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Abstract

The k-rainbow index rz,(G) of a connected graph G was introduced by
Chartrand, Okamoto and Zhang in 2010. Let G be a nontrivial connected
graph with an edge-coloring ¢ : E(G) — {1,2,...,q}, ¢ € N, where
adjacent edges may be colored the same. A tree T in G is called a rainbow
tree if no two edges of T receive the same color. For a graph G = (V, E)
and a set S C V of at least two vertices, an S-Steiner tree or a Steiner tree
connecting S (or simply, an S-tree) is a such subgraph T = (V', E') of G
that is a tree with S C V’. For § C V(G) and |S| > 2, an S-Steiner tree
T is said to be a rainbow S-tree if no two edges of T receive the same color.
The minimum number of colors that are needed in an edge-coloring of G
such that there is a rainbow S-tree for every k-set S of V(G) is called the
k-rainbow index of G, denoted by rzx(G). In this paper, we consider when
|S] = 3. An upper bound of complete multipartite graphs is obtained. By
this upper bound, for a connected graph G with diam(G) > 3, we give an
upper bound of its complementary graph.
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1 Introduction

The rainbow connections of a graph which are applied to measure the safety
of a network are introduced by Chartrand, Johns, McKeon and Zhang [5]. Readers
can see [5, 6, 7] for details. Consider an edge-coloring (not necessarily proper) of
a graph G = (V, E). We say that a path of G is rainbow, if no two edges on the
path have the same color. An edge-colored graph G is rainbow connected if every
two vertices are connected by a rainbow path. The minimum number of colors
required to rainbow color a graph G is called the rainbow connection number,
denoted by r¢(G). For more results on the rainbow connection, we refer to the
survey paper [13] of Li, Shi and Sun and a new book [14] of Li and Sun. All
graphs considered in this paper are finite, undirected and simple. We follow the
notation and terminology of Bondy and Murty [1], unless otherwise stated.

Foragraph G = (V, E) and aset S C V of at least two vertices, an S-Steiner
tree or a Steiner tree connecting S (or simply, an S-tree) is a such subgraph
T = (V',E’) of G that is a tree with S C V'. A tree T in G is a rainbow tree if
no two edges of T' are colored the same. For S C V(G), a rainbow S-Steiner tree
(or simply, rainbow S-tree) is a rainbow tree connecting .S. For a fixed integer &
with 2 < k < n, the edge-coloring c of G is called a k-rainbow coloring if for
every k-subset S of V(G) there exists a rainbow S-tree. In this case, G is called
rainbow k-tree-connected. The minimum number of colors that are needed ina
k-rainbow coloring of G is called the k-rainbow index of G, denoted by rz(G).
When k = 2, rz3(G) is the rainbow connection number r¢(G) of G. For more
details on k-rainbow index, we refer to [2, 3, 8, 11, 12, 17, 18].

Chartrand, Okamoto and Zhang [7] obtained the following result.

Lemma 1 [7] (1) For every integer n > 6, rz3(K,) = 3.
(2) For3<n <5,rz3(K,) =2

For every connected graph G of order n, it is easy to see that
r72(G) < rx3(G) < --- < rz,(G).

Chakraborty et showed that computing the rainbow connection number of a
graph is NP-hard. So it is also NP-hard to compute k-rainbow index of graph. If
G' is a connected spanning subgraph of G, then 7z (G) < rx;(G’). In an edge-
colored graph G, we use c(e) denotes the color of an edge e and for a subgraph H
of G, c(H) denotes the set of colors of edges in H. For a subset X, of V(G), we
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use E[X] to denote edge set of the induced subgraph G[X|. The distance between
two vertices © and v in an connected graph G, denoted by dg (u, v), which is the
shortest path between them in G. The eccentricity of a vertex v in G is defined as
€CCe = MAXrecV(G) dc(‘u,.’L’).

Let k be a positive integer. A subset D C V(G) is a k-dominating set of the
graph G if [Ng(v) N D| > k for every v € V\D. A subset D is a connected k-
dominating set if it is a k-dominating set and the graph induced by D is connected.

Chandran et al. [4] used a strengthened connected dominating set (connected
2-way dominating set) to prove rc(G) < re(G[D]) + 3.

Recently, Li et al. [11] obtained some result.

Lemma 2 [/1] Let G be a 2-connected graph of ordern (n > 4). Thenrz3(G) <
n — 2, with equality if and only if

e G=Cyp;

e G is a spanning subgraph of 3-sun, where a 3-sun is a graph which is
defined from Cg = viva . .. vev1 by adding three edges vav4, vovg and v4vs;

e G is a spanning subgraph of Ks\e or G is a spanning subgraph of K 4.

In [15, 16], Liu and Hu obtained the following theorem.

Lemma 3 [15] Let G be a connected graph with minimal degree § > 3. If D is
a connected 2-dominating set of G, then rz3(G) < rz3(G[D]) + 4.

Lemma 4 [16] For any integer s and t with 3 < s < t, rz3(K,,) < min{6, s +
t — 3}. Moreover the bound is tight.

Lemma 5 [16] For any integert 2> 1,

ift=1,2

ift=3,4;

if5<t<8; (L.1)
, f9<t<20
f(—-1)(-2)+1<t<¢L—1)andl>6.

'I”fL‘a(Kz.t)

I
S oot A WO

\ 3

In Section 2, we obtain an upper bound of complete multipartite graphs by
the 2-connected dominating set result, which is obtained by Liu and Hu [15].
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Theorem 1 Let Ky, ,,....n, be a complete multipartite graphs. If k > 4, then
r23(Kn; ny,..mi) Smin{6,n; +ng + ... + ng — 2}.
Ifk = 3, then rz3(Kpn, nyns) = 2forn; =ny =nz =1and

rm], n =nzg=1,ny > 2;

min{6,n; + ny + nz — 2}, n; > 1,n3,n3 > 2.

rZ3 (Kru ,ﬂg,ns) < {
(1.2)

By this upper bound, for a connected graph G with diam(G) > 3, we give
an upper bound of its complementary graph in Section 3.

Before the state of the next theorem, we give some symbols. For the graph
G, we choose a vertex = with eccg(z) = diam(G) = d. Let Ni(z) = {v :
dg(z,v) = i} where 0 < i < d. So N2(z) = {zo}, Ni(z) = Ne(zo)
as usual. Then UocicaN&(x)is a vertex partition of V(G) with [N§| = n..
Let A = U; 4, euenNé,B = U;is oddNé,'- So, ifd = 2k (k > 2), then A =
Uogi<d is even NG, B = Uogicd—1is odaNgs if d = 2k 4+ 1 (k > 2), then
A = Uogi<d—1is even NG B = Ugcicdis odaN&- Then by the definition of
complement graphs, we know that G[A] (G[B]) contains a spanning complete ;-
partite subgraph (complete k»-partite subgraph) where ky = [4£L](k, = [£]);
see Figure 1.

Theorem 2 Let G be a connected graph. Then

(1) If diam(G) > 7, then rz3(G) < 7;

(2) I diam(G) = 6, then rz3(G) < max{7, ([21t8etna] 4 1},

(3} If diam(G) = 5, thenrz3(G) < max{7, ([2atnpdna] g ([Lingina)y
1},

(4) If diam(G) = 4, then rz3(G) < max{l+ T,ng + 7,0 + [Retnatna] 4
1,ng + [Zetnatnd] 41},

(5) If diam(G) = 3, then rz3(G) < max{€+ ng + 1,nz + n3 + 1}, where
¢ is the same as in Lemma 5 .

2 Proof of Theorem 1

In this section, we prove Theorem 1 by the 2-connected dominating set.
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Figure 1: Graphs for the proof of Theorem 2.

Proof of Theorem 1: Set G = K, n,,....n- Suppose k > 4. Since K, ny...n,
with k > 4 is a 2-connected graph, it follows from Lemma2 that

Ti‘S(Km.nz,...nk) <ny+ng+...+ng—2.

Thus, to complete our proof, it suffices to show rz3(Ky, ny,.ny) < 6,k > 4.
Let Uy, Uy ..., Uy be all the partite sets of Ky, n,,..n,. Notethat K111 = Ka.
From Lemma 1, rz3(Ky) = 2. Now we assume that & > 5, or & = 4 and
there exist some n; (1 < i < 4) such that n; > 2. It is clearly that §(G) > 3.
Pick up u; € Uy,ug € Up,uz € Us,uqg € Uy such that {uy,ug,us,ug} is a
connected 2-dominating set. Note that rz3(G[D]) = rz3(K4). By lemma 3,
TT3(Kn, ng,..ne) < rz3(G[D]) + 4 =6.

Suppose k£ = 3. If ny,ng,ng = 1, then it follows from Lemma 1 that
ra3(K3) = 2. If n; > 1,n3,n3 > 2, then we can find a connected 2-dominating
set. Let Uy, Uy, Us be the partite sets of Kp, n,.n, and [Us| > 1, [Us| > 2, |Us| >
2. Suppose ug,ub € Usp and uz,uy € Us. Let D = {ug,up, us,u3}. Then D
is a connected 2-dominating set. Since rx3(G[D]) = rx3(Cs) = 2, we have
re3(G) < rxs(G[D]) + 4 = 6. It follows from Lemma 2 that rz3(G) <
ny + ng + n3 — 2. So ra3(G) < min{6,n; + ny + na — 2} as desired. We
now assume n; = ng = 1,n9 > 2.

At first, we consider the case ng is even. Set ng = 2£. Let Uy, Uy, Us be the
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three parts of complete multipartite graph G such that [U;| = 1, [Uz| = 2¢ and
|U3| = 1. Set U1 = {u}, U2 = {u;,ug,...ug,vl,vz,...vg} and U3 = {v} To
show that rz3(G) < | ("—”""2’*—"’2] = ¢ + 1, we provide a rainbow (£ + 1)-edge-
coloring ¢: E(G) = (1,2,...,£+ 1) of G defined by

c(uu;) =, 1<i<y;
c(uy;) =14, 1<i<y;
clvug) =(i+1)=mod (£), 1<i<y
c(vv)) =(i+1)=mod (£), 1<i<¥;

see Figure 2.

Now, we prove that it is a 3-rainbow coloring. Set X = {v;,v2,...,v,} and
Y = {uy,us,...,u¢}. Clearly, V(G) = {u,v}U X UY.

Suppose |S N {u,v}| = 2. Then |SN X| =1 or |SNY| = 1. Without loss
of generality, let |SN X| = 1. Then § = {u,v,v;} (1 < i < £). Obviously, the
tree induced by the edges in {uv;, v;v} (1 < ¢ < £) is arainbow S-tree.

Figure 2: Graphs for the proof of Theorem 2.

Suppose |S N {u,v}| = 1. Without loss of generality, let v € S. Then
|SNX|=2o0r|SNY|=20r|SNX|=1and |SNY|=1.If|SNX| = 2, then
the tree induced by the edges in {uv;,uv;} (1 < 4,5 < £and i # j) is a rainbow
S-tree. If |SN X| = 1and |SNY| = 1, then the tree induced by the edges in
{uv, wu;} for i # j or {vsu, uv, vu,} for i = j is a rainbow S-tree.

Suppose |S N {u,v}| =0. Then |[SNX|=3o0r|[SNY|=30r|SNX| =2
ad |[SNY|=1or|SNX|=1and |SNY]| = 2. If|SN X| = 3, then the
tree induced by edges in {uwv;, uv;,uvp} (1 < 4,7, h < O)is a rainbow S-tree.
If |SN X| = 2, then |SNY| = 1 and hence the tree induced by the edges in
{uv;, uvj, uup} or {vv;, vv;, wv, vup} (for b = i, or h = j) is a rainbow S-tree.

Next, we consider the case ny is odd. Set no = 2¢ — 1. We delete the vertex
ue in G. Then one can also check that the above edge-coloring c is a 3-rainbow
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coloring, as desired. 1

3 Proof of Theorem 2

Proof of Theorem 2: If diam(G) < 2, then G is disconnected. Since we only
consider the connected graphs for rainbow index. So we assume that diam(G) >
3.

(1) Suppose diam(G) > 7. Then k; > 4 and k2 > 4. From Theorem 1,
we have rz3(G[A]) < 6, and rz3(G[B]) < 6. We now give G an edge-coloring
as follow.At first we first give the subgraph G [4] a rainbow edge-coloring using
six colors, and then we give the subgraph G[B] a rainbow coloring using the
same colors as that of the subgraph G[A]; Next we give a fresh color to all edges
between the subgraph G|A] and the subgraph G[B). Let us now prove the edge-
coloring c is a 3-rainbow coloring. It is sufficient to show that there is a rainbow
S-tree for any |S| = 3and S C V(G). Say S = {z,y,2}. If § C A, then there
is a rainbow S-tree since rz3(G(A)) < 6; If S C B, then there is also a rainbow
S-tree since rz3(G(B)) < 6. Suppose |SN A| = 2 or |S N B| = 2. Without loss
of generality, let |SN A| = 2. Assume z,y € A,andz € B. Forany z € B,
we can find a vertex zg in A which is adjacent to z. Since we can find a rainbow
tree connecting {z,y, 2o}, say T, it follows that the tree induced by the edges in
229 U E(T") is a rainbow tree connecting {z,y, z}.

(2) Suppose that diam(G) = 6. Firstly, we consider the case np = nz =
n4 = ng = 1. Clearly, there is a spanning subgraph K4 in G[4]. By Lemma
1, we have rz3(G[A]) < 2. If n; = n3g = ng = 1, then there is a spanning
subgraph K3 in G[B). By Lemma 1, we have rz3(G[B])) < 2. By the method
shown in Case 1, one can prove that 723(G) < 3. If there exists only one element
in {ny,ns, ns}, say n;, such that n; > 2 (i € {1,3,5}). From Theorem 1, we
have rz3(G[B]) < [21t8a+ne]  We now give G an edge-coloring as follow:
We first give the subgraph G[A] a rainbow edge-coloring using two colors, and
then we give the subgraph G[B] a rainbow coloring using [21423+22] colors.
Since [2Enains] > 2, it follows that ¢(G(A)) C ¢(G(B)). Next, we give a
fresh color to all edges between the subgraph G[A] and the subgraph G[B]. So
we have rz3(G) < [2adfedns] 4 1, as desired. Suppose that there exists two
elements in {n1,n3,ns}, say n;,n;, such thatn; > 2,n; > 2 (i € {1,3,5}).
Then §(G) > 3 and we can find a connected 2-dominating set of G. By Lemma
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3, we have rz3(G[B)) < 6. One can prove that rz3(G) < 7.

Next, we consider the case that there exists some element in {ng, n, n4, ng},
say n;, such that n; > 2 (i € {0,2,4,6}). By Theorem 1, we have rz3(G[A]) <
6. If n; = n3 = ns = 1, then r23(G|[B])) < 2 and hence 7z3(G) < 7. If there
exists a element in {n;, n3, ns}, say n;, such that such that n; > 2 (i € {1, 3,5}).
Then rz3(G[B]) < [214124%5] and hence re3(G) < max{7, [2utnatne] 41},
Suppose that there exists two elements in {n1, n3, ns}, say n;, n;, such that n; >
2,n; > 2 (i,5 € {1,3,5}). Then rz3((G[B))) < 6 and hence rz3(G) < 7.

Above all, 7z3(G) < max{7, ([21t8408] 41},

(3) Suppose that diam(G) = 5. Similarly to the proof of (2), the result holds.

(4) Suppose that diani(G) = 4. Firstly, we consider the case ng = ny =
ng4 = 1. Observe that there is a spanning subgraph K3 in G[A]. By Lemma 1, we
have rz3(G|A])) < 2.

If ny > ng > 3, then it follows by Lemma 4 that rC3(C'[B]) < 6. We now
give G an edge-coloring as follow: We first give the subgraph G|[A] a rainbow
edge-coloring using two colors, then we give the subgraph G[B] a rainbow color-
ing using another six colors, and last we give a fresh color to all edges between
the subgraph G[A] and the subgraph G[B). To show re3(G) < 8, it suffices to
prove that there is a rainbow S-tree forany S C V(G) and |S| = 3. If S C A,
then there is a rainbow S-tree since rz3(G(A)) < 2. If S C B, then there is also
arainbow S-tree since rz3(G(B)) < 6. Suppose |SNA| = 2. Then |[SNB| =1.
Letz,y € Aand z € B. Forany z € G[B), we can find a vertex 2o in A such that
z29 € E(G). Since we can find a rainbow tree connecting {z,y,20}, say T, it
follows that the tree induced by the edges in zzoUE(T") is a rainbow tree connect-
ing {z,y,z}. Suppose |[SNB| =2. Then |SN Al =1.Letz,y € Band z € A.
If z € Ng(z), then we can find a vertex zy € N3 (z) such that zzy € E(G). Note
that there is a rainbow tree connecting {z, v, 20}, say T". The the tree induced by
the edges in zz9 U E(T”) is a rainbow tree connecting {z,y, z}. If z € N&(z),
then we can find a vertex zo € N}(z) such that zzp € E(G). The the tree
induced by the edges in zzg U E(T") is a rainbow tree connecting {z, vy, z}. If
z € N&(z), then z is adjacent to the vertex in N&(z), say zo. Then there exists
a vertex xf, € N3(z) such that there is a rainbow S-tree connecting {z,y, =)},
say T". Furthermore, the tree induced by the edges in {2z, zozh} U E(T") is a
rainbow S-tree.

If n; = 2and ng > 1, then it follows by Lemma 4 that rc3(G[B]) < ¢, where
(€—1)(¢—2)+1 < n3 < £(€—1)and £ > 6. From the above discussion, we
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now give the subgraph G|A] a rainbow edge-coloring using two colors, then we
give the subgraph G[B] a rainbow coloring using the other ¢ colors, and last we
give a fresh color to all edges between the subgraph G| 4] and the subgraph G[B.
One can prove that there is a rainbow S-tree for any S C V(G) and |S] = 3, and
rz3(G) < €+ 3.

If ny = 1,n3 > 2, then rz3(G[B]) = n3. The same as above, we have
rz3(G) < n3 + 3. We conclude that 7z3(G) < max{nz + 3,£ + 3}.

Secondly, there exists only one element in {n2,n4}, say n;, such that n; >
2 (i € {2,4}). By Theorem 1, we have rz3(G[A]) < [2ef82484] Ifn; > ng >
3, then it follows by Lemma 4 that rc3(G[B]) < 6. Sorz3(G) < 7+ [Retnatna],
If n; = 2 and n3 > 1, then it follows by Lemma 4 that rc3(G[B]) < ¢, where
(€-1)(¢-2)+1<nz < f(€—1)and £ > 6. Sorz3(G) < ¢+ [Petnadna] ],
If ny = 1,n3 > 2, then re3(G[B]) = n3. So rz3(G) < ng + [Redmadna] 41,
We conclude that 7z3(G) < max{ng + [2eti24na] 4 ] ¢ 4 [Betnadna] 4 1}

In the end, we consider the case that ng = 1 and no > ng4 = 2. By Theorem
1, we have rz3(G[A]) < 6, and hence rz3(G) < max{€ + 7,n3 + 7}.

From all of the above argument, we know that 7z3(G) < max{¢ + 7,n3 +
7,ng + [Betmatna] 4 1, ¢4 [Rednadna] 41},

(5) Suppose that diam(G) = 3. Since ng = 1, it follows that rz3(G[A)]) =
ng. If ny > na > 3, then rz3(G[B]) < 6 and hence rz3(G) < np+7.Ifny = 2
and ng > 1, then rz3(G[B]) < £ where (£—1)(£—2)+1 < n3 < £(£—1) (£ > 6),
and hence r23(G) < ny + £+ 1. If ny = 1,n3 > 2, then rz3(G[B]) = ns3
and hence 723(G) < ny + n3 + 1. From the above argument, we know that
rz3(G) < max{€ +ny + 1,ny +n3 + 1}. [
Acknowledgement. The authors are very grateful to the referees’ valuable
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this paper.
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