The Set Chromatic Number of a Digraph

L. J. Langley! and S. K. Merz, University of the Pacific

Abstract. Given a (not necessarily proper) coloring of a digraph
¢ : V(D) = N, let OC(v) denote the set of colors assigned to the out-
neighbors of v. Similarly, let JC(v) denote the set of colors assigned to the
in-neighbors of v. Then c is a set coloring of D provided (u,v) € A(D) im-
plies OC(u) # OC(v). Analogous to the set chromatic number of a graph
given by Chartrand, et al. [3], we define x;(D) as the minimum number of
colors required to produce a set coloring of D. We find bounds for x,(D)
where D is a digraph and where D is a tournament. In addition we consider
a second set coloring, where (u,v) € A(D) implies OC(u) # IC(v).
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There are many variations of graph coloring and, to a lesser extent,
digraph coloring. The idea of distinguishing vertices of a graph or distin-
guishing adjacent pairs of vertices of a graph is also well studied. The classic
proper vertex coloring of a graph, in which neighboring vertices must have
distinct colors, is an example of a coloring that distinguishes adjacent pairs
of vertices. Another example of a vertex distinguishing coloring arises from
certain proper edge colorings of the graph (see Balister et al. [1}).

In (3] Chartrand, Okamoto, Rasmussen, and Zhang introduce another
way in which adjacent vertices may be distinguished by associated sets of
colors. In a graph G, assign colors to the vertices, ¢ : V(G) = N, where
adjacent vertices might have the same color. Given v € V(G), the neighbor-
hood color set, denoted by NC(v) is the set of colors of the neighbors of v.
Then c is set neighbor-distinguishing provided for each edge {u,v} € E(G),
NC(u) # NC(v). For brevity, a set neighbor-distinguishing coloring is also
known as a set coloring. Given a graph G, the minimum number of col-
ors required to produce a set coloring is the set chromatic number of G,
denoted by xs(G). As the authors of [3] point out, there are cases where
we can distinguish adjacent pairs of vertices using fewer colors with a set
coloring as compared to a proper coloring.

In this paper, we consider a similarly defined chromatic parameter for
digraphs. The idea of taking a parameter defined for graphs and considering
it in a directed setting is certainly nothing new (e.g., coloring, domination,
connectedness). The classic way to properly color the vertices of a digraph
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Figure 1: Each vertex of the digraph is assigned a color (labeled within
each vertex) so that if two vertices are joined by an arc, the colors assigned
to their out-neighbors (labeled outside each vertex) are different.

mirrors the proper coloring of a graph: assign each vertex a color so that
pairs connected by an arc have different colors. For example, consider [4],
wherein a connection is made between this type of coloring and an arc
coloring of the digraph. In this version of coloring vertices of a digraph, the
direction of the arcs has no effect on the coloring. Over time, alternative
vertex colorings for digraphs have been proposed. One such vertex coloring
of a digraph, wherein the color classes are acyclic, leads to nice results
(see Bokal et al. (2] for example). Applying the ideas in {3] to digraphs
is appealing because the colors used by out-neighbors will be different (see
Figure 1). This could be meaningful when the digraph is used to model
relationships (e.g., predator and prey).

Before proceeding with formal definitions, we note that graphs and di-
graphs are assumed to be free of multi-edges and loops. Given a vertex v
in digraph D, the out-neighborhood of v, O(v), and the in-neighborhood of
v, I(v), are defined as

O(v) = {u: (v,u) € A(D)} and I(v) = {u: (u,v) € A(D)}.

Given a (not necessarily proper) coloring of a digraph, ¢ : V(D) — N,
let OC(v) denote the out color set, the set of colors assigned to the out-
neighbors of v and let IC(v) denote the in color set the set of colors assigned
to the in-neighbors of v. Note that if O(v) = @, then OC(v) = 0 (see
Figure 2). Similarly, if I(v) is empty, then so is IC(v).

We say that a coloring c is a set coloring if for each arc (u,v) € A(D),
OC(u) # OC(v). Observe that any results derived using this definition are
also true when we replace out color sets with in color sets since we change
out-neighbors to in-neighbors by reversing all arcs. The minimum number
of colors required to produce a set coloring for a digraph D will be denoted

by xs(D).
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Figure 2: The coloring on the left is a set coloring, but not a set coloring
of Type 2. The coloring on the right is a set coloring of Type 2, but not a
set coloring. For this digraph, x,(D) = xs(D) = 2.

We say that a coloring ¢ is a set coloring of Type 2 if for each arc
(u,v) € A(D), OC(u) # IC(v). The minimum number of colors required
to produce a set coloring of Type 2 for digraph D will be denoted by
xs'(D). Unlike the set coloring case, the set chromatic number of Type 2
is unchanged when the arcs of the digraph are reversed.

The underlying graph of a digraph D, denoted by UG(D), is the graph
with the same vertex set as D and edge set so {z,y} is an edge if and only
if (z,y) or (y,z) is an arc in D. Notice, as illustrated by the example in
Figure 2, that by using one of these set colorings it may be possible to
distinguish vertices connected by an arc using fewer colors that would be
needed for a proper coloring of the underlying graph.

1 Preliminary Observations

Observe that for symmetric digraphs, xs(D) = xs(D) = xs(UG(D)).
Chartrand, et al. [3] observed that x,(G) = 1 if and only if G has no
edges. The same can be said for set colorings of Type 2.

Observation 1.1. If D is a digraph, then x(D) =1 if and only if D has
no arcs.

While the same cannot be said for set colorings (e.g., consider an ori-
ented K3), few digraphs have x,(D) = 1.

Observation 1.2. If D is a digraph, then x,(D) = 1 if and only if for
every arc (u,v) € A(D), v has empty outset.

We begin with the following bound known for undirected graphs.

Proposition 1.3. (Okemoto, Rasmussen, and Zhang, [5].) For every
graph, xs(G) < x(G).



If we use the chromatic number of the underlying graph of the digraph,
we conclude the analogous bound for digraphs.

Proposition 1.4. For any digraph D, x,(D) < x(UG(D)).

Proof. Let ¢ be a proper coloring of UG(D) and let (z,y) € A(D). So
{z,y} € E(UG(D)). This means that c(y) € OC(z). But since c is a
proper coloring, for all v € O(y), ¢(v) # c(y). So, c(y) € OC(y). Thus
OC(z) # OC(y). Therefore ¢ is a set coloring, O

Proposition 1.5. For any digraph D, x, (D) < x(UG(D)).

Proof. Let c be a proper coloring of UG(D) and let (z,y) € A(D). So
{z,y} € E(UG(D)). This means that c(z) € IC(y). But since ¢ is a
proper coloring, for all v € O(z), ¢(v) # c(z). So c(z) ¢ OC(z). Thus
OC(z) # IC(y). Therefore c is a set coloring of Type 2. O

Proposition 1.6. (Okamoto, Rasmussen, and Zhang, [5].) For every

graph G,
Xs(G) 2 [logy(x(G) +1)1.

Proposition 1.7. For every directed graph D, x,(D) > [log, x(UG(D))].
Furthermore if D has no vertices of out degree zero,

Xs(D) 2 [log, (x(UG(D)) +1)].

Proof. If we create a set coloring with Xs(D) = k colors, we have at most
2% possible distinct sets of colors, including the empty set, that might occur
as an out-neighborhood color set. Since no two vertices joined by an arc
may have the same out color set, we require at least x(UG(D)) distinct
sets in any set coloring. So x(UG(D)) < 2* and thus, k > log,(x(UG(D)).
Since k is an integer we may round up. If D has no vertices of out degree
zero, then for all z € V(D), OC(z) # 0. Thus, x(UG(D)) < 2¥ — 1 and
the result follows. O

Recall that w(G) denotes the clique number of G, that is, the order of a
largest complete subgraph (clique) in G. It is well known that w(G) < x(G).

Proposition 1.8. (Okamoto, Rasmussen, and Zhang, [5].) For every
graph G,
xs(G) 2 1+ [logy w(G)] .

Theorem 1.9. For every directed graph D, x,(D) > [log, w(UG(D))].

Proof. Create a set coloring with x,(D) = k colors. From the argument
given in the proof of Proposition 1.7, w(UG(D)) < x(UG(D)) < 2*. There-
fore xs(D) > log,(w(UG(D)). Since k is an integer, we may round up
thereby completing the result. O

16



Recall that a tournament is an oriented complete graph. We can now
make the following conclusion.

Corollary 1.10. IfT is a tournament on n vertices, then xs(T) = [logy(n)] .

Proof. This follows directly from Theorem 1.9, since the underlying graph
of tournament is the complete graph, and the chromatic number of the
complete graph on n vertices is n. O

2 Tournaments and Set Colorings

First, we make some observations about small tournaments. Both the tour-
nament on a single vertex and the unique tournament on two vertices have
set chromatic number 1. For tournaments on three vertices, the transitive
tournament has set chromatic number 2, and the cycle has set chromatic
number 3. All tournaments on four vertices have set chromatic number 3.
The tournament on one vertex and the cycle on three vertices are the only
tournaments with x,(7T) = n as we can see by improving the upper bound
given in Proposition 1.4.

Theorem 2.1. IfT is a tournament on n > 3 vertices, then xs(T) < n—1.

Proof. Let = be any vertex of greatest out degree. Let y be an arbitrary
out-neighbor of z. Color all vertices except = and y distinct colors. So
¢(z) = ¢(y) but any other pair of vertices have different colors. If this is a
set coloring, we are finished. Suppose it is not a set coloring. Then there
exists arc (u,v) € A(T) such that OC(u) = OC(v). Thus, c(v) € OC(u).
So c(v) € OC(v). Notice that for any vertex w, c(w) ¢ OC(w), with the
exception of z. Therefore, z = v.

Therefore (u,z) € A(T) and OC(u) = OC(z). Since every pair of
vertices, except z and y, have distinct colors we make the conclusion that
O(x) —{y} = O(u)—{z,y}. Since z has maximum out degree and z € O(u)
it follows that y ¢ O(u). Therefore, since (u,y) € A(T), (v,u) € A(T), and
O(z) = {y} L O(u) — {z}.

Since n > 4 and £ has maximum out degree, |O(z)| > 2. Thus, there
exists z € O(z), z # y. Since O(x) = {y} U O(u) — {z}, we conclude that
(u,2) € A(T). Swap ¢(2) and c(y). Notice, that since y is not in the outset
of u, OC(u) # OC(z). We claim that this new coloring is a set coloring.

Suppose not. Again, this means there exists vertex v’ and arc (v, x)
such that OC(«') = OC(z). Since u and z no longer have the same out
color set, u/ # u, and by similar arguments to the preceding, we know
O(z) = {z} UO(u) — {z}. Since T is a tournament there must be an arc



between u and u/. However u cannot be in the outset of v’ since u is not
in the outset of  and ' cannot be in the outset of u since ' is not in the
outset of z. Thus we have reached a contradiction. Therefore we have a
set coloring of T using n — 1 colors. O

Indeed, this bound is tight.

Theorem 2.2. If T, is a transitive tournament on n > 2 vertices, then
xs(Tp) =n-—1.

Proof. Given T,, assume the vertices are labeled v;,vs,...,v, so that
(vi,v;) € A(Ty) if and only if i < j. Observe that if i < n, then we
know O(v;) = {vi41,...,%} = O(vi41) U {vis1} In order for the vertices
to have distinct coloring vi4; must have a distinct color from O(v;4;) and
it follows that v,, ..., v, must have distinct colors. O

The transitive tournament is not strongly connected. While we do not
have an example of a strongly connected tournament achieving the upper
bound for x,(D), we can say the following.

Theorem 2.3. There ezists a strongly connected tournament T onn > 5
vertices, xs(T) =n — 2:

Proof. Recall the upset tournament with vertices vy,...,v,, obtained as
follows. Begin with transitive tournament with vertices vy, ..., v, labeled
so that (v;,v;) is an arc if and only if i < j. Then reverse arc (v1,vn) S0 v,
has an arc toward v;. Since

O('Un—l) - 0(”1;—2) c-.-C O(v2)1

we know that c(v3),...,¢(v,) must be distinct. So x,(T) > n — 2. Let
c(vl) = C(‘Uz) = C(’U3).

Note ¢(vn) € OC(v1) and c(vn) € OC(vy), but ¢(vn) € O(va_q1) N---N
O(va). Also, ¢(vn_1) € OC(v;) but c(vn-;) € OC(v,). Thus we have
Xs(T)=n-—2. m

Recall that Corollary 1.10 tells us that x,(T) > [log, (n)]. The follow-
ing theorem shows that, in a sense, this bound is not tight.

Theorem 2.4. If k > 1, there exists no tournament T with ezactly 2*
vertices such that x,(T) = k.

Proof. Suppose T is such a tournament. Since T is a tournament, 0C(z)
must be unique over all z. So each of the 2* possible sets of colors is achieved
as OC(z) for some z € V(T). In particular, there must be a vertex v such
that |O(v)| = 0 which implies that c(v) € OC(z) for all z # v. Thisis a
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contradiction, provided k > 1, since each of the 2* possible sets of colors
is achieved as OC(z) for some 2 € V(T'), meaning any particular color is
contained in at most half of the outsets. a

While we do not have a tight lower bound for x,(T'), we can say the
following.

Theorem 2.5. For each natural number n, there exists a tournament T
on n vertices with xs(T) < 2 + [log, n].

Proof. For tournaments on one and two vertices, there exist only one pos-
sible tournament and in each case x,(T") = 1, satisfying the theorem. For
n = 3 vertices, the transitive tournament has set chromatic number 2 and
likewise satisfies the formula. For n > 4, first we construct a family of
tournaments T} as follows.

Begin with a transitive tournament with vertices vy, vz, ..., vk, labeled
so that (vi,v;) is an arc if and only if i < j. Let c(v;) = i. Next, add vertex
vk41 colored k + 1 with O(vks1) = {v1...v}. Finally, add 2* vertices
labeled u; for 1 < i < 2%, each colored k + 2. Let U = {uy,...,uox}. Let
the subtournament on U be transitive where u; has maximum out degree.
For each u; € U, add arc (u;,vk+1). Since {vy,vs,...,v} has 2k subsets,
we can add arcs between the u; and v; so that O(u;) N {vy,v2,..., U} is
unique over all 1.

Let 1 < i< j <k. Since j € OC(v;) but j & OC(v;), it follows that
OC(v;) # OC(v;). Observe that OC(v;) # OC(u;) since k +1 € OC(u;),
k+1 ¢ OC(v;). By construction, for each 1 <i < j < 2%, OC(w;) #
OC(u4). Thus we have a set coloring.

Observe that Tx has n = 2% + k + 1 vertices and x,(Tx) < k+2. We
see that [logyn] = k + 1, since

k = log, 2* < logy(2* + k +1) < log, (2% +2%) =k + 1.

Thus, xs(T) < k+2 = {logyn] + 1.

Next, we must provide the construction for a tournament T such that
xs(T) < logyn] +2 for 25 + k+1 < n < 251 4 (k4 1) + 1. Begin
with the tournament Ti4+1. Let U = {uy,...,usx+1}. Removing vertices
from U will still result in a set coloring, since color k + 3 is not required

to distinguish between color sets. Create T by removing the appropriate
number of vertices from U to achieve the desired value of n; the removed

vertices may be chosen arbitrarily. So xs(T) < k + 3.
If 2 + k+1 < n < 28!, then [logy n] =k + 1 because

k =logy k < logy(2F + k +1) <logyn < logo(2k*) =k + 1.
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Thus, x;(T) < (k +1) + 2 = [log, n] + 2. On the other hand, if
2l <« < M L (k4 1) +1,
then [logyn] = k + 2 because
k+1=log, 2¥*! < logyn < log, (2! + k + 2) < log,(25+2) = k + 2.

Thus, x,(T') < (k+1) + 2 = [logy n] + 1. Thus, for all n, we have produced
a tournament T' with n vertices such that x,(T) < [logy n] + 2. O

Corollary 2.6. For all natural numbers n > 3, there exists a strongly

connected tournament T on n vertices with x,(T) < 2 + [log, n].

Proof. In the case of n = 3 consider the oriented three cycle, with outset
chromatic number 3. For n > 3, begin with the tournament constructed
for this value of n in Theorem 2.5. This construction begins with Ty and
then adding vertices so that V(T) = {v,v2,...,vk, Vk41,u1,. ..,u;} Where
7 < 2% and |V(T)| = n. Recall that the subtournament on {v;,vs,...,vx}
is transitive and the subtournament on {uy,...,u;} is transitive. Further-
more, over all u;, O(u;) N {vy,...,vx} is unique. Among the arcs between
{vi,...,u} and {ug,...,ux}, make sure that (vg,u;) is an arc. Then
Ul .-y Ujy Vkyl, V1, . .., Uk, U1 is @ hamilton cycle. Thus these tournaments
are strongly connected. a

3 Tournaments and Set Colorings of Type 2

A vertex v in a tournament T is a transmitter if it has in-degree 0, con-
sequently u is directed toward all other vertices in T. Similarly a vertex
v is a receiver if it has out-degree 0. Recall that from Proposition 1.7,
Xs(D) 2 [logy (x(UG(D)) + 1)]. The following theorem shows us the lower
bound for the set chromatic number of Type 2 is lower.

Theorem 3.1. If T is a tournament on n > 2 vertices that contains a
transmitter or receiver, then x4 (T) = 2.

Proof. By Observation 1.1, we know x,(T) > 1. Let v be a transmitter of
T. Assign color 1 to v and color 2 to the remaining vertices. For any vertex
u of T, other than a receiver, OC(u) = {2}. For any vertex w of T, other
than v, 1 € IC(u). Consequently if (u,w) is an arc in V, OC(u) # IC(w),
thus xs (T) = 2. The argument is essentially the same if v is a receiver. O

Corollary 3.2. For all k > 2 there is a digraph D with
x(UG(D)) = w(UG(D)) = k and xy(D) = 2.
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Since every transitive tournament contains a transmitter, we make the
following conclusion.

Corollary 3.3. If T is a transitive tournament on n > 2 vertices, then
xs(T) =2.

Based on our investigation of transitive tournaments in the previous sec-
tion we see that the difference between X,/ (T') and x,(T) may be arbitrarily
large.

Corollary 3.4. For all k > 2 there is a digraph D with
x(UG(D)) = w(UG(D)) = k and xg(D) = 2.

The next result shown that even if we require the tournament to be
strongly connected, the set chromatic number of Type 2 may be small.

Theorem 3.5. There ezists a strongly connected tournament T onn > 3
vertices, xs (T) < 3.

Proof. Select one vertex u and one vertex v. Let wy,...,wn_2 denote the
remaining vertices . Include ares (v, u), (w;, v), and (u,w;) for1 < i <n-2.
Arcs between the w; can be oriented in any way. Color v with color 1, u
with color 2, and the remaining vertices with color 3. Then 2 € OC(v) but
2 ¢ IC(u). We see 2 € IC(w;), but 2 & OC(u). Observe that for each
i, 1 € OC(w;) but 1 g IC(w;). Finally, 1 € OC(w;), but 1 € IC(v). Thus
xs(T) < 3. a

Finally, Theorem 2.2 tells us that for any k we can find a tournament
with x,(T) > k (e.g., a transitive tournament on more than k vertices).
While the transitive tournament is not the relevant example, the same is
true for x(T).

Theorem 3.8. For any k there erists a tournament T with xo(T) 2 k.

Proof. By Corollary 3.3, we know there is a tournament with x,/(T') = 2, so
we can assume k > 3. Suppose every tournament has a Type 2 set coloring
with k — 1 or fewer colors. Let T be the rotational tournament with vertex
set {Zo, - ..,T2n} With arc (z;,z;) if and only if 1 < j—1i (mod 2n+1) <,
where 2n + 1 > 2k(k — 1). Note that all arithmetic is modulo 2n + 1, but
will not be explicitly written as such.

First, observe that ¢(z;) # c(zi4+n) since

O(z:) = {zig1y--- yTitn—1, Titn} and I(Tiyn) = {Ti, Tis1, . - yTign-1}
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Furthermore, either x; has different color than every vertex in O(z;) or
Tiyn has a different color than every vertex in I(z;4,), for otherwise

OC(z:i) = IC(Tign).

Since T has a Type 2 set coloring with k — 1 or fewer colors and at least
2k(k—1) vertices, there is a color class, call it color 1, containing at least 2k
vertices. At least half of these vertices must be in {z;,...,Zi.n} for some
vertex z; since T has 2n + 1 vertices. Relabel the vertices of T so that z,
is color 1 and there are k vertices in {zo,...,2n} of color 1. Recall that
k > 3. Let zj,zj,,...x; denote the vertices of color 1 in {zo,...,zs}
where 0 = j; < j2 < -+ < jx < n. We claim that this Type 2 set coloring
must use at least k colors.

We know c(z0) = 1 and c(zn) # ¢(zo). Let c(z,) = 2. We know
c(zj,) = 1 and c(zj,4n) # c(z;,). Since c(z;,) = c(z;,) where jr < n <
J2 +n, we conclude that z;,,, has a different color than every vertex in
{22y .-, Tj4n—1}. There is a vertex in this set with color 1, namely Ty,
and a vertex in this set with color 2, namely z,. Thus Zj,+n IS & new color,
say ¢(Zj4n) = 3.

Indeed we must use a new color for z,4n, ..., Tj,_,+n, Meaning we must
use at least k colors, a contradiction since we assumed this tournament has
a Type 2 set coloring with k — 1 or fewer colors. O
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