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Abstract

For a graph G of size m, a graceful labeling of G is an injective
function f : V(G) — {0,1,...,m} that gives rise to a bijec-
tive function f’ : E(G) — {1,2,...,m} defined by f'(uwv) =
|f(uw) = f(v)]- A graph G is graceful if G has a graceful labeling.
Over the years, a number of variations of graceful labelings have
been introduced, some of which have been described in terms
of colorings. We look at several of these, with special emphasis
on some of those introduced more recently.
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1 Introduction

Graph coloring is one of the most popular research areas in graph theory.
The most studied colorings are proper vertex colorings and proper edge
colorings. A proper vertex coloring of a graph G is an assignment of colors
to the vertices of G such that adjacent vertices are assigned distinct colors.
The minimum number of colors required of a proper vertex coloring of G
is its chromatic number x(G). A proper edge coloring of a graph G is an
assignment of colors to the edges of G such that adjacent edges are assigned
distinct colors. The minimum number of colors required of a proper edge
coloring of G is its chromatic indezx x'(G). We refer to the book {11} for
graph theory notation and terminology not described in this paper.

A vertex coloring (or labeling) of a graph G is vertez-distinguishing if
distinct vertices of G are assigned distinct colors (or labels). There are
numerous occasions when an edge coloring of a graph (not necessarily a
proper coloring) gives rise to a vertex-distinguishing coloring (see [11, pp.
370-385) or 28], for example). An edge coloring (or labeling) of a graph G
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is edge-distinguishing if distinct edges of G are assigned distinct colors (or
labels). There are also occasions when a vertex coloring of a graph (not
necessarily a proper coloring) gives rise to an edge-distinguishing labeling
(see [18, 26], [11, pp. 359-370] or [28, 29], for example).

One of best known examples of vertex-distinguishing colorings was intro-
duced by Chartrand et al. in [10]. At the 250th Anniversary of Graph The-
ory Conference held at Indiana University-Purdue University Fort Wayne in
1986, a weighting of a connected graph G was introduced for the purpose of
producing a weighted graph whose degrees (obtained by adding the weights
of the incident edges of each vertex) were distinct. Such a weighted graph
was called irregular. This concept could be looked at in another manner,
however. In particular, let N denote the set of positive integers and let E,
denote the set of edges of G incident with a vertex v. An edge coloring
¢: E(G) — N, where adjacent edges may be colored the same, is said to be
vertez-distinguishing if the coloring s : V(G) — N induced by ¢ and defined

by
s(v) = Z c(e)

ecE,

has the property that s(z) # s(y) for every two distinct vertices x and y
of G. For example, the edge coloring of the Petersen graph with the colors
1,2,...,5 shown in Figure 1 is vertex-distinguishing, where the color s(v)
of each vertex v is placed inside v.

Figure 1: A vertex-distinguishing edge coloring of the Petersen graph

The main emphasis of this research dealt with minimizing the largest
color assigned to the edges of a graph G to produce an irregular graph.
The largest such color is referred to as the irregularity strength of G. In
fact, the irregularity strength of the Petersen graph is 5. Much research
has been done in this area of research (see [1, 14, 16, 28], for example). In
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recent years, a variety of edge colorings have been introduced which induce,
in a number of ways, vertex colorings possessing desirable properties (see
[2,7,8,9, 15], for example). There has also been a variety of vertex colorings
that induce edge or vertex colorings possessing desirable properties (see
(3, 29] for example). We begin with vertex colorings or labelings that induce
edge-distinguishing colorings or labelings of graphs.

2 Graceful Graphs

The best known example of an edge-distinguishing labeling is a graceful
labeling. In 1968, Rosa [26] introduced a vertex labeling that induces an
edge-distinguishing labeling defined by subtracting labels. In particular, for
a graph G of size m, a vertex labeling (an injective function) f : V(G) —
{0,1,...,m} was called a B-valuation by Rosa if the induced edge labeling
' E(G) —» {1,2,...,m} defined by f'(wv) = |f(uv) — f(v)| is bijective.
In 1972, Golomb [20] called a B-valuation a graceful labeling and a graph
possessing a graceful labeling a graceful graph. It is this terminology that
became standard. Over the past few decades the subject of graph labelings
has been growing in popularity. Gallian [17] has compiled a periodically
updated survey of many kinds of labelings and numerous results, obtained
from well over a thousand referenced research articles.

A major problem in this area is that of determining which graphs are
graceful. Among results obtained on graceful graphs are the following:

1. Thecycle C,, is graceful if and only if n = 0 (mod 4) orn = 3 (mod 4).
The complete graph K, is graceful if and only if n < 4.

The graph K, . is graceful for all positive integers s and t.

The n-cube Q, is graceful for all positive integers n.

. The path P, is graceful for all positive integers n.

. The grid P; O P, is graceful for all positive integers s and ¢.

Every caterpillar is graceful.

® N oo W W

. Every tree with at most four end-vertices is graceful.

9. Every tree of order at most 27 is graceful.

While the three graphs shown in Figure 2 are the only connected graphs of
order 5 that are not graceful, it has been shown that almost all graphs are
not graceful [12].
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Gi: Gy : G3:

Figure 2: Three graphs that are not graceful

One of the best known conjectures dealing with graceful graphs involves
trees and is due to Kotzig and Ringel (see {17]).

The Graceful Tree Conjecture FEvery nontrivial tree is graceful.

The gracefulness grac(G) of a graph G with V(G) = {v1,v2,...,vn} is
the smallest positive integer k for which it is possible to label the vertices
of G with distinct elements of the set {0,1,2,...,k} in such a way that
an edge is labeled as above and distinct edges receive distinct labels. The
gracefulness of every such graph is defined, for if we label v; by 2¢~! for
1 <i < n, then a vertex labeling with this property exists. Thus, if G is a
graph of order n and size m, then m < grac(G) < 2"~L. If grac(G) = m,
then G is graceful. The gracefulness of a graph G can be considered as a
measure of how close G is to being graceful — the closer the gracefulness
is to m, the closer the graph is to being graceful. The exact values of
grac(K,) were determined for 1 < n < 10 in [20]. For example, grac(K,) =
6, grac(Ks) = 11 and grac(Ks) = 17. The exact value of grac(K,,) is
not known in general, however. On the other hand, Erd6s showed that
grac(K,) ~ n? (see [20]).

3 Edge-Graceful Graphs

In 1985 Lo [25] introduced a dual type of graceful labeling - this one dealing
with edge labelings. Let G be a connected graph of order n > 2 and size
m. For a vertex v of G, let N(v) denote the neighborhood of v. An edge-
graceful labeling of G is a bijective function f : E(G) — {1,2,...,m} that
gives rise to a bijective function f' : V(G) — {0,1,2,...,n — 1} given by
f'(v) = ¥y enw) f(uv), where the sum is computed in Z,. A graph that
admits an edge-graceful labeling is called an edge-graceful graph. Figure 3
shows two edge-graceful graphs Cs and K 4 together with an edge-graceful
labeling for each of them. It is well known that C,, is graceful if and only
if n = 0,3 (mod 4) and so Cs is not graceful.

It was observed in [25] that if G is an edge-graceful graph of order n

and size m, then
ny _,/m+1
(2) = 2( 9 ) (mod n). (1)
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Figure 3: Two edge-graceful graphs

Since (3) = 2(™f) if G is a tree of order n, a tree satisfies (1) if and only
if its order is odd. It is known that the path P, of odd order n is edge-
graceful. It was conjectured by Lee [24] that every nontrivial tree of odd
order is edge-graceful. In fact, it was also conjectured by Lee [24] that every
connected graph of order n with n # 2 (mod 4) is edge-graceful. Among
the results obtained on edge-graceful graphs are the following:

1. The complete graph K,, is edge-graceful if and only if n # 2 (mod 4).
2. Every odd cycle is edge-graceful.

3. The Cartesian product C,,, O C,, is edge-graceful if and only if m and
n are both odd.

It was observed in (21] that in the definition of an edge-graceful labeling
of a connected graph G of order n > 2 and size m, the edge labeling f is
required to be one-to-one. Since, however, the induced vertex labels f'(v)
are obtained by addition in Z,, the function f is actually a function from
E(G) to Z,, and in general is not one-to-one. Dividing m by n, we obtain
m = nqg+r, where ¢ = |m/n| and 0 < < n— 1. Hence, in an edge-
graceful labeling of G, ¢ + 1 edges are labeled i for each ¢ with 1 <7 <r
and q edges are labeled i for each ¢ with r +1 < ¢ < n (in Z,). Thus, this
edge labeling f : E(G) — Z, is a one-to-one function only when m =n—1
or m = n. This observation gives rise to another concept (see [21]).

4 Modular Edge-Graceful Graphs

Let G be a connected graph of order n > 3 and let f : E(G) — Z,,
where f need not be one-to-one. Let f' : V(G) — Z, be defined by
f'(v) = Yuen(w f(xv), where the sum is computed in Zj. If f' is one-
to-one, then f is called a modular edge-graceful labeling and G is a modular
edge-graceful graph. Consequently, every edge-graceful graph is a modular
edge-graceful graph. This concept was introduced in 1991 by Jothi [19]
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under the terminology of line-graceful graphs (also see [17]). The graphs
G, = C,; and G; in Figure 4 are both modular edge-graceful. Modular
edge-graceful labelings are shown in Figure 4 as well. In fact, the graph G,
is neither graceful nor edge-graceful.

Gi=0Cy: 3 0 Gs: 2 3
3 0
Figure 4: Two modular edge-graceful graphs

It is known that if G is a connected graph of order n > 3 for which
n =2 (mod 4), then G is not modular edge-graceful. Furthermore, it was
conjectured that if T is a tree of order n > 3 for which n # 2 (mod 4), then
T is modular edge-graceful (see [17]). This conjecture was verified in (22].
In fact, the conjecture holds not only for trees but for all connected graphs
(see [22]).

Theorem 4.1 A connected graph of order n > 3 is modular edge-graceful
if and only if n # 2 (mod 4).

For every connected graph G of order n, there is a smallest integer
k > n for which there exists an edge labeling f : E(G) — Zj such that the
induced vertex labeling f' : V(G) — Zi defined by f'(v) = }_ e vy f(w0),
where the sum is computed in Zy, is one-to-one. The number & is called the
modular edge-gracefulness meg(G) of G. Thus, meg(G) > n and meg(G) =
n if and only if G is a modular edge-graceful graph of order n. If G is not
modular edge-graceful, then meg(G) > n+1. As with the gracefulness of a
graph, the modular edge-gracefulness of a graph G is a measure of how close
G is to being modular edge-graceful. The number meg(G) was determined
for every connected graph G in [22)].

Theorem 4.2 If G is a nontrivial connected graph of order n > 6 that is
not modular edge-graceful, then meg(G) =n + 1.

If G is a modular edge-graceful spanning subgraph of a graph H where
G and H are connected, then a modular edge-graceful labeling of G can
be extended to a modular edge-graceful labeling of H by assigning the
label 0 to each edge of H that does not belong to G. Modular edge-
graceful labelings of a graph that assigns the label 0 to some edges of
the graph play an important role in establishing Theorems 4.1 and 4.2.



For this reason, those modular edge-graceful labelings in which 0 is not
permitted were investigated in [23]. This gives rise to another concept
and to other problems. More formally, for a connected graph G of order
n > 3, let f: E(G) — Z, — {0}, where f need not be one-to-one and let
f': V(G) = Z, be defined by f'(v) = 3 ey f(uv), where the sum is
computed in Z,,. If f/ is one-to-one, then f is called a nowhere-zero modular
edge-graceful labeling and G is a nowhere-zero modular edge-graceful graph.
A characterization of connected nowhere-zero modular edge-graceful graphs
was established in [23].

Theorem 4.3 A connected graph G of order n > 3 is nowhere-zero mod-
ular edge-graceful if and only if

() n# 2 (mod 4),
(i) G # K3 and
(3it) G is not a star of even order.

For every connected graph G of order n, there is a smallest integer £ > n
for which there exists an edge labeling f : E(G) — Z; — {0} such that the
induced vertex labeling f’ : V(G) — Zj defined by f'(v) = }_,en(w) f(w0),
where the sum is computed in Zj, is one-to-one. This number k is referred
to as the nowhere-zero modular edge-gracefulness of G and is denoted by
nzg(G). Thus, nzg(G) = n if and only if G is nowhere-zero modular edge-
graceful and so nzg(G) > n + 1 if G is not nowhere-zero modular edge-
graceful. For a connected graph G of order n > 3 with n # 2 (mod 4) that
is not nowhere-zero modular edge-graceful, the exact value of nzg(G) has
been determined (see [23]).

Theorem 4.4 If G is a connected graph of order n > 3 that is not
nowhere-zero modular edge-graceful, then nzg(G) € {n + 1,n + 2}. Fur-
thermore,

(2) if n # 2 (mod 4), then nzg(G) = n+ 1 if and only if G = K3 and
nzg(G) = n+ 2 if and only if G is a star of even order.

(i) if n =2 (mod 4), then nzg(G) = n + 2 if and only if G is a star.

5 Graceful Colorings

Graceful labelings have also been looked at in terms of colorings. A rainbow
vertex coloring of a graph G of size m is an assignment f of distinct colors
to the vertices of G. If the colors are chosen from the set {0,1,...,m},
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resulting in each edge uv of G being colored f'(uv) = |f(u) — f(v)| such
that the colors assigned to the edges of G are also distinct, then this rainbow
vertex coloring results in a rainbow edge coloring f' : E(G) — {1,2,...,m}.
So, such a rainbow vertex coloring is a graceful labeling of G.

Inspired by graceful labelings and proper colorings in graphs, another
type of vertex coloring was introduced in [4] that induces an edge coloring,
where both colorings are proper rather than rainbow. It is useful to describe
notation for certain intervals of integers. For positive integers a,b with
a<b, let [a,b) = {a,a+1,...,b} and [b] = [1,b].

A graceful k-coloring of a nonempty graph G is a proper vertex coloring
¢ : V(G) — [k], where k > 2, that induces a proper edge coloring ¢’ :
E(G) — [k — 1] defined by ¢/(uv) = |e(u) — ¢(v)|. A vertex coloring ¢ of a
graph G is a graceful coloring if ¢ is a graceful k-coloring for some k € N.
Note that in a graceful labeling of a nonempty graph of size m, the colors
are chosen from the set {0,1,...,m} and so the color 0 can be used; while
in a graceful coloring, each color is a positive integer. The minimum k for
which G has a graceful k-coloring is called the graceful chromatic number
of G, denoted by x4(G). For example, Figure 5 shows a graceful 5-coloring
of the cube Q3 and so x4(Q3) < 5. In fact, x,(Q3) = 5 as we will soon see.

Q ®

T ]
6

© )

Figure 5: A graceful 5-coloring of Q3

There are immediate lower and upper bounds for the graceful chromatic
number of a graph, as observed in [4].

Observation 5.1 If G is a nontrivial connected graph of order n, then
Xg(G) exists. Furthermore,

X(G) < x4(G) < grac(G) < 2"

Figure 6 shows two graceful graphs K4 and Cy of order 4 together with
a graceful coloring for each of these two graphs. In fact, x,(K4) = 5 <
grac(K4) = 6 and x,(C,) = grac(Cy) = 4.
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Figure 6: Graceful colorings of K4 and Cj

For a graceful k-coloring ¢ of a graph G, the complementary coloring
t: V(G) — [k] of G is a k-coloring defined by &(v) = k + 1 — ¢(v) for each
vertex v of G. If zy € E(G), then the color &(zy) of zy induced by € is
d(zy) = [e(z)—2@)l =Il(k+1) - c(z)] - [(k+1) - c(v)]]
= le(z) —c(y)] = ¢ (zy).

Thus, as with graceful labelings, the complementary coloring of a grace-
ful coloring of a graph is also graceful. Some useful facts about graceful

colorings are described in [4].

* If H is a subgraph of a graph G, then x,(H) < x,(G).

* If G is a disconnected graph having p components G1,Ga,...,G) for
some integer p > 2, then
Xg(G) = max{x¢(Gi): 1 <i < p}. (2)

* If G is a nontrivial connected graph, then
Xg(G) 2 max{x(G),x'(G)} + 1. (3)

By (2), it suffices to consider only nontrivial connected graphs. Since
Xg(Ki1n-1) = X'(K1,n-1) + 1, the bound in (3) is attained for all stars
and so is sharp. There are bounds for the chromatic number and chromatic
index of a graph G in terms of its maximum degree A(G). By Brooks’
theorem (6], x(G) < A(G) +1 for every graph G and, when G is connected,
x(G) = A(G) + 1 if and only if G is a complete graph or an odd cy-
cle. Furthermore, by Vizing’s theorem [27], A(G) < X'(G) £ A(G) +1
for every nonempty graph G. Thus, if G is a nonempty graph, then
Xg(G) = A(G) + 1. In fact, it was observed in (4] that if G is an r-regular
graph where 7 > 2, then x4(G) > r + 2. As we saw in Figure 5, the cubic
graph Q3 has a graceful 5-coloring and so x,4(Q3) = 5.

If ¢ is a graceful coloring of a nontrivial connected graph G and v €
V(G), then ¢ must assign distinct colors to the vertices in the closed neigh-
borhood N[v] of v. Thus, if u,w € V(G) such that u # w and d(u,w) < 2,
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then c(u) # c(w). Furthermore, if (z,y,z) is an  — z path in G, where
c(z) > c(z), say, then c(z) — c(y) # c(y) — c(z) and so c(y) # ﬂ#ﬂ
Thus, we have the following useful observations (see [4]).

Observation 5.2 Let c: V(G) = [k}, k > 2, be a coloring of a nontrivial
connected graph G. Then c is a graceful coloring of G if and only if

(i) for each vertex v of G, the vertices in the closed neighborhood of v are
assigned distinct colors by c and

.. . . +c(z
(&) for each path (z,y, z) of order 3 in G, it follows that c(y) # ﬂizu—l

Observation 5.2 provides a lower bound for a special class of connected
graphs. The diameter diam(G) of a connected graph G is the greatest
distance between two vertices of G.

Corollary 5.3 If G is a connected graph of order n > 3 with diameter 2,
then x4(G) > n.

For example, there are exactly five connected cubic graphs with diame-
ter 2. In fact, the graceful chromatic number of each of these graphs equals
its order. Figure 7 shows a graceful coloring for each of these five graphs.
This example illustrates a conjecture concerning the graceful chromatic
numbers of connected cubic graphs.

1 (68X _AD)
4 ° 0&0

Figure 7: Graceful colorings of five connected cubic graphs with diameter 2
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Conjecture 5.4 If G is a connected cubic graph, then 5 < x4(G) < 10.

There are infinite classes of connected graphs having diameter 2 where
the graceful chromatic number of each graph equals its order, as well as an
infinite classes of connected graphs having diameter 2 where the graceful
chromatic number of each graph exceeds its order. The following result
describes one such class of graphs in the second case.

Proposition 5.5 If G is a nontrivial connected graph of order n such that
§(G) > n/2, then x4(G) > n.

The graceful chromatic numbers of graphs belonging to some well-known
classes of graphs were determined in [4], which are stated below.

1. If G is a complete bipartite graph of order n > 3, then x,4(G) = n.
2. For each integer n > 4, x4(C5) =5 and x4(Cr) = 4 otherwise.

3. For each integer n > 4, x4(Ps) = 3 and x4(P,) =4 forn > 5.

4. If W, is the wheel of order n > 6, then x,(W,) = n.

Even though the complete graphs form a well-known class of connected
graphs, it appears challenging to determine the exact value of the graceful
chromatic number of complete graphs in general. Since every two vertices
of K., are adjacent and K, is (n—1)-regular, it follows that x,(K,) > n+1.
Furthermore, it was shown in (5] that

3n?2—n @

Xg(Kn) <

for each integer n > 5. Since x4(Kn) < grac(K,) and grac(K,) ~ n?, it is
almost certain that there is an upper bound for x4(K,) in terms of n that
is superior to that described in (4).

Another class of connected graphs of diameter 2 has been studied in [4].
For integers p and k& where p > 2 and k > 3, let Kj(;) denote the regular
complete k-partite graph, each of whose partite sets consists of p vertices.
Thus, the order of Ky is n = kp and the degree of regularity is r =
ﬁ'—’;:—ll = (k — 1)p. The following result gives an upper bound for the
graceful chromatic number of Ky (,).

Theorem 5.6 For integers p and k where p > 2 and k > 3,

(2&? -2)p—2"-i-” +1  ifk is even

Xg(Kkp)) <
(2"—3-3 -3)p-2"—3—‘ +1 ik is odd.
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For example, xo(K4(q)) < 23 by Theorem 5.6. A graceful coloring c :
V(Ky(4)) = (23] of K44 using colors from the set [23] is shown in Figure 8.
Note that the seven colors 9,10,...,15 € [23] are not used in this coloring.

®06 6

ONONONG,
@

Figure 8: A graceful coloring of Ky,

The upper bound for x,(Kj(p)) presented in Theorem 5.6 is almost
certainly not sharp. While x4(Kppp) < 5p — 1 for p > 2 according to
Theorem 5.6, it was shown in [4] that for each integer p > 2,

4p—1 if piseven

K < 5
Xo(Kppp) < { 4p if p is odd. ®)

For example, if p = 5, then x,(Ks55) < 20 by (5). A graceful coloring
of Ks5,5 using colors from the set [20] is shown in Figure 9. In fact, if
c: V(Ksps) — [20] is a graceful coloring of K555, then ¢ cannot assign
any of 8,9,10,11,12 as a color to a vertex of Ks 5 5.

In fact, it was conjectured in [4] that the upper bound in (5) is, in fact,
the actual value of x4(Kj p,p) for every integer p > 2 As an illustration, we
verify this for p = 4.

Proposition 5.7 x,(K4,4,4) = 15.

Proof. By (5), xg(K4,4,4) < 15. Hence, it remains to show that there is
no graceful 14-coloring of G = K4 4,4. Assume, to the contrary, that G has
a graceful coloring ¢ : V(G) — [14]. Since diam(G) = 2, no two vertices of
G are assigned the same color. Thus, 12 colors from the set [14] are used
in this coloring.
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Figure 9: A graceful coloring of K555

First, we show that no vertex of G is assigned the color 7 or 8. Assume,
to the contrary, that some vertex of G is assigned one of these colors. Since
the complementary coloring of ¢ is also graceful coloring, we may assume
that c(v) = 7 for some vertex v of G, say v € V}, one of the three partite
sets of G. Now consider the six 2-element sets {6, 8}, {5,9}, {4,10}, {3,11}, -
{2,12}, {1,13}. Since at most three of these sets contain a color assigned
to a vertex in V; and at most two of these sets contain a color not used by
the coloring c, there is a 2-element set each of whose colors is assigned to
a vertex not in V;. However then, two edges incident with v are assigned
the same color, which is impossible. Hence, no vertex of G is assigned the
color 7 or 8.

Therefore, the vertices of G are assigned colors from the set [6] U [9, 14].
Let V;,V,, V3 be the partite sets of G. We may assume that 6 € ¢(V}).
Necessarily, one element from each of the 2-element sets {3,9}, {2,10}
and {1,11} belongs to ¢(V;). We consider two cases, according to whether
3 ec(Vy) or 9 €c(V).

Case 1. 3 € ¢(V;). Thus, one element from each of the two sets {2, 4}
and {1,5} belongs to ¢(V}). Since 6 € ¢(V}), one element from each of the
sets {2,10} and {1,11} belongs to ¢(V}). Therefore, ¢(V1) = {1,2,3,6}.
Since 4 € ¢(V;) for i = 2,3, the vertex colored 4 is incident with two edges
colored 2, which is impossible.

Case 2. 9 € c¢(V,). Hence, {6,9} C c(V1). Since 6 € ¢(V1), one element
from each of the sets {2,10} and {1,11} belongs to ¢(V}). Similarly, since
9 € ¢(V1), one element from each of the sets {5,13} and {4, 14} belongs to
¢(V1). This is impossible. =
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A lower bound for the graceful chromatic number of a connected graph
was established in {13] in terms of its minimum degree.

Theorem 5.8 If G is a connected graph with minimum degree 6(G) > 2,

then (G)> [56(0)"

It was observed in [13] that the lower bound for the graceful chromatic
number of a graph presented in Theorem 5.8 is best possible. For example,
the graph G of Figure 10 has §(G) = d = 2 and graceful chromatic number
xq¢(G) = [%fl = 4. A graceful 4-coloring of G is shown in the figure.

Figure 10: A graph G with x,4(G) = [%]
The graph G of Figure 10 gives rise to the following question.

Problem 5.9 Is there an infinite class of connected graphs G such that

0(G) =2 and
%@ = [52):

6 Graceful Colorings of Trees

Graceful chromatic numbers have been investigated for several classes of
trees. A caterpillar is a tree T of order 3 or more, the removal of whose
leaves produces a path (called the spine of T'). Thus, every path, every
star (of order at least 3) and every double star (a tree of diameter 3) is a
caterpillar.

Theorem 6.1 IfT is a caterpillar with mazimum degree A > 2, then
A+1<x(TY<SA+2.

Furthermore, xg(T) A + 2 if and only if T has at least one vertex of
degree A that is adjacent to two vertices of degree A in T.

In general, there is an upper bound for the graceful chromatic number
of a tree in terms of its maximum degree.
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Theorem 6.2 IfT is a nontrivial tree with mazimum degree A, then
5A
W< %]

The upper bound is Theorem 6.2 is best possible. In order to show this,
the graceful chromatic numbers of trees belonging to a particular class of
trees were investigated in [13]. For each integer A > 2, let Ta,; be the star
Ki,a. The central vertex of Ta,1 is denoted by v. Thus, degv = A and
all other vertices of Th,; have degree 1. For each integer h > 2, let Ta
be the tree obtained from Ta n-1 by identifying each end-vertex with the
central vertex of the star Kj a-1. The tree Ta p is therefore a rooted tree
(with root v) having height A. The vertex v is then the central vertez of
Ta,n- In Ta n, every vertex at distance less than h from v has degree A;
while all remaining vertices are leaves and are at distance h from v. Thus,
T32 = Ps, while T3 5 and T2 are shown in Figure 11.

X &
7

Figure 11: The trees T3 3 and Tg o

For integers A and h with A > 2 and h € {2, 3,4}, the graceful chro-
matic numbers of the trees Ta » were determined in [13].

Theorem 6.3 For each integer A > 2,
(1) xo(Ta2) = [34+].

(i) xg(Ta,3) = [125H].

(i) xg(Taa) = [£45E1].

The results obtained in Theorem 6.3 on Ta , for A > 2and h € {2,3,4}
suggest the following conjecture.
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h
Conjecture 6.4 For an integer h > 2, let o5 = 92h=3 4 Z 2%-4 Then

i=2

onA+1
Xo(Tam) = | Bt |

Theorem 6.5 Let A > 2 be an integer. If h is an integer such that
h>2+4 I_%J, then
54
Xg(Tan) = [T] .

The following two results are consequences of Theorem 6.5.
Corollary 6.6 For each integer A > 2,

. 5A
A Xo(Tan) = H] -

Corollary 6.7 If T is a tree with mazimum degree A > 2 containing a

vertex v such that every vertex of T within distance 2 + [% J of v also has
degree A, then xo(T) = [32].

7 Closing Statements

We saw that if G is a nontrivial connected graph, then
Xg(G) = max{x(G),x'(G)} + 1.

Since there are relatively few graphs G for which x4(G) = x(G) + 1 or
Xq(G) = X'(G) + 1, this gives rise to the following natural question.

Problem 7.1 Under what conditions does a connected graph G satisfy
x3(G) = x(G) +1 or x4(G) = x'(G) +17

We saw that if G is a connected graph of order n with diameter 2, then
Xg¢(G) = n. Thus, we have the following question.

Problem 7.2 For each integer k € N, does there exist a connected graph
G of order n such that xo(G) =n +k?

Since it is evidently challenging to determine the exact value of the
graceful chromatic number of a given graph, it appears to be more prac-
tical to establish bounds for this parameter in terms of other well-known
graphical parameters. We conclude with two questions related to the grace-
ful chromatic number of a connected graph or a graceful graph in terms of
the size of the graph.
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Problem 7.3 Let G be a connected graph of size m. Is there a function
f(m) such that x4(G) < f(m)?

Problem 7.4 Let G be a graceful graph of order m. Is there a function
g(m) such that x4(G) < g(m)?
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