cific values of Yi(PuOP,) for n; < n’ < n;.

Proof. For each n; < n < nj we choose X, modx such that the formula holds for
these values of n.

By Theorem 6 we know that nj.x —n; = njx —n; for any k > 0. In par-
ticular this means that ¥%(P,0P, ) = %{(PnOPFy) + (J — i) and %(Pu0IFn;41) =

% (PeOPyist) +(J — ).
Assume that % (P OP,) = | ((j — i) +Xn mod )/ k) holds for n; <n’ < n. Then

%(PmDPn) = %(PmDPn;+1+k)
=%(PmDPn,+l)
= 'Yt(PmDPn;+l)+(j—i)
= %(PmDPn—k)'*'(j_i)
= [(1_')(n_:)+xn moko +(j_i)

_ l(f—i)n:xn moko'
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The floor function makes it possible to choose k possible integer values for
each xp mod k. We aim at choosing values that minimize the number of cases in the
final formula for ¥ (B,00P,). After the formula is obtained, we look at the com-
puted values for % (P»0OP,), m < n < n; to see whether there will be any exceptions
amongst those.

In the implementation of the algorithm one has to take into account that we
do not a priori know the start and length of the repeating pattern. We therefore
repeatedly update the parameter of the collection % to which future comparisons
are made. We have used i = 10,20,40,...,10-2/,....

3.3 Results

In the following we list all formulae obtained by our algorithm. We will always
assume that m < n. The formulae can be presented as an expression that is rounded
down or up. We will use the former way, as is common.

#(AOPR) = HJ’ ifn=0 (mod 4)
[EFJ, otherwise,

wpopy={ B2, ifn=1 (mod3)
| 2], otherwise,

%(ROR)=n

{&$83), ifn=0,3 (modS5)

H(POR) =
o2, otherwise,

|&),  ifn=0 (mod4)

%(ROR) =
bnil ], otherwise,

WROR)=( (L8] ifn=1,23 (mod7)

| dmkad || otherwise,

2n+2, ifn=0 (mod 2) orn € {9,11,15,21}
2n+1, otherwise,

#(AHOR) =

[ 23], ifn=5 (mod7)
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| 22|,  ifn=0,7 (mod 9)andn ¢ {9,16}
(28],  ifn=2,34,5 (mod9)
l&Q’”J ' otherwise,

%(R0OFR) =

[l2£2],  ifn=2 (mod4)
[domplt ], otherwise,

%(ROR) =

|3462),  ifn=9 (mod I1)andn#20
|2458],  ifn=2,57 (mod 11)and ¢ {13,18)

% (PwDOF) =
[242),  ifn=0,1,3,6 (mod 11)orn=20
[39$2],  otherwise,
[&=£2],  ifne{12,22)

#PIOR)Y=1{ [&$2),  ifne(13,15,17,19,23,27,29,33,37,43,47,57}
|&2],  otherwise,
|28|,  ifn=0,11 (mod 13)andn ¢ {13,24,26,37)

42n474 s -

#PaOR) = (242,  ifn=2,4,7,9 (mod 13)and n ¢ {15,17,20}
[4548L],  ifn=3,56,8 (mod 13)orn e {13,24,26,37)
(442,  otherwise,
[Me£23) ifne {14,26)

%(PaOF) = |Mape), ifn=0 (mod4)orn=19

|Matis], otherwise,

(22612, ifn=13 (mod 15)and n ¢ (28,43}

| mp07 |, ifn=2,9,11 (mod 15) and a ¢ {17,24,26,32,41}

wPeap)={ LEHE),  ifn=0,56,7 (mod 15)andn g {15,21,22,30}
orn € (28,43}

1357, ifn=1,3,4,10 (mod 15) or n € {17,24,26,32,41}

[ otherwise,

B8], ifne{16,30)

18], ifne (21,23}

[B2), ifn=0 (mod 2)andn ¢ {16,30}
orn € {17,19,25,27,31,35,37,39,41,45,49,53,55}
or n € {59,63,67,73,77,81,91,95,109}

L], otherwise,

7%(PsOP) = ¢
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( [Z2£48), ifn=0,15 (mod 17)and n ¢ {17,32,34,49,51,66}
[, ifn=2,4,11,13 (mod 17)
and n ¢ (19,21,28,30,36,38,45, 53}
#(PieOPy) = |22, ifn=6,7,89 (mod 17)and n ¢ {23,24,25}
or n € {34,49,51,66)
[Z542], ifn=3,5,10,12 (mod 17)
or n € {19,21,28,30,36,38,45,53)

| 24482}, otherwise,

[t ), ifne(34)

#(PaOP) = ¢ [HE2422],  if ne{20,32,36,52)

| dag2 | ifn=2 (mod 4)andn ¢ {34} or n € {23,25,27,43}
L 48212 | otherwise,

| Hogid ), ifn=17 (mod 19) and n ¢ {36,55,74}
[ 2], ifn=12,13,15 (mod 19)
and n ¢ {21,32,34,40,51,53,59,72}
[2mplss ], ifn=0,6,9,11 (mod 19)
and n ¢ {19,25,28,30,38,44,49,57} or n € (55,74}
| mgiie | ifn=4,5,7,10 (mod 19) and n ¢ {23,26,29)
or n € {32,40,51,53,59,72}
[l ifn=1,3,8,14 (mod 19)
orn € {19,25,28,30,36,38,44,49, 57}

L |2, otherwise,

%(P1OP) =

&), ifne {38}

(=83 | ifn e {20,22,24,25,27,29,31,34,36,40,42,47,49,56)

or n € {58,60,78}
%(PoOR) = i) jfne(21,23,33,35,39,43,45,51,53,57,61,65,67,69}
or n € {71,75,79,83,87,89,93,97,101, 105, 111,115, 119}
or n € (123,133,137, 141,155,159,177}
L[ ], otherwise,
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1{(PooOFn) = §

l IIM*ZZSJ ,
(R g P

(o B
e
(o]
S 2l

lZlnt}S J
r v’

l!!ntll J
ry 1

#POR) = |2232],

L (R,

( Lmgm),
ll)!n;§227j s

l 132n§2‘u J R

% (P2 OP,) = ¢ |Lzggan ),

H{(POF) =

ll32n§lsﬂj'
(1],
. LIZn 4J,
)

L),
L),

[ (),

ifn=0,19 (mod 21) and n ¢ {21,40,42,61,63,82,84,103}
ifn=2,4,15,17 (mod 21)

and n ¢ {23,25,36,38,44,46,57,59,65,67,78,86}
ifn=6,8,11,13 (mod 21) and n ¢ {27,29,32,34,48,50,53}
or n€ {63,82,84,103}

ifn=17,9,10,12 (mod 21) and n ¢ {28,31}

or n € {38,44,46,57,59,65,67,78,86}

ifn=3,5,14,16 (mod 21)

or n € {21,27,29,32,34,40,42,48,50,53,61}

otherwise,

if n € {40,44,64)

if n € {22,26,38,42,46,62,66,86}
ifn=0 (mod 4) and n ¢ (40,44,64}
orne (27,29,31.33,35,51,53.55,75}

otherwise,

ifn=21 (mod 23)andn ¢ (44,67,90,113}
ifn=2,17,19 (mod 23)

and n ¢ (25,40,42,48,63,65,71,86,88,94,111}
ifn=0,6,13,15 (mod 23)

andn ¢ {23,29,36,38,46,52,59,61,69.75,84,92}
orn€ {90,113}

ifn=4,9,10,11 (mod 23) and n ¢ {27,32,33,34,50,56, 57}
orn € {63,71,86,88,94,111})

ifn=5,7,8,14 (mod 23)andn ¢ {31}

or n € {23,36,44,46,52,59,61,67,69,75,84,92}
ifn=1,3,12,18 (mod 23)

or n € {25,27,32,33,34,40,42,48, 50, 56,57, 65}

otherwise,

if 1 € {24,26,28,42,44,46,48, 50,68,70,72,94)

if n € {29,31,33,35,37,39,55,57,59,61,81,83)

ifn=0 (mod 2) and n ¢ {24,26,28,42,44,46,48,50,68,70,72,94)
or n € (25,27,41,43,47,51,53,63,65,69,73,77,79,85,87,91,95}
orn € (99,103,105,107, 109,113,117, 121,125,129, 131,135,139}
orn € {143,147,151,157, 161,165, 169,173, 183,187, 191,195,209}
or n € {213,217,235,239,261)

otherwise,
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[ |1%6928|  ifn=0,23 (mod 25)

and n ¢ {25,48,50,73,75,98,100,123,125, 148}
[L9423 ], ifn=2,4,19,21 (mod 25)

and n ¢ {27,29,44,46,52,54,69,71,77,79,94}

orn € {96,102,104,119,127}
| 1655268 |, ifn=6,8,15,17 (mod 25)

and n ¢ (31,33,40,42,56,58,65,67,81,83,90}

or n € (100,123,125, 148}
[165523 |, ifn=10,11,12,13 (mod 25)

and n ¢ {35,36,37,38,60,61,62}

orn € {71,77,79,94,96,102,104,119,127}
[{os28]  ifn=7,9,14,16 (mod 25)

or n € {25,42,48,50,56,58,65,67,73,75,81,83,90,98}
(g1 | ifn=3,5,18,20 (mod 25)

or n € {27,29,35,36,37,38,44,46,52,54,60,61,62,69}

\ (%9318 otherwise,

%{Pu0F,) =

[ (298], ifne{76)
| 22832, if n e {46,50,54,74,78,102}
#(Ps0OPy) = [ 2833, if n € {28,32,44,48,52,56,63,72,80, 100, 104,128}
|23, ifn=2 (mod 4) and n ¢ {46,50,54,74,78,102}
orn € {31,33,35,37,39,41,43,59,61,65,67,87,89,91,115}
| | Zm2 |, otherwise,
( |125438 ) ifn=25 (mod 27)andn ¢ {52,79,106,133,160}
[ 1824356 | ifn=2,21,23 (mod 27)
and n ¢ {29,48,50,56,75,77,83,102,104, 110,129}
ora € {131,137,158}
| 1828322 ) ifn=0,6,17,19 (mod 27) and n ¢ {27, 33,44,46, 54,60}
and n ¢ {71,73,81,87,98,100, 108, 114,127,135}
orn € {133,160}
(18392 |  ifn=4,10,13,15 (mod 27)
%(PsOF) = and n ¢ {31,37,40,42,58,64,67,69,85,91,96,112}

orn € {102,110,129,131,137,158}
[dEgH2rs |, ifn=8,9,11,14 (mod 27) and n ¢ {35,38,41,62,65,68)

orn € {27,52,71,79,87,98,100, 106, 108, 114,127,135}
[ L2428 |, ifn=5,7,12,18 (mod 27) and n ¢ {39}

or n € {29,40,48,56,58,64,67,69,75,77,83,85,91,96, 104, 112}
|14 | ifn=1,3,16,22 (mod 27)

or n € {33,35,38,41,44,46, 54, 60,62,65,68,73,81 }

[L82grise | otherwise,
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[ 12,

L),

(2]

% {(P70OPR) = [I‘n ) J,

lgl%%‘}'l J s
l no:-%wa J s

lzl(’u%&] R
LZIOIE%“OJ ,
H(P0OP) =

lll‘h%\llj s

- el B

[2101! \J'

g,

By the current results—corroborating those in [10], which considers the cases
m < 8—there are errors in [19, 24]. Among other things, the claim in [19] that
%#(PsOP,) = | 342 ] when n < 6 is incorrect and so is the claim in [24] that

#(PORy) = 24.

if n € {50.52,54,56,58,80,82,84,110)

if n € {67,69}

if n € {28,30,32,33,34,35,36,37,39,41,43,45,46.47,48,60.62}
or n € {63.65,71,7376,78,86,88,93,95,97,99, 106, 108, 112, 114}
or n € {123,125,136,138, 140, 166}

it n € (29,31,49,51,55,59,61,75,77,81,85,89,91,101,103,107}
orne {111,115,119,121,127,129,133,137, 141,145,149, 151
or n € (153,155,159, 163,167,171,175,179, 181,185, 189, 193}
or n € (197,201,205,211,215,219,223,227,231,241,245, 249}
or n € (253,257,271,275,279,283, 301,305,309, 331,335,361}

otherwise,

ifn=0,27 (mod 29)

and n ¢ {29,56,58,85,87,114,116,143,145,172,174,201}
ifn=12,4,23,25 (mod 29) and n ¢ {31,33,52,54,60,62}
and n ¢ (81,83,89,91,110,112,118,120,139, 141,147}

and n ¢ {149,168,176}

ifn=6,8,19,21 (mod 29) and n ¢ {35,37,48,50,64,66}
and n ¢ {77,79,93,95,106,108,122,124,135,151}

orn € {145,172,174,201},

ifn=10,12,15,17 (mod 29)

and n ¢ {39.41.44,46,68,70,73,75,97,99, 102}

orn € {112.120.139,141, 147,149,168, 176}
ifn=11.13,14.16 (mod 29) and n ¢ {40,42,43,69,72,74}
or n € {29,56,79.87,93,95,106,108, 114,116,122,124, 135}
orn € {143,151}

ifn=79.18,20 (mod 29) or n € {31,46,54,60,62,68,70}
or n € {73.75,81,83,89,91,97,99,102,110,118}
ifn=3,5,22,24 (mod 29)

or n € {35,37,40,42,43,48,50,58,64,66,69,72,74,77,85}

otherwise.

34 A Conjecture

The formulae listed earlier can be combined to obtain the following conjecture for

a general formula.
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Conjecture 8. Lert N =n mod (m+1). Ifm=0 (mod 4) andn > (m* —m—8) /4,
then

(POIP,) = '.MWJ +27%],  ifn=0 (mod2)
e [%@J %82,  ifn=1 (mod2).

Ifm=1(mod 4) and n > (m* — 4m — 13) /4, then

[(MH :H +5J , ifm=1 (mod8)andn=2 (mod 4)
% (Pa0P) = orifm=35 (mod 8)andn=0 (mod 4)

I_M%'-"'—IH—'J , otherwise.

Ifm=2(mod 4) and n > (m* —m — 10) /4, then

[(n+1)('"4ﬂ(‘:)+"‘]‘;2(""2)J +max(2=4=6 0), ifn=0 (mod 4)

%(PaDIFy) = '_%MJ + %], ifn=1 (mod 2)

[(n+l)(m+2)m+2(m—2)J +| 252, ifn=2 (mod 4).

4(m+1) —F

Ifm=3(mod 4) and n > (m* —17)/2, then
|_(m+l ZH +2J ) ifm=5 (mod8)andn=0 (mod 2)

%(PnOP,) = { l(m+11(g+1)-2J ,

otherwise.
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