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Abstract

Given nonnegative integers, a, b, c, and d, the transition function v is de-
fined by v(a,b,c,d) = (la—b},|b—c|,|c—d|, |d—a|). Diffy problem asks if it
can reach (0,0, 0,0) after some iterations of 7 on the four numbers. If (a, b,
¢, d) can transfer to (0,0,0,0) iterated by 7 operations, the smallest N such
that vV (a, b, ¢,d) = (0,0,0,0) is called stopping steps of Diffy problem. In
this paper, we will show that it exists N such that /" (a,b,¢c,d) = (0,0,0,0)
and the loose upper bound and exact upper bound of N. In addition, we
will also show that we can find a starting vector (a, b, ¢, d) so that it reaches
the zero vector (0,0,0,0) after exact k steps for any given positive integer
k.

Keywords and phrases: Diffy problem, 7 function, stopping steps, the
loose upper bound, the exact upper bound.

1 Diffy Problem Introduction

Let (a,b,c,d) be a quadruple of integer numbers and consider the se-
quence vV (a,b,c,d), where 7 : Z% — Z4 is defined by v(a,b,c,d) =
(la - bl,[b = cl, lc = d, |d — al).

For example, consider (6,2,9,17). We have a — b means b = (a).
Since (6,2,9,17) — (4,7,8,11) = (3,1,3,7) — (2,2,4,4) — (0,2,0,2) —
(2,2,2,2) = (0,0,0,0), we write 7°(6,2,9,17) = (0,0,0,0).

It can be represented by a graph as in Figure 1.

In general, we investigate what is the smallest N such that ¥ (a,b,¢,d) =
(0,0,0,0). We tested thousands and thousands of cases and found that all
quadruples reach the state (0,0,0,0).

The difficulty for this problem is that the terms can increase exponentially:
vs(a’a b1 <, d) = VQ(Ia - b|1 lb - Cl, |C - dl’ ld - a‘l)
=y(lla—bl—|b—cll,||b—¢| =|c=d|},|lc— d| | d - al|,||d — a| =] a — b}])
= (|lla—b—[b—cl| = |lb—c| —lc=d|ll, |||o—c| = |e—d|| = ||c—d| - |d - all|,
llle—d| —|d—al| - |ld — a| | @ — bll}, |ild — a| —| a — b]| — [la — &] = b —]|])
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Ficure 1. A Diffy Example

In fact, people have researched the Diffy problem for quite a long time.

In (1], Freedman introduced this problem in 1948.

In (2], Clausing used a computer to a really large class playing the Diffy
game. The author found 90% of 10,000 random quadruples with values in
[099] reaching to the end within three to five steps.

FIGURE 2. The height of 10,000 random quadruples with
vailes in (0..99).

In (3], Ullman calculated the distribution of convergence times with respect
to the natural probability measure on labeled squares and, thus, to explain
the surprising speed of convergence.



%[ Prob{n(7) = k} | k | Prob{n(¥) = k}
0 0 9 0.6182%

1 0 10 0.1886%

2 0 11 0.0559%

3 0 12 0.0163%

4|  50.0000% 13 0.0049%

5 17.7778% 14 0.0014%

6| 22,9630% |15 0.0004%

7 6.0063% 16 0.0001%

8 2.3680% : .

TABLE 1. The probability that the four-number game converges in k
steps.

In [5], Chamberland showed some Unbounded Diffy Sequences.

In (6], Ehrlich showed the periods of for some Diffy sequences.

In (7], Webb gave a proof that the up bound of Diffy problem is 3[n/2|.

In [9], Glaser and Schff found Diffy-sequences are closely related to Pascal’s
triangle and many properties of their cyclic structures can be found and
proved considering Pascal’s triangle modulo 2.

In [13], Greenwell showed that some cases only need six steps to reach to (0,
0, 0, 0) and left as one open question whether there is a simple way, given
four numbers, to tell how many moves it takes go get to all zeros without
actually going through all the moves.

2 Examples of Diffy Problem

We will show some interesting examples of Diffy Problem in this section
Definitions

a, b, ¢, and d are nonnegative integers. The transition function ¥/ is defined
by (a,b,c,d) = (ja—bl, |b—c|, |c—d|, |d—a|). The multiple operations 7* is
defined by v*(a,b,¢,d) = (v(....v(a,b,¢,d).)). If (a, b, ¢, d) can transfer
to (0, 0, 0, 0) iterated by 57, the smallest N such that " (a,b,¢c,d) =
(0,0,0,0) is called stopping steps of (a, b, ¢, d), denoted by the stop function
s(a, b, ¢, d) = N. If ged(a, b, ¢, d) = 1, (a, b, ¢, d) is called the basic
quadruple.

Examples

We have some simple observations.

Example 2.1 For any arithmetic progressions(d > 0), the stopping step N
= 5. N is independent on a.

Proof Suppose (a,b,c,d) = (a, a+d, a+2d, a+3d).



5(a,a-{—d, +2d a + 3d)

0 2d)
v(2d, 2d, 2d, 2d)
(0,0,0,0).

SoN = 5.

Example 2.2 For any geometric progressions (¢ > 0,7 > 0),r = 1,N =

1;,7=2,N=7;r>3,N =6. So, N is independent on a.

Proof Suppose (a, b, ¢, d) = (a, ar, ar?, ar®).

When r = 1, y(a,a,a,a) = (0,0,0,0). Hence, N = 1.

When r = 2, ¥7(a, 2a, 4a, 8a)

= v%(a, 2a,4a, 7a)

= v%(a, 2a, 3a, 6a)

= v%(a, a, 3a,5a)

= v3(0, 2a, 2a, 4a)

= v2(2a,0, 2a, 4a)

= v(2a, 2a, 24, 2a)

= (0,0,0,0).

That is N = 7.

When r > 3, v%(a, ar, ar2, ar3)

= S(a(r — 1),a(r? — 1), a(r3 — 12), a(r® - 1))

= P4(a(r = 1)(r — 1), a(r — 1)(r = ), a(r - D(r +1),a{r — 1)(r2 + 7))

= 73 (a(r-1)(r2-2r+1),a(r—1)(r2=2r-1),a(r-1)(r2-1),a(r-1)(r2+1))

= v2(2a(r — 1), 2a(r — 1)r,2a(r — )r, 2a(r — 1)r)

= ¥(2a(r —1)%,2a(r — 1)2,2a(r — 1)2,2a(r — 1)?)

=(0,0,0,0

As a result, N = 6.

Example 2.3 If a, b, c, and d are real numbers, there may exist stopping

steps N such that " (a,b,¢,d) = (0,0,0,0). For example,
v3(n2,v2,e,m)

= v"(ﬂ—ln?,e —V2, 1 —e,m —In2)

—v(e—2\/-+ln22e—\/_ m,e —In2,m — /2)

= V2 (e+V2—m—In2, —e+v2+m—In2,e+v2—m—In2, —e++/2+m—In2)

= 7(—2e + 27, —2¢ + 2w, —2e + 2, —2e + 2m)
= (0,0,0,0).
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3 Results Under Some Conditions

If we put some conditions on a, b, c, d, it is easy to get the steps required
to reach to (0, 0, 0, 0). For some special cases, I got the results as below.
Theorem 3.1 Ifa>b>c>d,2b>a+cb+d>2canda+d>b+c,
there exists a number N, N < 5, such that 7" (a, b, ¢c,d) = (0,0,0,0).
Proof. Sincea >b>c>d,2b >a+c,b+d>2canda+d>b+c we
have

v%(a,b,c,d)

=v¥a-bb-cc—-d,a—d)

73 (~a+2b—c,b—2c+d,a—c,b—d)
vi(a-b—c+da—b+c—dia—b—c+da—b+c—d)

V(2¢ — 2d,2¢ — 2d, 2¢ — 2d, 2¢c — 2d)

(0,0,0,0).

Theorem 3.2 Ifa>b>c>d,2b>a+c,b+d>2canda+d<b+ec
there exists a number N, N < 5, such that " (a, b, ¢,d) = (0,0,0,0).
Proof. Sincea>b>c>d,2b >a+c,b+d>2canda+d<b+c, we
have

v3(a,b,¢,d)

=v*a—-bb-cc—d,a—d)

=¢3(-a+2b—cb—~2c+d,a—cb—d)
=y?}(-a+b+c—da-b+c—d,—a+b+c—da—-b+c—d)

= v(2a — 2b,2a — 2b, 2a — 2b,2a — 2b)

=(0,0,0,0).

Theorem 3.3Ifa>b>c>d,a+c+d>3bb+d>2canda+d > b+,
there exists a number N, N < 6, such that vN(a,b,c, d) = (0,0,0,0).
Proof. Sincea >b>c>d,a+c+d>3bb+d>2canda+d>b+c, we
have

78(a,b,¢,d)

=v*(a-bb—cc—d,a—d)

=via-2b+c,b—2c+d,a—cb—d)
=v3(a-3+3—-da-b+c~dia—b—c+d,a-3b+c+d)

= v2(2b - 2¢,2¢c — 2d,2b — 2¢,2c — 2d)

= (2b— 4c + 2d,2b — 4c + 2d,2b — 4c + 2d,2b — 4c + 2d)

= (0,0,0,0).

Theorem 3.4Ifa >b>c>d,a+c+d > 3band 2¢c > b + d, there exists
a number N, N < 5, such that " (a,b,¢,d) = (0,0,0,0).

Proof. Sincea > b >c > d,a+c+d > 3band 2¢ > b+ d, we have
v3(a,b, ¢ d)

=g4a-bb—cc—d,a—d)

=v(a—-2b+c,—-b+2c—d,a—c,b—d)
=v¥(a-b—c+da+b-3c+da—b—c+d,a—3b+c+d)

= v(2b - 2¢,2b — 2¢,2b — 2¢,2b — 2¢)

= (0,0,0,0).
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4 The Loose Upper Bound of Diffy Problem

In this section, we will show a simple proof that (a, b, ¢, d), in which a, b,
¢, and d are nonnegative integers, will terminate at (0, 0, 0, 0) by /.

Lemma 4.1 For any integer k > 0, 7(ka, kb, ke, kd) = k v (a, b, c, d).
Proof. 7 (ka, kb, ke, kd)

= (|Jka — kb|, |kb — kc|, |kc — kd|, |kd — kal)

= k(ja — b], b — cl, c — dI. |d — al)

=k (a,b,c,d).

Lemma 4.2 max{a, b,¢,d} > max{|a — b, |b — ¢|,|c — d],|d — a|}.

Proof. If a > b,a > |la —b|. If b > a,b > |a — b|. Therefore, maz{a,b} >
la —b]. .

Similarly, we can get

maz{b,c} >| b —d,

maz{c,d} > |c—d|, and

maz{d,a} > |d — a.

Combine all the inequalities, so that is maz{a,b,c,d} > maz{|a — b|, |b -

cl, le —dl,|d — a|}.

Lemma 4.3 For any integer t > 0,7(a+t,0+¢,c+t,d+1t) = y(a,b,c,d).
Proof. 7 (a+t,b+t,c+t,d+1t)

= (la ~b|,}b—cl,|c - d|,|d - al)

= v(a,b,¢,d).

Lemma 4.4 If ¢"(a,b,c,d) = (0,0,0,0), then ¢V (b,¢c,d,a) = (0,0,0,0),
v" (¢, d,a,b) = (0,0,0,0)and ¥V (d,a,b,c) = (0,0,0,0).

Proof. If ¢V (a,b,c,d) = ¢V -1(a', ¥, ¢, d'), then vV (b,c,d,a) =
vV-L(¥', ¢, d',a’'). We do the some operations N - 1 time. Then we will
have ¥ (a,b,¢,d) = (0,0,0,0) and " (b,¢c,d,a) = (0,0,0,0). Similarly,
vN(c,d,a,b) = (0,0,0,0) and v"(d,a,b,c) = (0,0,0,0).

This is the rotation property. Lemma 4.1 4.4 will be used in below proofs.

Lemma 4.5 The maximum steps that transfer (a, b, ¢, d) to (2a;,2b;,2¢1, 2d;)
are 4(N < 4).

Proof. a, b, ¢, and d can only be even or odd numbers. Let E stand for even
numbers and O stand for odd numbers. a, b, ¢, and d have total sixteen
combinations as below:

(E,E,E,E),(E,E,E,0),(E,E,O,E),(E,E,0,0),
(E,O,E,E),(E,O,E,0),(E,0,0,E),(E,0,0,0),
(O,E,E,E),(0,E,E,0),(0,E,0,E),(0,E,O0,0),
(0,0,E,FE),(0,0,F,0),(0,0,0,E)(0,0,0,0).

Since

1) VO(E,E,E»E) = (EaE,E’E)

2) v¥(E,E,E,0) = v*(E,E,0,0) = v*E,O0,E,0) = v(0,0,0,0) =
(E,E,E,E)



3) V4(E:E, OvE) = Vz(E, 0,0,E) = V2(01 Ea OaE) = V(Oa O; 0) O) =
(E,E,E,E)
4) Vs(E, E& O’ O) = Vz(E,O,E, O) = V(Oa070a O) = (E’E’E)E)
5) Vq(E,O,E, E) = Va(O,O, EaE) = V2(E, O,E, 0) = V(0,0,0,0) =
(E,E,E, F)
6) Vz(E;O,EaO) =V 0,0,0,0) = (E’EaEyE)
7) vs(anvo: E) = Vz(O,E,O,E) = V(0,0,0,0) = (E) E’EaE)
8) V4(E‘0, O, O) = V?'(O,E, E, O) = VZ(O,EO,E) = V(Oa O» Oa O) =
(E,E,E,E)
9) v4(01 E,E, E) = Vs(O,E, E’O) = Vz(OaE,O)E) = V(0,0,0, O) =
(E,E,E,FE)
10) v*(O,E,E,0) = ¥*(0,E,O0,E) = v%(0,E,0,E) =vy(0,0,0,0) =
(E,E,E,FE)
11) v*(0O,E,0,E) = ¢(0,0,0,0) = (E,E,E,E)
%2) E4(EO’ E,0,0) = v*(0,0,E,E) = V*(E,0,E,0) = v(0,0,0,0) =
Ea y Loy )
’E) = Vz(E, OaErO) = V(07O,an) = (EanE?E)
14) v*(0,0,E,0) = V*(E,E,0,0) = v*(0,E,0,E) = v(0,0,0,0) =
(E,E,E,FE)
15) v4(0,0,0,E) = ¥*(E,0,0,E) = V*(E,0,E,0) = v(0,0,0,0) =
E,E.EFE
16) (0,0, E

Theorem 4.1 There exists a number N, N < 4logs(maz{a,b,c,d}) + 4,
such that ¥ (e,b,¢,d) = (0,0,0,0).

Proof By Lemma 4.5, the maximum steps are 4 such that ¥"(a,b,c,d) =
(2(11 ) 2bl) 2cl i} 2d1)

Therefore,

N< 4+s(2a1,2b1,201,2d1) (1)
Here, s is the stop function. According to Lemma 4.1, (1) equal to

NS 4+s(2(a1rblacl’dl)) (2)

If (a1,b1,¢1,d1) # (0,0,0,0), do the same computing as (1) and (2). The
result is
N < 4+ 4+ s(2(2az, 2b2, 2¢2, 2d5)) (3)

and

N<4x2+ 8(22(02,b2, 62,d2)) (4)
Continue doing steps (1) and (2) k times until final state (ak, bk, Ck, di)
containing only 1 or 0, which is

N < 4 x k + 5(2*(ak, bk, ck, dk)) (5)

Let E = 0 and O = 1. Do the same computing as in Lemma 4.5. As a
result, the maximum steps are 4 such that ™(ax, bk, cx, dx) = (0,0,0,0).



Hence,
(2% (ak, bk, ck, di)) < 4 (6)
(5) becomes
N<4xk+4 )
Since (ax, by, ¢k, dx) contains only 1 or 0, maz{ax, bk, cx,dr} < 1.
By Lemma 4.2, 2kmax{ak,bk,ck,dk} <2k < maz{a,b,c,d}.
That is

k < loga(maz{a,b,c,d}) (8)
Combine (7) and (8). The stop steps
N < 4k + 4 < 4logy(maz{a,b,c,d}) + 4 9)

such that ¢V (a,b,c,d) = (0,0,0,0).
5 The Exact Upper Bound of Diffy Problem

Based on the studies in previous sections, the results seem like that the
max stopping steps V < 7. However, the life is not so easy. In fact, there
are exists infinity examples that require more than 7 steps.

For example, apply 7" operations on (149, 81, 44, 24). We have
(149,81, 44,24) — (68,37,20,125) — (31,17,105,57) — (14, 88,48, 26) —
(74,40,22,12) — (34,18, 10,62) — (16,8, 52, 28) — (8,44, 24, 12) —
(36,20,12,4) — (16,8, 8,32) — (8,0,24,16) — (8,24,8,8) — (16,16,0,0) —
(0,16,0,16) — (16, 16,16, 16) — (0,0, 0, 0).

It requires N = 15 steps to reach (0, 0, 0, 0). In fact, this is the longest
sequence for maz{a,b, ¢, d} < 149 and min{a,b,c,d} > 1 by using a com-
puter to search. I got below results.

Theorem 5.1 If @ > b > ¢ > d > 0, the basic quadruple (a,b,c,d) that
has the maximum steps is in the form

a =71y + cory + c3ry

b= (a(1+r)rP 2+ (1 4+ 7232 4 c3(l + r3)r3~?)

c=cary M veri 4 cary™! (10)
=3 (@ +r)rP 2 + (1 +r2)r7 % + c3(L + r)rp~?)

where s
r1=%(54+6\/3§)3+_4——}_+1 (11a)
(54 +6v/33)°
1 3 2
ro=—(54+6v33) - — = 11+
(54 +6v/33)*
1 (11b)
A1 ovm) - —2 ),
2 \3 (54 + 6+/33)*

10



r3=—l(54+6\/§§)%—;l+1—
(54 +6v33)°

V3 [1 3 4 .
2 (§ (54+6\/3—3) - (54+6\/?§)%)l

=]

(11c)

and

_L 1 $
o 2(54+6\/?3)§(99+19\/3_3)((9+m) (42(54+6\/§§) +

10 (54+6«/:§)%\/3—3+11(54+6\/?3)§+

3 (54 + 6\/§§)§ V33 + 240 + 48&))
(12a)

Cy =

1 1.
_ P S (gz (9+ \/3_3) \/5(— 360 — 72v/33+

63 (54 + 6\/3_3')% +15 (54 + Gx@)% V33 — 120v/3i — 72v/11i—
21 (54+6\/§)% V3i—15 (54+6\/§\/ﬁ)§ V11i+9 (54+6\/3_3)§

VITi+ 11 (54+6\/3_3)§ ﬁz))
(12b)

1

(54 +6v33)* (90 + 19/33)
63 (54 + ex/ﬁ)% -15 (54 + 6\/3_?:)% V33 — 120v/3i — 72v/11i—

21 (54+6\/3_3)% V3i—15 (54+6\/§\/ﬁ)% VILi+9 (54+6\/ﬁ)§
Vili +11 (54+6\/?§)§ \/§z))

C3 = —

(%i (o+v3) \/'37(360 +72V/33—

(12¢)

Proof. First, we will show that the basic quadruple (a, b, ¢,d) in the form,

11



An = 2(an—l + bn—l) + Cn-1
bp =0p-1 +bp-1 + cn1 (13)

Cn = QAn-1
dn = bn—l

has the maximum steps to reach (0,0,0,0).

By mathematical induction, the base case is (3,1,1,1) which is a basic
quadruple because ged(a, b, ¢,d) = 1. By using computer search, it has max-
imum steps, 4, to (0,0, 0, 0). for any quadruple (a, b, ¢,d) if maz{a, b, c,d} <
3.

Assume the basic quadruple (an,bn,cn,d,) has the longest sequences to
(0,0,0,0) for maz{a,b,c,d} < an.

We need to show (@n+1,0n+1,Cn+1,dn+1) is also a basic quadruple and re-
quires more steps then (an,bn, cn,dy). Since 73(@n41,bn41,Cns1,dnt1)

= V3(2(an + bn) + Cnyan + by + oy an, bn)

= vz(an + b, bn + Cnyan — by, 20, + by + Ccn)

= (an — ¢n,2bn + Cn — @n,an + 2by +Cnyan +Cp)

(2a,, — 2b, — 2¢,,2a,, 2b,, 2¢,)

2(an — bp — cny@n,bn, cn)

2(2(0'11—1 + b —1) +cCh1—Qp_1—byp_1— Cn—l) — Qn—1,08n, bn, cp)
2(bn—1, Qn, bna cn) = 2(dn3 Qn, bn, Cn)s (a‘n-{-lv bn+la Cntl, dn+l) needs 3
more steps than (an, bn, ¢n,d,) to (0,0,0,0). On the other hand, if
9¢d(@ny1,bnt1,Cny1,dny1) =k, then V3(0n+1,bn+1,cn+1,dn+1) =

2k(dn, @n, bn, cn) = 2(dn, @n, b, cn). Therefore, k = 1. As a result,
gcd(an+1,bni1,Cne1,dns1) = 1. 50 (@nt1,bn41,Cn41,dn41) is also a basic
quadruple.

Hence the quadruple(an41,bn41,¢n41,dn4+1) has the maximum steps to (0,
0, 0, 0) for any quadruple (a, b, ¢, d) with maz{a,b,c,d} < an4i.

Next, it needs solve the recurrence equations from (13):

I

a(n) =2(a(n—1)+bdn—1)) +¢c(n—1) (14a)
bn)=a(n—1)+b(n—1)+c(n—1) (14b)
¢(n) =a(n-1) (14c)
d(n) =b(n-1) (14d)

From (14a) and (14c), we can have
a(n —1) = 2a(n —2) +2b(n — 2) + a(n — 3) (15)

From (14b) and (14c), we can have
b(n) —b(n—-1)=a(n—-1)+a(n—-2) (16)

Therefore,

b(n—1)-b(n—-2)=a(n—2)+a(n-23) 7

Do (14a) - (15) and use (17). We have
a(n)—a(n—1) =2a(n-1)+2b(n—1) +a(n-2) —2a(n—2) —2b(n - 2) —



a(n-3) = 2a(n—1)+2(b(n—1)—b(n—2))—a(n—2)—a(n—3) = 2a(n—1)+
2a(n—2)+2a(n—3)—a(n—2)—a(n—3) = 2a(n—1)+a(n—2)+a(n-3).So,
we got the difference equation:

a(n) - 3a(n—1)—a(n—-2)—a(n-3)=0 (18)
The characteristic equation for (18) is
rP-32—r—-1=0 (19)

Three roots for (19) are listed in (11a), (11b), and (11c). a(n) can be
expressed as

a(n) = 177 + c2ry +cary (20)

The initial quadruple is (3,1,1,1). Then we can apply it in (13) to get the
initial conditions a(0) = 3,a(1) =9, and a(2) = 31. That is

a(0) =cy+ca+cz3=3
a(l) =ciry +carg +carz =9 (21)
a(?2) = cl'rf + 021'% + Cs?’% =31

That is
1 1 1 a 3
rm re rz3|lea) =19 (22)
'rf 'r.f, r% C3 31

Therefore,

e 11 1\7'/3
Ca =|m T T3 9 ( 23)
cs r? 3 13 31

Apply r1,79 and r3 that are listed in (11a), (11b), and (11¢). The computing
results of ¢, ca and c3 are listed in (12a), (12b), and (12¢).
From (14a), we have

a(n—1)+bn-1) = %(a(n) —a(n-2)) (24)
Then we can compute b(n) by using (14b) and (20). b(n) = a(n —1) +
b(n—1)+a(n—2) = 3(a(n) —a(n—2)) +a(n—2) = 1(a(n) +a(n-2)) =
%(clr{‘ +CorB + carl 4+ 1772 + corf T2 + cary~2), which is
1
b(n) = S(a(l+7r) ™ + (1 + 3y 2 +ca(1+r3)r3?)  (25)
Combing (20), (14c), (25), and (14d), we finally got the quadruple pattern

in (10).
This completed the proof.
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Theorem 5.2 If a > b > ¢ > d > 0, the steps N to reach (0, 0, 0, 0) are

bounded by

where

4 ifa<4
9 ifa<10
N<{31 ifa < 32 (26)

3n+4 ifa>31and a=a(n)
3n+7 otherwiese

a(n) = a1y +cory +c3rz, n = |log, g+—6_| and 6 = 0.020698694231 (27)
1 2 3 1T

By Theorem 5.1, the quadruple patten in (10) has the longest path. The
approximate values of (11a), (11b), (11c), (12a), (12b), and (12c) are

rrl = 3.38207576790623749412270853645

Ty = —0.19148788395311874706135426823+
0.508851778832737990486422439285¢
r3 = —0.19148788395311874706135426823—
0.508851778832737990486422439285:
¢ = 2.71051953391635530567198262842

= 0.144740233041822347164008685787+
0.112203498670439075921864367695:
c3 = 0.144740233041822347164008685787—

(28)

 0.112203498670439075921864367695:

Since cor — 0 and c3r§ — 0 if n — oo, they are minor terms. The value
of a(n) is determined by ¢;7}. In fact, if n = 2,,

Therefore, we can have

That is

Since

and

| eo72 + car? |< & = 0.020698694231 (29)
(@a+98) > 17} > (a—9) (30)
log,, (e +9) > n > log,, (e —9) (31)
C1 C1
fogr, D1 > tog,, 22D 10q, 229, (32)
c1 1
flogr, 27 — l1og,, (239 (33)
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n will be bounded by

(a+5).‘ — llog a+d

(&3] r' 51

a+é
n= [log,l—CI—j or [logr, J+1 (34)

By Theorem 5.1, N increases 3 steps when n increases by 1, which is N =
3n + 4 and a(0) =3, a(1) = 9, and a(2) =31. Combining all the results, we
can get (26)

Since it is possible N = 3n + 4, it is the exact upper bound.

Theorem 5.3 For any positive integer, m, there exists a basic quadruple
(a, b, ¢, d) that just needs m steps to reach to (0, 0, 0, 0).

Proof. If m < 5, we can use the quadruple (3, 1, 1, 1) which covers the
steps m = 0 tom = 4.

If m = 3n + 4, the quadruple (a, b, ¢, d), in which a = a(n), b = b(n}, ¢
= ¢(n), and d = d(n) from the formula of (10). Since it needs 3 steps from
(a(n), b(n), c(n), d(n)) to (a(n - 1), b(n - 1), ¢(n - 1), d(n - 1)), the total
needs 3n + 4 steps to reach (0, 0, 0, 0).

If m = 3n + 5, the quadruple (a,b,c,d) = 1 ¥2 (a(n +1),b(n + 1),¢(n +
1),d(n + 1)). Since (a(n + 1), b(n + 1), c¢(n + 1), d(n + 1)) takes 3n
+ 7 steps to reach to (0, 0, 0, 0), it just needs to do twice 7 operations
to make it to use 3n + 5 steps. In addition, all elements in %(a(n +
1),b(n+1), c(n+1),d(n+1)) are even, so divide them by 2 to get the basic
quadruple.

For the same reasons, the quadruple (a,b,c,d) = 3 v(a(n+1),b(n+1),c(n+
1),d(n + 1)), which takes 3n + 6 steps to reach to (0, 0, 0, 0).

In summary,

(3,1,1,1) ifm<$
(a(n), b(n), e(n), d(n)) ifm=23n+4
$V2(a(n+1),b(n+1),ce(n+1),d(n+1)) ifm=3n+35
1v(@an+1),b(n+1),c(n+1),dn+1)) ifm=3n+6
(35)

Since (ka, kb, kc, kd) takes the same steps as (a, b, ¢, d) to reach to (0, 0,
0, 0), there exist infinite quadruples that take m steps to reach (0, 0, 0, 0).

(aa ba ¢, d) =

Example 5.1 Let n = 10, so m = 3n + 4 = 34 steps. From Theorem
6, a(10) = 532159, a(9) = 157305, a(8) = 46499, and a(7) = 13745. So we
have 5(10) = 1(a(10)+a(8)) = 3(532159+46499) = 289329, ¢(10) = a(9) =
157305, and d(10) = b(9) = 1(a(9) + (7)) = (157305 + 13745) = 85525.

¥4 (532159, 289329, 157305, 85525)

= 2 x 33(121415, 66012, 35890, 223317)
= 2 x 732(55403, 30122, 187427, 101902)
=2 x 31(25281, 157305, 85525, 46499)
=22 x 739(66012, 35890, 19513, 10609)
= 22 x 29(30122, 16377, 8904, 55403)
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= 22 x ?%(13745, 7473, 46499, 25281)
= 23 x ?7(3136, 19513, 10609, 5768)

= 23 x ?6(16377, 8904, 4841, 2632)

= 23 x ¢25(7473, 4063, 2209, 13745)

= 2% x 24(1705, 927, 5768, 3136)

= 2% x ?3(778, 4841, 2632,1431)

= 25 x 22(4063, 2209, 1201, 653)

= 2% x ?1(927, 504, 274, 1705)

= 25 x 20(423, 230, 1431, 778)

= 2% x 719(193, 1201, 653, 355)

= 2° x 18(504, 274, 149, 81)

= 2% x 17(230, 125, 68, 423)

= 2% x ¢18(105, 57, 355, 193)

=27 x ¢15(24, 149, 81, 44)

= (0,0,0,0).

Here, the result from the previous example, 71°(24, 149, 81, 44) = (0,0, 0,0)
and Lemma 4.2.

Theorem 5.4 If a > b > ¢ > 0 and d = 0, the quadruple (a,b,c,0) that
has the maximum steps is in the form (a,, ¢, + dn,dn,0) and it needs one
more step than (a,, b,,cn,d,),in which (an, bn, ¢, dy) are list in (13).

Proof. It can be proved by using the same technique as Theorem 5.1. In
fact, it is a special case of the quadruple patten in Theorem 5.1.

From (13), we have a, = 2(@n—1 + bne1) + Cn1 = Gnoy + bp—y + Cn1 +
@n-1 + bp_1 = bn + cp + dn, Therefore, 7 (an,cn +dn,dn,0) = (an — cp —
dn,Cn,dn,an) = (bn,Cn,dn,an), which is the quadruple patten in (10), but
it needs one more step to (0,0,0,0).

6 Conculsion

In this paper, all major Diffy problems for four numbers are solved. Spe-
cially, we got the exact upper bound of Diffy problem. Based on this inter-
esting result, we also proved that if maz{a,b,c,d} =00 , the steps N — oo
and there exists as many as quadruples we want for a given positive integer,
m.
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