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Abstract

A Hamiltonian graph G is said to be ¢-path-Hamiltonian, where £
is a positive integer less than or equal to the order of G, if every path
of order £ in G is a subpath of some Hamiltonian cycle in G. The
Hamiltonian cycle extension number of G is the maximum positive
integer L for which G is ¢-path-Hamiltonian for every integer £ with
1 £ £ < L. Hamiltonian cycle extension numbers are determined for
several well-known cubic Hamiltonian graphs. It is shown that if G
is a cubic Hamiltonian graph with girth g, where 3 < g < 7, then G
is ¢-path-Hamiltonian only if 1 < £ < g.

Keywords: Hamiltonian graph, £-path-Hamiltonian graph, Hamilto-
nian cycle extension number.
AMS subject classification: 05C38, 05C45, 05C75.

Introduction

The Irish mathematician and physicist William Rowan Hamilton discovered
a noncommutative algebra he referred to as icosian calculus. This algebra
was based on three symbols i, & and A, all roots of unity, with i2 = 1,
k% =1 and A% = 1, where A = ix. While this algebra is not commutative,
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it is associative. These elements generate a group isomorphic to the group
of rotations of the regular dodecahedron. Hamilton saw that these symbols
relate to journeys about a dodecahedron which led to his invention of a game
he called the Icosian Game. One goal of this game was to discover a closed
walk moving along the edges of the dodecahedron that visits each vertex
exactly once. Hamilton actually envisioned this game as a two-person game,
where the first player provides conditions that the second player was to
follow as one proceeds about the dodecahedron. In one version of this
game described by Hamilton, there are 20 markers, numbered 1 to 20. The
first player is to place markers 1, 2, 3, 4, 5, in order, on five consecutive
vertices of a dodecahedron. The second player is then to place the remaining
markers 6, 7, ..., 20, in order, on 15 consecutive unmarked vertices, such
that markers 5 and 6, and 20 and 1 appear on consecutive vertices. This
is the same as beginning with any path of order 5 on the graph of the
dodecahedron H and try extending the path to form a Hamiltonian cycle
in H. From his icosian calculus, Hamilton knew that this could always be
done, no matter which five consecutive vertices are chosen first. In terms
of graphs, for every path P of order 5§ (or less) in H, there always exists
a Hamiltonian cycle C of H such that P is a path on C. What Hamilton
observed for paths of order 5 on the graph H does not hold for all paths
of order 6. As illustrated in Figure 1, the path of order 6 {drawn in bold
edges) with initial vertex s cannot be extended to a Hamiltonian cycle on
H, since the only way to reach y is through = and then we cannot return
to s. Hamilton never mentioned this however. Hamilton's observation

Figure 1: The graph H of the dodecahedron

led a concept that is defined for every Hamiltonian graph. This concept
was introduced by Chartrand in 2013, first studied in [1] and then further
studied in (3, 4]. We refer to the books [2, 5] for graph theory notation and
terminology not described in this paper.

A Hamiltonian graph G of order n > 3 is called £-path-Hamiltonian,
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for an integer £ with 1 < ¢ < n, if for every path P of order ¢ in G,
there exists a Hamiltonian cycle C of G such that P lies on C. Certainly,
every Hamiltonian graph is 1-path-Hamiltonian. The largest integer L for
which a Hamiltonian graph G is ¢-path-Hamiltonian for every integer £ with
1 < £ < L is the Hamiltonian cycle extension number hce(G). Therefore,
1 < hee(G) £ n. If G is a Hamiltonian graph for which some automorphism
maps any edge of G onto any other edge of G, then hce(G) > 2. In fact,
hce(G) = 2 if and only if every edge of G lies on some Hamiltonian cycle
of G but some path of order 3 in G does not lie on any Hamiltonian cycle
of G. For example, the graph G of order 5 in Figure 2 has Hamiltonian

Figure 2: A graph G with hce(G) = 2

extension number 2 since every edge of G lies on a Hamiltonian cycle but a
3-path (u,v,w), where v is the vertex of degree 4 and uw ¢ E(G), cannot
be extended to a Hamiltonian cycle in G. Furthermore, hce(H) = 5 for the
graph H of the dodecahedron.

The following problem dealing with this topic is still open in general.

Problem 1.1 If G is an ¢-path-Hamiltonian graph for some £ > 2, is G
also (€ — 1)-path-Hamiltonian?

If the question asked in Problem 1.1 has an affirmative answer, then
the Hamiltonian extension number of a Hamiltonian graph G can then be
defined as the largest positive integer £ for which G is ¢-path-Hamiltonian.
Among the results obtained in [1, 3, 4] are the following.

Theorem 1.2 Let G be a Hamiltonian graph of order n.

(a) Ifn—2 < €< n, then the graph G is ¢-path-Hamiltonian if and only
if G € {Cn, K, Knjan/2}-
(b) The graph G is (n — 3)-path-Hamiltonian if and only if
(i) G € {Cn,Kn,Kpnjansa} or
(ii) G € {Ps + P,C5,2P3,C4 + C3} or
(iii) 6(G) = n — 2.
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Certainly, the graph H of the dodecahedron is a cubic Hamiltonian
graph. In this work, we study the Hamiltonian cycle extension numbers of
cubic Hamiltonian graphs in general. First, the following is a consequence
of Theorem 1.2.

Corollary 1.3 Let G be a cubic Hamiltonian graph of even order n > 4.

(a) If n = 4, then G = K4 and so G is £-path-Hamiltonian if and only if
1<¢<4.

(b) If n =6, then G € {K3,3,C30K3}. Furthermore,
x the graph K3 3 is €-path-Hamiltonian if and only if 1 < £ <6 and
* the graph C3 0O K, is £-path-Hamiltonian if and only if 1 < £ < 3.

(c) If n > 8, then G is £-path-Hamiltonian only if 1 <{<n —4.

To illustrate these concepts, we determine the Hamiltonian cycle ex-
tension numbers of two well-known classes of cubic Hamiltonian graphs,
namely Mobius ladders and prisms. A Mobius ladder M, of even or-
der n > 4 is obtained by joining diametrically opposite vertices of the
cycle C,,. Hence, My = K4 and Mg = K3 3.

Proposition 1.4 For the Mébius ladder M,, of even order n > 8,

_ [ 38 ifn=0(mod4)
hCe(Mn)_{ 4 ifn-="2(mzd 4)-

Furthermore, M, is £-path-Hamiltonian if and only if 1 < £ < hee(M,).

Proof. Let n = 2k for some integer k > 4 and construct the graph G =
M, from the n-cycle C = (v, va,...,vn,v1) by adding the edge v;viyi for
1 <i < k. It is straightforward to verify that every £-path in M,, is on a
Hamiltonian cycle in G for 1 < £ < 3. Also, if n = 2 (mod 4), then every
4-path is on a Hamiltonian cycle in G. Thus, hee(M;) > 3 if n = 0 (mod 4)
and hce(M,,) > 4 if n =2 (mod 4).

Consider the path P given by

P — ('Ul, Vk+1),Vk+2, 'vz) ifn=0 (mod 4)
(v1,v2,V3, V43, Vksa) if n =2 (mod 4).

Then no Hamiltonian cycle in G contains P as a subpath. Since P is on a
Hamiltonian path in G, the result now follows. [

Similarly, it can be shown that for prisms C,,/ O K3 of even order n > 6,

3 ifn=2(mod 4)

hee(Cr/2 O K3) = { 4 ifn=0 (mod 4).
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Furthermore, C,,/; O K3 is ¢-path-Hamiltonian if and only if 1 < ¢ <
hce(Cn/2 O K3). Therefore, we have the following result on these two
classes of cubic Hamiltonian graphs.

Proposition 1.5 If G is either a prism C, ;2 O Py or a Mébius ladder
M, of even order n > 6, then
6 ZfG = M6 = K3‘3
hee(G) = ¢ 4 ifn > 8 and G is bipartite
3  otherwise.

Furthermore, G is £-path-Hamiltonian if and only if 1 < € < hee(G).

2 Cubic Hamiltonian Graphs of Small Order

In this section, we investigate the Hamiltonian cycle extension numbers
of several cubic Hamiltonian graphs whose order is 20 or less. All five
connected cubic graphs of order 8 are shown in Figure 3, each of which
is Hamiltonian. Every edge belongs to a Hamiltonian cycle. Thus, each

Figure 3: The five connected cubic graphs of order 8

of these graphs is ¢-path-Hamiltonian for £ = 1,2. The Hamiltonian path
whose edges are represented by solid line segments in each G; shows that G;
is ¢-path-Hamiltonian only if { < 2fori =1, < 3fori € {2,3,4} and £ < 4
for ¢ = 5 since the path in bold and the shaded vertices cannot belong to
a common cycle. In fact, hce(G,) = 2, hce(G2) = hce(G3) = hee(G4) = 3
and hce(Gs) = 4.

There are exactly nineteen connected cubic graphs of order 10, seventeen
of which are Hamiltonian. By examining each of them, the twenty two cubic
Hamiltoian graphs of order 8, 10 can be classified as follows.
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Observation 2.1 Let G be a cubic Hamiltonian graph of ordern € {8,10}.
Then G is £-path-Hamiltonian if and only if 1 < £ < hce(G), where

e hece(G) = 1 if and only if K(G) = 2 and G contains an edge Ty such
that {z,y} is a cut-set of G;

o hce(G) = 2 if and only if K(G) = 2 and zy ¢ E(G) whenever {z,y}
s a cut-set of G;

e hce(G) = 3 if and only if K(G) = 3 and G is not bipartite;

o hce(G) = 4 if and only if K(G) =3 and G is bipartite.

Regarding the connectivity of a graph, let us state a useful observation.

Observation 2.2 If G is a Hamiltonian graph that is not 3-connected,
then either G itself is a cycle or G is not £-path-Hamiltonian for £ > 3.

For this reason, we only consider cubic Hamiltonian graphs that are
3-connected. Note also that there exists a cubic Hamiltonian graph that
is 3-connected but not ¢-path-Hamiltonian for £ > 3. For example, the
graph shown in Figure 4 is 3-connected and 2-path-Hamiltonian while no
Hamiltonian cycle contains (v;,v12,vs) as a subpath, which implies that
Observation 2.1 does not hold for n = 12.

v1

V12 V2
n1 v3
Y10 V4
Vg s
vs Ve
vy

Figure 4: A 3-connected cubic Hamiltonian graph of order 12

We saw that the graph H of the dodecahedron of order 20 is ¢-path-
Hamiltonian if and only if 1 < £ < 5. Thus, hce(H) = 5. For quite some
time, it was not known whether there are other cubic Hamiltonian graphs
G of order 20 with hce(G) = 5. We now present an affirmative answer to
this question.
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Theorem 2.3 The Hamiltonian extension number of the cubic Hamilto-
nian graph G of order 20 shown in Figure 5 equals 5.

Figure 5: A cubic Hamiltonian graph of order 20

Proof. Since the 6-path (vy,v2,v3, Vs, vs, v20) cannot be extended to any
Hamiltonian cycle in G, it suffies to show that every path of order at most 5
lies on a Hamiltonian cycle in G. Every cubic Hamiltonian graph is 3-edge-
colorable. Consider the 3-edge-coloring of G shown in Figure 6. There are

Figure 6: A 3-edge-coloring of G

exactly twelve types of 5-paths, according to how the four edges of each path
is colored. Furthermore, each of these twelve 5-paths lies on one of the four
Hamiltonian cycles in G shown in Figure 7. Thus, G is 5-path-Hamiltonian.

If P is an ¢-path, where 1 < £ < 4, then P can be extended to a 5-path
as the girth of G is 6, which then can be extended to a Hamiltonian cycle as
we already verified. Consequently, G is ¢-path-Hamiltonian for 1 < £ <5
but not 6-path-Hamiltonian and so hce(G) = 5. ]
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O=—O=0--0=0 ©0=0~0-0—-0 O=0--0=0--0
000 - -0—0 ©0—0--0=0--0
O=-O=0—0--0
©O=0--0—0-0
0—0--0—0-0

Figure 7: Four Hamiltonian cycles and twelve types of 5-paths in G

There are also cubic Hamiltonian graphs of order 20 that are 6-path-
Hamiltonian. For example, the Desargues graph (the generalized Petersen
graph G(10, 3), shown in Figure 8) is ¢-path-Hamiltonian for 1 < £ < 6
(but not 7-path-Hamiltonian).

Figure 8: The Desargues graph

3 Two Classes of Cubic Hamiltonian Graphs

In this section, we determine the Hamiltonian cycle extension numbers of
two classes of cubic Hamiltonian graphs. We begin with some additional
definitions and notation. Let r, g be integers with r > 2, g > 3. An (7, g)-
graph is an r-regular graph having girth g. The order of an (r, g)-graph is
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bounded below by the Moore bound M(r, g) given by

(9-3)/2 .
1+ Y r(r—1)" ifgisodd
M(r,g) = (9-2;720
2 Z (r—1) if g is even.
1=0

If G is a (3, g)-graph of order 20 (Hamiltonian or not), then 3 < g < 6.
We will show later (in Theorem 4.9) that a cubic Hamiltonian graph whose
girth g is at most 7 is é-path-Hamiltonian only if 1 < £ < g. As a result, a
cubic Hamiltonian graph of order at most 28 (= M (3, 8) —2) and girth g is
¢-path-Hamiltonian only if 1 < ¢ < g. Therefore, every cubic Hamiltonian
graph of order 20 is ¢-path-Hamiltonian only if 1 < ¢ < 6.

3.1 The Heawood Graph and Related (3,6)-Graphs

The graph G of Figure 5 is obtained from a 20-cycle (v;,v2,...,v2, v21 =
v;) by adding ten edges voivei4s (1 < i < 10), where the subscripts are
expressed modulo 20. More generally, for each even integer n > 8, we are
able to obtain a cubic bipartite Hamiltonian graph H(,) from an n-cycle
(v1,v2,...,Vn,Ung1 = v1) by adding n/2 edges vpivaiys (1 < i < n/2).
Thus, G = H(g) for the graph G of Figure 5. Furthermore, Hg) is the
cube (the graph Gs in Figure 3) and H(yo) is the Mébius ladder Myo. The
girth of H(,) equals 4 for n € {8,10,12} and is 6 for n > 14. Also, H(y4) is
the Heawood graph, which is the unique (3, 6)-graph of order M(3,6) = 14.
The graph H(y6) is known as the Mobius-Kantor graph (the generalized
Petersen graph G(8,3)).

While we have seen that Hag) is {-path-Hamiltonian if and only if 1 <
£ < 5, one can verify that the Heawood graph H(,4) is £-path-Hamiltonian
if and only if 1 < £ < 6. In fact, the following holds, which can be verified
by considering 3-edge-colorings as done in the proof of Theorem 2.3.

Proposition 3.1 For each even integer n > 8, the graph H(n) is £-path-
Hamiltonian if and only if 1 < £ < hee(H(n)), where

4 ifn=10,12 or n =0 (mod 8)
hee(Hn)) = 5 ifn=18 orn =4 (mod 8) except n =12
6 ifn =2 (mod 4) except n = 10,18.
3.2 Another Class of Cubic Hamiltonian Graphs

There are exactly two (3, 5)-graphs of order M (3,5) = 12. One is the graph
in Figure 4, which is 2-path-Hamiltonian but not 3-path-Hamiltonian. The
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other is shown in Figure 9. The second graph can be obtained from a 9-
cycle Cp = (uy,ug,...,u9,u1) by adding three new vertices w,, wg, w3 and
joining w; to the three vertices u;, u;43,ui+e for 1 < i < 3. Here,

CO = (ul = VU3, Uz = V3, V11, V12, Y5, Vs, V7, Vs, Vg = Ug, v2)

and wy = vy, we = Vg, W3 = V19.

U1
V12 U2
1 v3
V10 V4
Vg Vs
vg Vg
vr

Figure 9: One of the two cubic Hamiltonian graphs of order 12 and girth 5

This suggests another way of constructing cubic Hamiltonian graphs.
For each positive integer k, let G(x) be the graph of order 4k obtained from
a 3k-cycle Cy = (uy,ug,...,usk,u1) by adding k new vertices in the set
W = {w;,wy,...,wr} and joining w; to the three vertices u;, uiyr, Uirar
for 1 < i < k. Thus, the graph in Figure 9 is G(3), while G(;) = K4 and
G(g) is the cube (the graph Gs in Figure 3).

Let us first verify that the graph G(;) is indeed Hamiltonian.

Proposition 3.2 For each positive integer k, the graph G = G is
Hamiltonian and its girth g(G) is given by

_ [ k42 if1<k<3
g(G)‘{ 6 ifk>4.

Proof. Since the result clearly holds for G(;) = K4, we may assume that
k 2> 2. The girth is straightforward to verify. Construct the graph G = Gy,
as described before with V(G) = U U W, where U = {uj,us,...,us}
and W = {w;,w,...,wi}. Let Co = (uy,uy,...,usk, u;) be the 3k-cycle
induced by U. For each integer o € {1,2,...,k}, define the following
sequences

. .
Sa + WayUa Ua+l ty | Wa,Ukta, Ukda—1) Ukta—2; Uk+a—3
’o. "o
Sa ¢ Way Uktar Uk+atl to i Way U2kta) U2k+a—1, U2k+a—2s U2k+a—3
.
Sq + Wa, U2k4a) U2k+a+1s

where the subscripts are expressed modulo 3k. Now the cycle C given by
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Y/ 4 7 1"
L4 (511 t2) Sk—-1, tkv Sk-3, tk_za Sk—5y tk_4v Sk—7, t;c_sv ve 03 85, tga $3, t{h
wy) if k=2 (mod 4)

/ 1" " o 4l
d (311 t,21 s;c—la t;clr 32_31 t;c—2l sk-s; tk-41 3;.:-71 ti_s, LR} 3!,, t8s S5, t6,
s4,t4,w) if k=0 (mod 4
3: %4

o (wy,u1,Uz,...,Uk+2, S5, 55,5, S5, - -5 Sh_1, Sk, wy) if k is odd
is a Hamiltonian cycle in G. ]
Proposition 3.3 The graph G, is -path-Hamiltonian for 1 < ¢ < 4.

Proof. Since the result holds for G(;) = K4, we can suppose once again
that k > 2 and let G = G). If P = (z1,72,%3,24) is a 4-path in G,
then 0 < [V(P)N W| < 2. In fact, there are five possibilities, namely (i)
VP)NnW =0, (ii) V(P)NW = {z1,z4}, (ili) V(P)NW = {z1}, (iv)
V(P)NW = {z;} and d¢,(z1,74) =k — 1 or (v) V(P)NW = {z3} and
dc,(z1,24) = k+ 1. Now suppose that Q is a path of order at most 4 in G.
If k = 2 (mod 4), then there exists a path Q' of order 4 and an isomorphism
¢ of G such that Q C Q' and ¢(Q’) is one of the five 4-paths

(Ukt 1y Uk+2) Uk 43, Uk+4), (W1, %1, U2, W), (W1, Uks1, Uk42, Uk43),
(w1, u2, wa, ugk2), (U2, W2, U2k+2, U2k+1)-

Since the Hamiltonian cycle C we have obtained in the proof of Proposi-
tion 3.2 contains these five 4-paths, it follows that Q can be extended to a
Hamiltonian cycle. One can verify that the same holds for other values of
k in a similar manner. n

For an integer k > 2 and G = Gy, note that d(w, w') > 3 for every two
distinct vertices w,w’ € W. Thus, if P = (2, 29, z3,24,%5) is a 5-path in G
whose central vertex z3 belongs to W, then |V(P)NnW| = 1. Furthermore,
Co — {z172,Z4T5} = Pryi + Pak—i, where i € {—1,0,1}. Let us say that a
5-path P is of type 1 (or a type-1 path) if i = £1 and of type 2 (or a type-2
path) otherwise. In particular, for k > 3, a 5-path P is of type 2 if and only
if dco(xl,xs) =k.

For the Hamiltonian cycle C constructed in the proof of Observation 3.2
and for each w € W, let P(w,C) be the 5-subpath of C whose central
vertex is w. Then every path P(w, C) is of type 1 if k is odd while no path
P(w,C) is of type 1 if k is even. It turns out that this is the case for every
Hamiltonian cycle in G ). We first verify the following.

Proposition 3.4 Let C be a Hamiltonian cycle in Gy, where k > 2. If
the path P(w,,C) is of type 1, then so is P(w,, C).
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Proof. Suppose that P(w;,C) is of type 1. Without loss of generality,
we may assume that P(w;,C) = (z,u1,w, ug4+1,¥) and either (i) (z,y) =
(uak, uk42) or (ii) k > 3 and (z,y) = (u2, ux). Since wyugkyy ¢ E(C), note
that ugkyiugks2 € E(C). Also, if (i) occurs, then ujuz ¢ E(C) and so
woug, ugug € E(C). It then follows that the two end-vertices of P(ws,C)
are uz and either ugy; or ugey;. Similarly, if (ii) occurs, then it can be
shown that the end-vertices of P(ws, C) are ug4+3 and either u; or ugky;.
As a result, P(wz,C) is of type 1. "

Corollary 3.5 Let C be a Hamiltonian cycle in Gy, where k > 2. Then
the k subpaths P(w;,C) (i =1,2,...,k) are of the same type.

For this reason, let us say that a Hamiltonian cycle C in G (k > 2) is
of type 1 if it contains a type-1 path P(w, C) and C is of type 2 otherwise.

If C is a Hamiltonian cycle in Gy (k > 2), then the graph C — W is a
union of k nontrivial paths. With this in mind, let us examine Hamiltonian
cycles in G(x).

Proposition 3.6 Let k > 2 be an integer. A Hamiltonian cycle in Gy,
is of type 1 if and only if k is odd.

Proof. Let G = G (). First, we show that k must be even if G contains a
type-2 Hamiltonian cycle C. To do so, we show that the order of each path
in C — W is either 2 or 4. Since this follows readily when k = 2, assume
that & > 3.

If C — W contains a path of order greater than 4, say (u,us,...,us)
is a path in C — W, then the six edges w;uk+i, witor+i (¢ = 2,3,4) are
in E(C). Since C is of type 2, the path P(ws,C) is of type 2, say the
edges ug4our+3 and ugkpouazk4s are on C. However then, (w2, Ukt2, Uk43,
W3, U2k +3, U2k+2, W2) i8 a 6-cycle in C, which is impossible.

If C — W contains Ps, say (u;,ug,us), as a component, then assume,
without loss of generality, that P(wq,C) = (Uk+1, Uk+2, W2, U2k+2, Udk+1)-
However then, P(ws, C) is a up — ug+4 path, that is, P(ws, C) is of type 1.
This is impossible.

As a consequence, if C is of type 2, then the order of C — W, which
equals 3k, must be even. Thus, if C is of type 2, then k is even.

Next we verify the converse: a Hamiltonian cycle in G is of type 2 if k
is even. Assume, to the contrary, that the statement is false. Let k be the
smallest positive even integer for which G has a type-1 Hamiltonian cycle.
It is straightforward to verify that k > 4 by examining Hamiltonian cycles
in G(g), the cube of order 8.

As before, let us construct G with a 3k-cycle (uy,us, ..., usk, Usk+1 =
u1) and the k vertices in W = {w;,wa,...,wx}. Let C = (vq,v2,...,v4x,
Vak+1 = V1) be a type-1 Hamiltonian cycle in G. Then we may assume that
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B W ={w; =vy : 1 <i) <ip < <i} <4k} and (ii) if vi,v41 €U,
then v; = u; and v;4; = u;4, for some j € {1,2,...,3k}. For each j €
{1,2,...,k}, let Q; be the w;, —w;,,, subpath of C such that V(Q;)NW =
{wi;, wi;,, }. The order n; of Q; satisfies n; = i;41 —i; +3 (mod k). Since
there must exist an integer j such that i; and ¢, are of different parity,
at least one of the k components of C — W of order 3k is of even order.
Consequently, at least one component of C — W is P,. Without loss of
generality, suppose that (ux—1,ux) is a component in C — W. Thus, C =
(Wh—1, Wk—1, Yk, Wk Yarg s - - - » UBs_y» Wh—1), Where o = Bx_1 +1 € {2k, 3k}.
By the symmetry, we may assume that ay = B;x_; = 2k. Therefore, C con-
tains each of the paths Q' = (ugk—2, Usk—1, Wk—1, Uk—1, Uk, Wk, U2k, U2k+1)
and Q" = (ugk—2, u3k—1, Usk, u1) (or its reversal) as a subpath.

We now construct a new graph G’ from G by deleting the eight vertices
Uk—1, Uk, Ugk—1, U2k, Usk—1, U3k, Wk—1, Wk and adding three edges ug_suk+1,
Ugk—2Ugk41, Usk—3%1. Then G’ = G(k_z). Furthermore, replacing Q' and
Q" in C by (ugk—2,uzk+1) and (usk—2,u1), respectively, we obtain a type-1
Hamiltonian cycle in G’. This is a contradiction. n

For k > 2, the graph G(x) is not ¢-path-Hamiltonian for £ = 5,6 as
both type-1 5-paths and type-2 5-paths can be easily extended to 6-paths.
As mentioned in the previous subsection, a cubic Hamiltonian graph whose
girth is at most 7 is £-path-Hamiltonian only if £ does not exceed the girth
of the graph.

Corollary 3.7 The graph G(y) of order 4k, where k is a positive integer,
is £-path-Hamiltonian if and only if 1 <€ < 4.

4 Cubic Hamiltonian Graphs Having Girth
at Most 7

In this section, we show that if G is a cubic Hamiltonian graph with girth
g, where 3 < g < 7, then G is ¢-path-Hamiltonian only if 1 < £ < g. So
we begin with a cubic Hamiltonian graph G whose girth equals g. Let
C = (v,v2,...,v,v1) be a g-cycle in G. If N(v;) = {ve,v5,21} and
N(vg—1) = {vg—2,vg,ug—1}, then uy,uy_1 ¢ V(C). Also, if g > 5, then
u1 # uy_1 and so G contains a (g-+1)-path P = (u3,v1,v2,...,Vg—1,Ug-1)-
No cycle in G contains both P and v, simultaneously. The following is an
immediate consequence.

Observation 4.1 If G is a cubic Hamiltonian graph with girth g > 5,
then G is not (g + 1)-path-Hamiltonian. Hence, 1 < hce(G) < g.

Let C be a Hamiltonian cycle in a cubic Hamiltonian graph G of or-
der n > 8 and girth g. An edge in G that is not on C is called a chord
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of C. If G is a cubic Hamiltonian graph of order n > 4, then there exists
a partition {Ej, F3, E3} of the edge set of G such that each E; contains
exactly n/2 independent edges and the subgraph induced by E; U E3 is an
n-cycle, say C*. Thus, E; is the set of chords of G with respect to C*.

Let Si(G) be the set of i-cycles contained in G. If g is the girth of
G, then G contains g-cycles. Hence, S3(G),Sn(G) # 0. Note that, if
D € Si(G), then 1 < |E(D)N E;| < i/2 for j € {1,2,3}. In particular,
1< |E(D)NEy| < g/2if D € S4(G).

Let us write C* = (vy, 2, ..., Vs, v1) and, for each vertex v;, let N(v;) =
{vi—1,vi41,Va, }, Wwhere each subscript is expressed as an integer between 1
and n modulo n. In other words, E; = {vva, : 1 £ ¢ < n}. Note
that v, = v; if and only if va; = v;. Also, 2 < g —1 < de-(vi,va,) =
min{|o; — i|,n — |a; — i|} <n/2 and

|E(D) N E;| =1 for some D € Sy(G) if and only if
deo- (Vi,Ve;) = g — 1 for some i.

(1)

As we mentioned, our goal is to show that G is £-path-Hamiltonian only
ifl1<¢< gfor3<g<7. ByCorollary 1.3(c), it suffices to show that, for
each integer £ with g + 1 < £ < n — 4, there exists a path Q of order £ and
a vertex = not on @ such that no cycle contains both @ and z.

4.1 Cubic Hamiltonian Graphs Having Girth 3, 4, 5
We begin with cubic Hamiltonian graphs having girth 3 or 4.

Proposition 4.2 If G is a cubic Hamiltonian graph of order n > 8 and
girth 3, then G is £-path-Hamiltonian only if 1 < £ < 3.

Proof. Let C* = (v;,v2,...,Vpn,v1) be a Hamiltonian cycle in G. Every
triangle in G contains exactly one edge in E; = E(G)\E(C*). By (1),
suppose that d¢-(v1,%4,) = a1 —1 = 2 and so (v, v2,v3,v1) € S3(G). Let
1 be the v, — v,_; path in Figure 10, where an edge on C* is represented
by a single line segment while each edge in E is represented by a double line
segment. Also, let Qg be the v, — v4 subpath of Q,. In Figure 10, the four

*——0—0 " _0
Up V1 V3 U4 Un-1

Figure 10: A v, — vn—; path of order n — 1

vertices in Qg are shaded. Then for every path Q satisfying Q¢ C Q C @1,
there is no cycle in G containing both @ and v,. Therefore, G is not ¢-
path-Hamiltonian for 4 < £ < n — 1. As a result, G is ¢-path-Hamiltonian
onlyif1 <£<3. ]
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Proposition 4.3 If G is a cubic Hamiltonian graph of order n > 8 and
girth 4, then G is {-path-Hamiltonian only if 1 <€ < 4.

Proof. Let C* = (v1,vs,...,Vp,v1) be a Hamiltonian cycle in G. Note
that every 4-cycle in G contains at least one and at most two edges in
E, = E(G)\E(C*). We consider the following two cases.

Case 1. |E(D)N E}| =1 for some D € S4(G). Then we may assume
that D = (v1,v2,v3,vs,v1), that is, &3 = 4. Note that 6 < a3 < n. If
a3 = n, then let Q; be the v,_; — vn—2 path of order n — 2 in Figure 11
with the v,_1 — vs subpath Qp. Similarly, if a3 < n — 1, then let Q; be
the va,+1 — vs path shown in Figure 12 with the v, — va, subpath Qq.
Again, the vertices belonging to Qo are shaded in Figures 11 and 12. In

Un-1%n V1 VY4 U Un-2

Figure 11: A v,_1 — Yn—2 path of order n — 2

O 0—=0—0—=0"_O
Vag+l Un V1 Vs V3 Vas Vs

Figure 12: A v,,4+1 — vs path of order n — 1

either case, consider a path Q satisfying Qo C @ C @;. Then no cycle in
G contains both Q and w2, which implies that G is not £-path-Hamiltonian
for5<¢<n-2.

Case 2. |E(D) N E)| = 2 for every D € S4(G). Then d¢-(vi,va;) > 4
for1 <i<n. Hence,i+4<a; <n+i—4fori=1273 We may
assume, without loss of generality, that there exists a 4-cycle of the form
(v1, Yay » Vag, V2, V1), Where va, v, € E(C*). Hence, |a; — ag| = 1.

Subcase 2.1. as = a1 — 1. Note that 7 < a; < n— 3. In this case,
the v,,+1 — v3 path @, in Figure 13 and its v, — v4,—2 subpath Qo show
that there is an ¢-path that cannot belong to a cycle containing vp for
5<€<n-1.

oL —0=0—0—0 0
Vay+1  Unp V1 Va; Vag Vay-2 U3

Figure 13: A vq,+1 — v3 path of order n -1
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Subcase 2.2. ay = a; +1. Notethat 5 < <n—3and 7 < a3 <
n — 1. First, if oy +2 < a3 < n — 1, then G is not ¢-path-Hamiltonian for
5 < £ < n — 1 by considering the vay+1 — Va,—1 Path @y of order n — 1
and its v, — Va,+2 subpath Qo in Figure 14. If 7 < a3 < o) — 1, then

O —0—0—0 "\ _O=0"_0
Vas+1 Un V1 Vg, Vaz Yoy+2 Vas V3  Va;-1

Figure 14: A vy 41 ~ Va,—1 Path of order n — 1

let Q; and Q] be the v4 — vz path and va, — Ya,—1 path in Figure 15,
respectively. Also, let Qo and Qg be the ve,_1 — v3 subpath and v, — v4
subpath of Q; and Qf, respectively. Then the paths Qo and Q; show that

O T 00— 0—0—0

V4 Vay -1 Vay Va3 V2 V3
O N —0—0 _A—0—0 O
Va, Un V1 Va, Vag V3 V4 Vaz-1

Figure 15: A vgq —v3 path of order o and a va, —Vay—1 path of order n—1

G is not ¢-path-Hamiltonian for 5 < £ < ;. Similarly, the paths Qg and
Q! show that G is not ¢-path-Hamiltonian for o) —a3 +5 < ¢ < n —-1.
This completes the proof. =

Case 1 of the proof of Proposition 4.3 suggests the following.

Proposition 4.4 Let C* = (vy,v2,...,Un,v;) be a Hamiltonian cycle in
a cubic graph G of order n and girth g > 5. Then G is £-path-Hamiltonian
only if 1 <€ < min{dc-(vi,%;):1<i<n}+1.

Proof. Without loss of generality, suppose that
des (v1,%,) = o1 — 1 = min{dc- (vi,vq,) : 1 < i < n}.

Hence, 5 < g<aj; <n/2and a; +2 < a3 < n+4—a;. Then the existence
of a path Q in G satisfying Qo C Q C Q1, where Q; is the va 41 — Vo, 41
path of order n— 1 shown in Figure 16 with the v, —v,, subpath Qo, shows
that G is not £-path-Hamiltonian for a; +1 < ¢ < n. [ ]
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OO0 0O
Vas+1 Un VU1 Vo V4 U3 Vas Vay+1
Figure 16: A va,41 — Va,+1 path in the graph G

The following is a consequence of Observation 4.4 and (1).

Corollary 4.5 Let G be a cubic Hamiltonian graph of order n and girth g >
5. If G contains a g-cycle D such that |E(D)NE}| = 1, where E; is the set
of n/2 chords of a Hamiltonian cycle in G, then G is £-path-Hamiltonian
onlyif1<£<g.

Let us next consider cubic Hamiltonian graphs having girth 5.

Proposition 4.6 If G is a cubic Hamiltonian graph whose girth equals 5,
then G is £-path-Hamiltonian only if 1 < £ < 5.

Proof. The order n of G is at least M(3,5) = 10. (In fact, the Petersen
graph, which is not Hamiltonian, is the only (3, 5)-graph of order 10 and so
we may assume that n > 12.) Let C* = (v1,vs,. .., Un, v1) be a Hamiltonian
cycle in G and E; = E(G)\E(C*). By Corollary 4.5, we may assume that
|[E(D) N Ey| = 2 for every D € S5(G). (Note that 6 < a; < n — 4,
7<a;<n-—3and 8 <az <n-—2) Hence, suppose that there exists a
5-cycle of the form (vy,v2,V3,Vas, Vay, V1), Where v,vq, € E(C*). Thus,
|a; —as| = 1. Let @ = max{ei, a3}. (Thus, 8 < o < n—3.) By considering
the Ya41 — Va—2 path @ of order n — 1 and its v, — v4 subpath Qo shown
in Figure 17, it follows that G is not ¢-path-Hamiltonian for 6 <£{<n —1
and the result now follows. ]

O —0—0—0—0—0 0O
Va+1 Un V1 Ya; Vag U3 V4 Va2
Figure 17: A va41 — Ya—2 path of order n — 1

Let G be a cubic Hamiltonian graph of order n with a Hamiltonian
cycle C* = (v1,v2,...,Vn,v1). If the girth is at least 4, then there exists an
integer i (1 < i < n) such that the vertices v and vq,,, belong to different
components in the graph obtained from C* by deleting v; and v,,. Without
loss of generality, we may assume that 4 < a; < a3 < n. In particular, if
the girth g is at least 5, then &) > 5 and a3 < n — 1. Then G contains the
three paths Q;, Q2, Q3 of order n — 1 shown in Figure 18 and we see that G
is not £-path-Hamiltonian for min{a; +1,a3 — a1 +5,n—az +5} < £ < n.
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Since (o) + 1) + (@3 — a1 +5) + (n — az + 5) = n + 11, it follows that G is
not ¢-path-Hamiltonian for (n +11)/3 < ¢ < n.

oA 000"\ O
@ Vas+1 Un Vi Vay Vs V3 Vag Var+1

OO0 _A—0—0"_0
Q2 Vas+l YUn V1 Vo Vas V3 V4 Vay-1

Qs

O O—0—0 " \_0—0—0 O
Vag~1 Va3 V1 VUn Vas U3 V4 Va;-1

Figure 18: Three paths of order n — 1
Note that (i) as < a; or (ii) oy < a2 < a3 or (iii) @z > az. For
example, if (i) occurs, then the path @, in Figure 18 contains a vp, — v,

subpath Q} of order oy — a2 + 4 and a vg, — v,, subpath QY of order oy
shown in Figure 19. (Here, 82 = a2 + 1 and 9 = as — 1.) Since neither

O N0 A _O—O0=00"_0
Vas+1 Un V1 Vo, Vg, Vaz Uy, V4 V3 VYas Vay+1

ONNAO—O0—=0"" 00 000" _O
Vas+l Un Ul Yo Vg, Vas Uy, U4 V3 Va3 Va;+1

Figure 19: The subpaths Q} and QY of Q,

Q1 nor Qf lies on a cycle containing v, it follows that G is not ¢-path-
Hamiltonian for min{a; — oz +4,02,03 ~a; +5,n~a3+5} << n. In
fact, one can verify that G is not ¢-path-Hamiltonian for A < ¢ < n, where

min{oy — o +4,02,a3 — a; +5,n — a3 + 5} if (i) occurs
A=< min{o; +1,a2 —a; +4,03 —az +4,n —az + 5} if (ii) occurs
min{a; + 1,03 —a; + 5,09 — a3 + 4,n — ay + 4} if (iii) occurs.

Combining, we see that G is not ¢-path-Hamiltonian for (n+14)/4 < £ < n.

Corollary 4.7 A cubic Hamiltonian graph of order n and girth g > 5 is
£-path-Hamiltonian only if 1 < ¢ < (n 4 13)/4.

4.2 Cubic Hamiltonian Graphs Having Girth 6 or 7

In a cubic Hamiltonian graph G of order n with a Hamiltonian cycle C* =
(v1,v2,...,vn,v1), recall that N(v;) = {vi—1, Vi1,V } for 1 < i < n, where
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the subscripts are expressed as one of the n integers 1,2,...,n modulo n.
In addition, let us write N(vq,) = {v:,vg;,v,,} for each i. Therefore, both
Vo, Vg; and v, v,, are edges on C*.

Proposition 4.8 If G is a cubic Hamiltonian graph having girth 6, then
G is £-path-Hamiltonian only if 1 < ¢ < 6.

Proof. By Corollary 4.5, we may assume that |E(D) N Ey| € {2,3} for
every D € Sg(G). (Note that i +6 < a; <n+i—6fori=1,2,3.)

Case 1. |E(D)NE;| =2 for some D € Sg(G). We may assume, without
loss of generality, that either

(i) D = (v1,v2,v3, Vag, V8, Vay, V1), Where (vq,, Vg, Va,) is a subpath of C*
or

(i) D = (v1,v2, Vags Y,y U8y s Vays V1), Where (va,,vp,,v8,,Ve,) is a sub-
path of C*.

If (i) occurs, then |ay — o3| = 2. Let o = max{ay,03}. (Thus, 9<a <
n—3. Also, 8 = a —1.) Then the va41 — vo—3 path Q; and its v, — v,
subpath Qg shown in Figure 20 show that G is not £-path-Hamiltonian for
7<¢<n-1.

Va+1 Un V1 Yo, VB Vas U3 U4 Va-3
Figure 20: A vo4+1 — Va—3 path of order n — 1

Suppose next that (ii) occurs. In this case, |a) — ap| = 3. First, if g =
a; — 3, then 43 = a; — 4. The vy, +1 — v3 path @, and its v, — v,, subpath
Qo in Figure 21 show that G is not ¢-path-Hamiltonian for 7< ¢ <n—1.

O —0—0—0—0—0—0_O
Vay+1  Un V1 VYa, V8, Vg; Yaz Uy, Vs
Figure 21: A vg, 41 — v3 path of order n — 1

If ap = a; + 3, then 75 = a; +4. Let Q; and Q] be the v, — v,—; path and
vg, —vs path in Figure 22, respectively. Also, let Qo and Qg be the v, —v,,
subpath and vg, — v4, subpath of @1 and Q}, respectively. Then the paths
Qo and Q; show that G is not Z-path-Hamiltonian for 7< ¢ <n —a; +2.
Similarly, the paths Q) and Q} show that G is not ¢-path-Hamiltonian for
n—a+1<£f<n-1.



Un V1 Va, Vaz Vyz  VUn-1

Vg, V8, Vaz Uy, Un U1 Vo, V3

Figure 22: A v, —v,—; path of order n — o3 +2
and a vg, — v3 path of order n — 1

Case 2. |E(D)N E;| =3 for every D € Sg(G). Without loss of gener-
ality, suppose that D = (v1,v2,Vay, Vg, Y6y Vays V1), Where ag, = f2. (In
other words, vg,vg, € E;.) By symmetry, it suffices to analyze four cases,
namely (i) a3 > B1 > B2 > ag, (i) oy > B1 > ag > B, (iil) /i > a1 >
az > B2 and (iv) B2 > az > a; > . Let a = max{ai,0z2, 51,82} By
considering the paths shown in Figure 23, one can verify that G is not

¢-path-Hamiltonian for 7 < £ < n — 1 in each case. |
. O\ —0—0—0—0—0—0 0
(i) Vay+1  Un V1 Ve, Ug, U8, Vas Uy, U3
O —___e—0—0_O
Vay 41 Up N1 V2 Vg, VB, VB -1 VBy+1

vey  fass O N A——=0—0—0—0—0 O
(u)’ (iii) Va+1 Un V1 Ya Vg, U8 Vaa Vy;  Va-2

Vay+1 Un V1 Vo Uy Ya; Vg, V3
. O A——0—0=0—0—0 O
(iv) Va1 Un V1 Va, U8, U, Vag Uy,  Vag+1
O\ A0 ~_ 008600
Va+1 Un V1 VYa, VUry, Va3 Vg, U, v3

Figure 23: Paths in G

A similar proof verifies that a cubic Hamiltonian graph whose girth
equals 7 is £-path-Hamiltonian only if 1 < £ < 7. In summary, we have the
following main result of this section.
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Theorem 4.9 If G is a cubic Hamiltonian graph with girth g, where 3 <
g <17, then G is £-path-Hamiltonian only if 1 <€ < g.
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