From Connectivity to Coloring

¹Gary Chartrand, ²Teresa W. Haynes, ³Stephen T. Hedetniemi and ¹Ping Zhang

Department of Mathematics Western Michigan University Kalamazoo, MI 49008-5248, USA Email: gary.chartrand@wmich.edu Email: ping.zhang@wmich.edu

²Department of Mathematics and Statistics East Tennessee State University Johnson City, TN 37614-0002 USA Email: haynes@etsu.edu

> ²Department of Mathematics University of Johannesburg Auckland Park, 2006 South Africa

> > ³School of Computing Clemson University Clemson, SC 29634 Email: hedet@clemson.edu

> > > November 29, 2015

Abstract

A vertex set $U \subset V$ in a connected graph G = (V, E) is a cutset if G - U is disconnected. If no proper subset of U is also a cutset of G, then U is a minimal cutset. An \mathcal{MVC} -partition $\pi = \{V_1, V_2, \ldots, V_k\}$ of the vertex set V(G) of a connected graph G is a partition of V(G)

^{*}Research supported in part by the University of Johannesburg.

such that every $V_i \in \pi$ is a minimal cutset of G. For an \mathcal{MVC} -partition π of G, the π -graph G_{π} of G has vertex set π such that $V', V'' \in \pi$ are adjacent in G_{π} if and only if there exist $v' \in V'$ and $v'' \in V''$ such that $v'v'' \in E(G)$. Graphs that are π -graphs of cycles are characterized. A homomorphic image H of a graph G can be obtained from a partition $\mathcal{P} = \{V_1, V_2, \ldots, V_k\}$ of V(G) into independent sets such that $V(H) = \{v_1, v_2, \ldots, v_k\}$, where v_i is adjacent to v_j if and only if some vertex of V_i is adjacent to some vertex of V_j in G. By investigating graphs H that are homomorphic images of the Cartesian product $H \square K_2$, it is shown that for every nontrivial connected graph H and every integer $r \geq 2$, there exists an r-regular graph G such that H is a homomorphic image of G. It is also shown that every nontrivial tree T is a homomorphic image of $T \square K_2$ but that not all graphs H are homomorphic images of $H \square K_2$.

1 Introduction

There are many areas of study in graph theory that involve partitions of the vertex set or edge set of a graph, where each subset in the partition possesses some prescribed property. Another area of study in graph theory concerns the structure of a graph, especially the degree of connectedness of the graph. The most common measure of this is the connectivity of a graph. Combining these two areas leads to a coloring problem that we will discuss here. We refer to the book [1] for graph theory notation and terminology not described in this paper.

A (vertex) cutset U of a connected graph G is a subset of the vertex set of G such that G-U is disconnected. If no proper subset of U is also a cutset of G, then U is a minimal cutset. A cutset containing a minimum number of vertices is a minimum cutset of G. The number of vertices in a minimum cutset of G is the connectivity of G and is denoted by $\kappa(G)$. The complete graph K_n of order n contains no cutset but its connectivity is defined as n-1, that is, $\kappa(K_n)=n-1$.

If a connected graph G contains a collection π of pairwise disjoint vertex cutsets, then π is called a \mathcal{VC} -collection. If each element of π is a minimal cutset, then π is called an \mathcal{MVC} -collection. An \mathcal{MVC} -collection of the vertex set of a graph G that is a partition of V(G) is called an \mathcal{MVC} -partition. The prism $G_1 = C_6 \square K_2$ (the Cartesian product of C_6 and K_2) has connectivity 3 and is shown in Figure 1, where the sets $V_1 = \{u_1, v_2, v_6\}$, $V_2 = \{v_1, u_2, u_6\}$, $V_3 = \{u_4, v_3, v_5\}$, $V_4 = \{v_4, u_3, u_5\}$ are minimal cutsets and so $\pi_1 = \{V_1, V_2, V_3, V_4\}$ is an \mathcal{MVC} -collection. For $U_1 = \{u_1, v_1, u_4, v_4\}$, $U_2 = \{u_2, v_2, u_5, v_5\}$, $U_3 = \{u_3, v_3, u_6, v_6\}$, the set $\pi' = \{U_1, U_2, U_3\}$ is also an \mathcal{MVC} -collection. The 10-cycle $G_2 = C_{10}$ shown in Figure 1 has many

 \mathcal{MVC} -collections. One such \mathcal{MVC} -collection is $\pi_2 = \{V_1, V_2, V_3, V_4, V_5\}$, where $V_1 = \{v_1, v_6\}$, $V_2 = \{v_2, v_{10}\}$, $V_3 = \{v_3, v_8\}$, $V_4 = \{v_4, v_9\}$, $V_5 = \{v_5, v_7\}$. In fact, the \mathcal{MVC} -collections π_1 and π_2 above are both \mathcal{MVC} -partitions, as is π' . While every noncomplete connected graph contains an \mathcal{MVC} -collection, not every such graph has an \mathcal{MVC} -partition. For example, no odd cycle has an \mathcal{MVC} -partition.

Figure 1: The prism $G_1 = C_6 \square K_2$ and the 10-cycle $G_2 = C_{10}$

If V_1 is a set consisting of two nonadjacent vertices of the 4-cycle $G_3 = C_4$ and $V_2 = V(G_3) - V_1$, then V_1 and V_2 are minimal cutsets and $\pi_3 = \{V_1, V_2\}$ is an \mathcal{MVC} -partition. The fact that $C_4 = K_{2,2}$ and C_4 has an \mathcal{MVC} -partition consisting of two minimal cutsets serves to illustrate the proposition below. First, it is necessary to describe a class of graphs constructed from two disconnected graphs.

Let $F=F_1+F_2+\cdots+F_a$ and $H=H_1+H_2+\cdots+H_b$ be two disconnected graphs with a and b components, respectively, where $a,b\geq 2$. A component join of F and H is constructed from F and H by adding edges between F and H such that each vertex of F is adjacent to at least one vertex in each component of F and each vertex of F is adjacent to at least one vertex in each component of F. Thus, a component join of F and F is a connected subgraph of the join $F \wedge H$ of F and F and F in the particular, $F \wedge H$ itself is a component join of F and F and

Proposition 1.1 A connected graph G of order 4 or more has an \mathcal{MVC} -partition consisting of two minimal cutsets, each containing at least two

Figure 2: A component join of F and H

vertices, if and only if G is a component join of two disconnected graphs.

Proof. First, suppose that G is a component join of two disconnected graphs G_1 and G_2 . Then $\{V(G_1), V(G_2)\}$ is a \mathcal{VC} -collection. Since every vertex of G_1 is joined to at least one vertex in each component of G_2 , it follows that if U_1 is a proper subset of $V(G_1)$, then $G - U_1$ is connected. Also, if U_2 is a proper subset of $V(G_2)$, then $G - U_2$ is connected. Therefore, $\{V(G_1), V(G_2)\}$ is an \mathcal{MVC} -partition.

For the converse, assume that $\{V_1, V_2\}$ is an \mathcal{MVC} -partition of G, where $|V_i| \geq 2$ for i=1,2. This implies that $F=G[V_1]$ and $H=G[V_2]$ are disconnected subgraphs of G. We claim that G is a component join of F and H. Assume, to the contrary, that this is not the case. Then some vertex v of F, say, is not adjacent to any vertex in some component H_1 of H. Then v and H_1 belong to different components in the subgraph $G - (V_1 - \{v\})$ and so $G - (V_1 - \{v\})$ is disconnected, which is a contradiction.

2 π -Graphs of Graphs

For any partition $\pi = \{V_1, V_2, \dots, V_k\}$ of the vertex set of a graph G, the π -graph G_{π} of G is defined as the graph whose vertices correspond 1-to-1 with the sets V_1, V_2, \dots, V_k and two vertices V_i and V_j are adjacent in G_{π} if and only if there exist vertices $u \in V_i$ and $v \in V_j$ such that u is adjacent to v in G. In the case where π is an \mathcal{MVC} -partition of G, the π -graph G_{π} represents the structure of π . For the \mathcal{MVC} -partitions π_1 and π_2 described in Section 1, the π_1 -graph and π_2 -graph of the graphs G_1 and G_2 of Figure 1 are shown in Figure 3.

There is a fundamental property that all π -graphs of connected graphs G possess for each \mathcal{MVC} -partition π of G. For two sets A and B of vertices of a connected graph G, let

$$d_G(A,B) = \min\{d_G(a,b) : a \in A \text{ and } b \in B\},\$$

Figure 3: The π -graphs of the graphs of Figure 1

where $d_G(a, b)$ is the distance between two vertices a and b (the length of a shortest a - b path in G).

Proposition 2.1 If G is a connected graph and π is an MVC-partition of V(G), then the π -graph G_{π} of G is connected.

Proof. Assume, to the contrary, that there is a connected graph G and an \mathcal{MVC} -partition π of V(G) such that G_{π} is disconnected. Among all pairs of vertices of G_{π} that are not connected in G_{π} , let A and B be a pair such that $d_G(A,B)=k$ is minimum. Let $a\in A$ and $b\in B$ such that $d_G(a,b)=d_G(A,B)$. Let $P=(a=a_0,a_1,\ldots,a_k=b)$ be an a-b geodesic in G. Necessarily, $k\geq 2$. Suppose that a_i is the first vertex on P that does not belong to A, where then $1\leq i\leq k-1$. Let $a_i\in C\in \pi$. Hence, $C\neq A$ in π . Since $a_{i-1}\in A$, it follows that A and C are adjacent in G_{π} and so the vertex C is in the same component as A in G_{π} . Thus, C and B are not connected in G_{π} . Since $d_G(C,B)\leq d_G(a_i,b)< k$, this is a contradiction.

Since every even cycle has an \mathcal{MVC} -partition and each such partition π consists of pairs of nonadjacent vertices, the π -graphs of even cycles are of special interest. The following theorem characterizes all graphs that are π -graphs of even cycles. For two disjoint sets U and W of vertices in a graph G, the set of edges joining U and W in G is denoted by E[U, W]. The underlying graph of a multigraph M is the graph G for which G0 if G1 and G2 are joined by at least one edge in G3.

Theorem 2.2 A connected graph H of order 3 or more is a π -graph of some even cycle if and only if H is the underlying graph of a 4-regular multigraph.

Proof. First, assume that H is the underlying graph of a 4-regular multigraph M of order $k \geq 3$. Thus, M is an Eulerian multigraph of even size 2k. Let $C = (v_1, v_2, \ldots, v_{2k}, v_1)$ be an Eulerian circuit in M. Since M is 4-regular, each vertex of M occurs exactly twice as nonconsecutive vertices of C. Next, let $G = C_{2k} = (u_1, u_2, \ldots, u_{2k}, u_1)$ be a 2k-cycle. Furthermore,

let $\pi = \{V_1, V_2, \ldots, V_k\}$ be the \mathcal{MVC} -partition of V(G) in which two vertices u_a and u_b of G belong to the same element of π if and only if $v_a = v_b$ on the circuit G. Then two vertices V_i and V_j of G_{π} are adjacent if and only if some vertex in V_i is adjacent to some vertex of V_j , where $1 \leq i < j \leq k$. Let $V_i = \{u_a, u_b\}$ and $V_j = \{u_c, u_d\}$. Now, V_i and V_j are adjacent if and only if $|E[V_i, V_j]| \geq 1$. Thus, $H \cong G_{\pi}$.

For the converse, assume that H is a connected graph of order k that is a π -graph of some even cycle G. Necessarily, G has order 2k. Suppose that $G = C_{2k} = (u_1, u_2, \ldots, u_{2k}, u_1)$ is a 2k-cycle. Let $\pi = \{V_1, V_2, \ldots, V_{2k}\}$ be an \mathcal{MVC} -partition of V(G) such that $G_{\pi} \cong H$. For each integer i with $1 \leq i \leq k$, let $V_i = \{u_{i_1}, u_{i_2}\}$ where then u_{i_1} and u_{i_2} are two nonadjacent vertices of G. Let M be the multigraph with $V(M) = \pi$, where the number of edges joining V_i and V_j is $|E[V_i, V_j]|$ for $i \neq j$. Thus, H is the underlying graph of M. Since the two vertices in V_i are nonadjacent, $|E[V_i, V(G) - V_i]| = 4$ for $1 \leq i \leq k$, it follows that M is 4-regular.

The following result is then an immediate corollary of Theorem 2.2.

Corollary 2.3 Every connected 4-regular graph is a π -graph of an even cycle.

With the aid of Theorem 2.2, those cubic graphs that are π -graphs of an even cycle with an \mathcal{MVC} -partition π can be determined. A 1-factor of a graph G is a 1-regular spanning subgraph of G.

Corollary 2.4 A connected cubic graph H is a π -graph of an even cycle if and only if H has a 1-factor.

Proof. Suppose that H is a connected cubic graph having a 1-factor F. By replacing each edge in F by two parallel edges, a 4-regular multigraph M is obtained. Thus, H is the underlying graph of M. It then follows by Theorem 2.2 that H is a π -graph of an even cycle.

For the converse, assume that H is a connected cubic graph that is a π -graph of an even cycle G. Then H has even order, say $2k \geq 4$. By Theorem 2.2, H is the underlying graph of a 4-regular multigraph M. Let v_1 be a vertex of H. Since $\deg_H v_1 = 3$ and $\deg_M v_1 = 4$, it follows that v_1 is incident with exactly one edge e_1 in M that does not belong to H, say $e_1 = v_1w_1$. Hence, e_1 is the only edge of M that is incident with w_1 that does not belong to H. Continuing in this manner, we obtain k pairwise nonadjacent edges $e_i = u_iw_i$ $(1 \leq i \leq k)$ that belong to M but not to H. Therefore, the edges u_iw_i $(1 \leq i \leq k)$ of H form a 1-factor of H.

Since the cubic graph H_1 of order 10 in Figure 4 has a 1-factor, it follows by Corollary 2.4 that H_1 is a π -graph of the cycle C_{20} . On the other hand,

Figure 4: Two cubic graphs H_1 and H_2

the cubic graph H_2 in Figure 4 has no 1-factor and so H_2 is not a π -graph of any even cycle.

Errera [2] proved that if all the bridges of a connected cubic graph G lie on a single path of G, then G has a 1-factor. From this theorem and Corollary 2.4, we have the following.

Corollary 2.5 Let G be a connected cubic graph. If all the bridges of G lie on a single path of G, then G is a π -graph of an even cycle.

Corollary 2.4 also implies that (1) the graph $K_{3,3}$ is a π -graph of C_{12} , (2) the Petersen graph is a π -graph of C_{20} and (3) the Mobius ladder M_{2k} , $k \geq 2$, is a π -graph of C_{2k} , where M_{2k} is obtained by joining diametrically opposite vertices of the cycle C_{2k} . In addition, we have the following:

Corollary 2.6 For each integer $k \geq 3$, the k-cycle C_k is a π -graph of C_{2k} .

Each graph of order 5 shown in Figure 5 is the underlying graph of a 4-regular multigraph and so it is a π -graph of C_{10} by Theorem 2.2. The corresponding \mathcal{MVC} -partition π is given in Figure 5 for each graph, where V_i is the set of vertices labeled i.

For an \mathcal{MVC} -partition π of C_{10} , the π -graph G_{π} of C_{10} has order 5 and each vertex of G_{π} has degree 2, 3 or 4. With the aid of Theorem 2.2, the following can be verified:

- 1. The unique graph $K_5 e$ of order 5 and size 9 is not a π -graph of C_{10} .
- 2. There is a unique π -graph of C_{10} having size 8.
- 3. The graph $K_2 \vee \overline{K}_3$ is not a π -graph of C_{10} .
- 4. The graph $K_1 \vee P_4$ is not a π -graph of C_{10} .
- 5. The graph $K_{2,3}$ is not a π -graph of C_{10} .

In summary, Figure 5 shows all π -graphs of C_{10} . Incidentally, the only connected graphs of order 4 that are π -graphs of C_8 are C_4 and K_4 .

Figure 5: Some \mathcal{MVC} -partitions π and corresponding π -graphs G_{π} of C_{10}

3 Homomorphic Images

We saw that if π is an \mathcal{MVC} -partition of an even cycle, then each element of π is an independent set. In fact, if π is a partition of the vertex set of a graph G such that each element of π is an independent set, then both π and G_{π} concern familiar concepts in graph theory.

A homomorphism from a graph G to a graph H' is a function $\phi: V(G) \to V(H')$ that maps adjacent vertices in G to adjacent vertices in H. The subgraph H = (V, E) of H' whose vertex set is $V(H) = \phi(V(G))$ and whose edge set is the set $E(H) = \{\phi(u)\phi(v): uv \in E(G)\}$ is called the homomorphic image of G under ϕ and is denoted by $\phi(G) = H$. A graph G is there is a homomorphism G of G such that G such that G is the G s

Let H = (V, E) be a homomorphic image of a graph G and let $V(H) = \{v_1, v_2, \ldots, v_k\}$. For any vertex $v \in V(H)$, let $\phi^{-1}(v) = \{u \in V(G) : v \in V(G)$

 $\phi(u)=v\}$. Since ϕ is a homomorphism, it follows that $\phi^{-1}(v)$ is an independent set in G for every $v\in V(H)$. This defines a coloring of the vertices of G, that is, $\pi=\{\phi^{-1}(v_1),\phi^{-1}(v_2),\ldots,\phi^{-1}(v_k)\}$ is a partition of V(G) into independent sets. It also follows that the π -graph G_{π} is isomorphic to H. In particular, if π is an \mathcal{MVC} -partition of a graph G, where each set V_i $(1\leq i\leq k)$ is independent, then ϕ represents a k-coloring of G where each vertex of V_i $(1\leq i\leq k)$ is colored i and G_{π} is the homomorphic image of G resulting from this k-coloring.

For a nontrivial connected graph H that is a homomorphic image of a cycle, let $\mu(H)$ be the length of a shortest such cycle and let e(H) be the length of a shortest Eulerian walk in H. (Eulerian walks are discussed in [3].)

Proposition 3.1 Every nontrivial connected graph H is a homomorphic image of a cycle and so $\mu(H)$ exists. Furthermore, $\mu(H) = e(H)$.

Proof. Let H be a nontrivial connected graph with $V(H) = \{u_1, u_2, \ldots, u_k\}$. Let $W = (w_1, w_2, \ldots, w_p, w_1)$ be an Eulerian walk of minimum length p in H. Thus, each edge in H occurs in W at least once. (Every edge of H can occur exactly once if and only if H is Eulerian and W is an Eulerian circuit.) Let $C = (v_1, v_2, \ldots, v_p, v_1)$ be a cycle of order p. For each integer i with $1 \le i \le k$, let

$$V_i = \{v_t \in V(C): w_t = u_i \text{ and } 1 \le t \le p\}.$$

Thus, each set V_i is an independent set of vertices of H and a vertex in a set V_i is adjacent to a vertex in V_j in C $(1 \le i \le j \text{ and } i \ne j)$ if and only if $u_iu_j \in E(H)$. Hence, H is a homomorphic image of C. Therefore, $\mu(H)$ exists and $\mu(H) \le e(H)$.

Next, we show that $e(H) \leq \mu(H)$. Let $\mu(H) = \ell$ and let

$$C=(v_1,v_2,\ldots,v_\ell,v_1)$$

be a cycle such that H is a homomorphic image of C. Thus, there is a partition $\mathcal{P} = \{U_1, U_2, \ldots, U_k\}$ of V(C) into independent sets such that $u_i u_j \in E(H)$ if and only if some vertex in U_i is adjacent to some vertex in U_j in C. Since each U_i is an independent set of vertices of C, it follows that every edge in C gives rise to an edge in H (although it is possible that several edges in C produce the same edge in H). Furthermore, for each edge $u_i u_j$ in H, there is at least one edge $v_s v_{s+1}$ in C such that $v_s \in U_i$ and $v_{s+1} \in U_j$. Identifying all vertices in each set U_i , producing a single vertex denoted by u_i for $1 \leq i \leq k$, and following the ordering of vertices in C, we obtain an Eulerian walk $W = (w_1, w_2, \ldots, w_\ell, w_1)$ of length ℓ in H. Thus, $e(H) < \mu(H)$ and so $e(H) = \mu(H)$.

By Proposition 3.1, every nontrivial connected graph is a homomorphic image of a connected 2-regular graph. Next, we show that every nontrivial connected graph is, in fact, a homomorphic image of a connected r-regular graph for each integer $r \geq 3$. First, we introduce some notation. For a given integer $n \geq 3$, we denote an n-cycle by C, where $C = (v_1, v_2, \ldots, v_n, v_1)$. Because several n-cycles will be encountered in the graphs to be considered, we denote this first n-cycle by C(1) and write $C(1) = (v_1^{(1)}, v_2^{(1)}, \ldots, v_n^{(1)}, v_1^{(1)})$. The Cartesian product $C \square K_2$ of C and K_2 can also be expressed as $C \square Q_1$. This graph is constructed with the aid of two disjoint n-cycles, namely the n-cycle C(1) and the n-cycle $C(2) = (v_1^{(2)}, v_2^{(2)}, \ldots, v_n^{(2)}, v_1^{(2)})$ together with the edges $v_j^{(1)} v_j^{(2)}$ for $j = 1, 2, \ldots, n$. In the case where C is a 6-cycle, the graph $C \square Q_1$ is shown in Figure 6. For each integer j with $1 \leq j \leq n$, let $V_j = \{v_j^{(1)}, v_{j+1}^{(2)}\}$ be the 2-element independent subset of $V(C \square Q_1)$ where $v_{n+1}^{(2)} = v_1^{(2)}$. Then the n-cycle C is a homomorphic image of $C \square Q_1$ defined by the partition $\mathcal{P} = \{V_1, V_2, \ldots, V_n\}$ of the vertex set of $C \square Q_1$.

Figure 6: The graph $C_6 \square Q_1$

The graph $C \square Q_2$ is also $(C \square Q_1) \square K_2$. This graph consists of $C \square Q_1$ described above, with another copy of $C \square Q_1$, where the vertex $v_j^{(i)}$ $(1 \le j \le n, i = 1, 2)$ in the first copy of $C \square Q_1$ corresponds to the vertex $v_j^{(i+2)}$ in the second copy of $C \square Q_1$. In addition to the two copies of $C \square Q_1$ described above, each edge $v_j^{(i)}v_j^{(i+2)}$, $1 \le j \le n$, i = 1, 2, is added to these two copies. The graph $C \square Q_2$ has therefore $2^2 = 4$ pairwise disjoint n-cycles C(1), C(2), C(3), C(4) where

$$C(i) = (v_1^{(i)}, v_2^{(i)}, \dots, v_n^{(i)}, v_1^{(i)}) \text{ for } 1 \le i \le 2^2.$$

The graph $C \square Q_2$, where C is a 6-cycle, is shown in Figure 7, where an edge in the first copy of $C \square Q_1$ is indicated by a thin line, an edge in the second copy of $C \square Q_1$ is indicated by a dashed line and an edge between these two copies of $C \square Q_1$ is indicated by a bold line. For each integer j with $1 \le j \le n$, let $V_{1,j} = \{v_j^{(1)}, v_j^{(4)}\}$ and $V_{2,j} = \{v_j^{(2)}, v_j^{(3)}\}$ be 2-element independent subsets of $V(C \square Q_2)$. Then the graph $C \square Q_1$ is a homomorphic image of $C \square Q_2$ defined by the partition $\mathcal{P} = \{V_{i,j}: i = 1, 2 \text{ and } 1 \le j \le n\}$ of the vertex set of $C \square Q_2$.

Figure 7: The graph $C_6 \square Q_2$

Suppose now that the graph $C \square Q_k$ has been constructed for an integer $k \geq 2$. We describe the construction of $C \square Q_{k+1}$. By the construction of $C \square Q_k$, it follows that $C \square Q_k$ consists of 2^k pairwise disjoint *n*-cycles, namely

$$C(1) = (v_1^{(1)}, v_2^{(1)}, \dots, v_n^{(1)}, v_1^{(1)})$$

$$C(2) = (v_1^{(2)}, v_2^{(2)}, \dots, v_n^{(2)}, v_1^{(2)})$$

$$\vdots = \vdots$$

$$C(2^k) = (v_1^{(2^k)}, v_2^{(2^k)}, \dots, v_n^{(2^k)}, v_1^{(2^k)}).$$

To construct $C \square Q_{k+1}$, we have a second copy of $C \square Q_k$, consisting of the 2^k pairwise disjoint n-cycles

$$C^{*}(1) = (w_{1}^{(1)}, w_{2}^{(1)}, \dots, w_{n}^{(1)}, w_{1}^{(1)})$$

$$C^{*}(2) = (w_{1}^{(2)}, w_{2}^{(2)}, \dots, w_{n}^{(2)}, w_{1}^{(2)})$$

$$\vdots = \vdots$$

$$C^{*}(2^{k}) = (w_{1}^{(2^{k})}, w_{2}^{(2^{k})}, \dots, w_{n}^{(2^{k})}, w_{1}^{(2^{k})}),$$

where the vertex $w_j^{(i)}$, $1 \leq j \leq n$, $1 \leq i \leq 2^k$, corresponds to the vertex $v_j^{(i)}$. Then each edge $v_j^{(i)}w_j^{(i)}$ $(1 \leq j \leq n, 1 \leq i \leq 2^k)$ is added to these two copies producing the graph $C \square Q_{k+1}$. The graph $C \square Q_{k+1}$ now has 2^{k+1} pairwise disjoint n-cycles $C(1), C(2), \ldots, C(2^{k+1})$ where $C(2^k + p) = C^*(p)$ for $1 \leq p \leq 2^k$.

For each pair i, j of integers with $1 \le j \le n$ and $1 \le i \le 2^k$, the vertex $v_j^{(i)}$ has degree k+2 in $C \square Q_k$. In particular, $v_j^{(i)}$ is adjacent to its two neighbors in the cycle C(i) and is also adjacent to k additional vertices on k of the 2^k disjoint n-cycles in $C \square Q_k$, (exactly one vertex from each of these k cycles).

For $1 \le \ell \le k$, express $i = 2^{\ell}q_{\ell} + r_{\ell}$, where $1 \le r_{\ell} \le 2^{\ell}$. Also, let

$$S_{\ell} = [2^{\ell}q_{\ell} + 1, \ 2^{\ell}q_{\ell} + 2^{\ell}] = \{2^{\ell}q_{\ell} + 1, 2^{\ell}q_{\ell} + 2, \dots, 2^{\ell}q_{\ell} + 2^{\ell}\}.$$

For each integer i with $1 \le i \le 2^k$ and each j with $1 \le j \le n$, the vertex $v_j^{(i)}$ is adjacent to either $v_j^{(i+2^{\ell-1})}$ or $v_j^{(i-2^{\ell-1})}$ according to which of $i+2^{\ell-1}$ or $i-2^{\ell-1}$ belongs to S_ℓ .

For example, in the graph $C \square Q_5$, the vertex $v_j^{(15)}$ on the cycle C(15) is adjacent to its two neighbors in the cycle C(15) and is adjacent to

(1)
$$v_i^{(16)}$$
 since $16 = 15 + 1 \in S_1 = [2 \cdot 7 + 1, 2 \cdot 7 + 2] = [15, 16],$

(2)
$$v_i^{(13)}$$
 since $13 = 15 - 2 \in S_2 = [4 \cdot 3 + 1, 4 \cdot 3 + 4] = [13, 16],$

(3)
$$v_j^{(11)}$$
 since $11 = 15 - 4 \in S_3 = [8 \cdot 1 + 1, 8 \cdot 1 + 8] = [9, 16],$

(4)
$$v_i^{(7)}$$
 since $7 = 15 - 8 \in S_4 = [16 \cdot 0 + 1, 16 \cdot 0 + 16] = [1, 16],$

(5)
$$v_j^{(31)}$$
 since $31 = 15 + 16 \in S_5 = [32 \cdot 0 + 1, 32 \cdot 0 + 32] = [1, 32].$

As another example, in the graph $C \square Q_5$, the vertex $v_j^{(21)}$ on the cycle C(21) is adjacent to its two neighbors in the cycle C(21) and is adjacent to

(1)
$$v_j^{(22)}$$
 since $22 = 21 + 1 \in S_1 = [2 \cdot 10 + 1, 2 \cdot 10 + 2] = [21, 22],$

(2)
$$v_i^{(23)}$$
 since $23 = 21 + 2 \in S_2 = [4 \cdot 5 + 1, 4 \cdot 5 + 4] = [21, 24],$

(3)
$$v_j^{(17)}$$
 since $17 = 21 - 4 \in S_3 = [8 \cdot 2 + 1, 8 \cdot 2 + 8] = [17, 24],$

(4)
$$v_j^{(29)}$$
 since $29 = 21 + 8 \in S_4 = [16 \cdot 1 + 1, 16 \cdot 1 + 16] = [17, 32],$

(5)
$$v_i^{(5)}$$
 since $5 = 21 - 16 \in S_5 = [32 \cdot 0 + 1, 32 \cdot 0 + 32] = [1, 32].$

Since the order of $C \square Q_{k+1}$ is $2^k n$, the order of $C \square Q_{k+1}$ is $2^{k+1} n$. For each pair i, j of integers where $1 \le j \le n, 1 \le i \le 2^k$, let $V_{i,j}$ be the 2-element independent subset of $V(C \square Q_{k+1})$ defined by

$$V_{i,j} = \left\{ egin{array}{ll} \{v_j^{(i)}, w_j^{(i+1)}\} & ext{if i is odd} \ \{v_j^{(i)}, w_j^{(i-1)}\} & ext{if i is even.} \end{array}
ight.$$

Thus, the graph $C \square Q_k$ is the homomorphic image of $C \square Q_{k+1}$ defined by the partition $\mathcal{P} = \{V_{i,j} : 1 \leq i \leq 2^k \text{ and } 1 \leq j \leq n\}$ of the vertex set of $C \square Q_{k+1}$. This results in the following theorem.

Theorem 3.2 For every pair k, n of positive integers where $n \geq 3$, the graph $C_n \square Q_k$ is a homomorphic image of $C_n \square Q_{k+1}$.

The following is then a consequence of Proposition 3.1 and Theorem 3.2.

Corollary 3.3 Every nontrivial connected graph is a homomorphic image of an r-regular graph for each integer $r \geq 2$.

Theorem 3.2 also states that H is a homomorphic image of $H \square K_2$ for $H = C_n \square Q_k$. This suggests the problem of determining nontrivial connected graphs H having the property that H is a homomorphic image of $H \square K_2$. For a vertex v in a connected graph G, let e(v) denote the eccentricity of v (the largest distance from v to a vertex in G).

Theorem 3.4 Every nontrivial tree T is a homomorphic image of $T \square K_2$.

Proof. Let T be a tree of order $n \geq 2$ and let v_1 be a leaf of T. The tree T may then be considered as a rooted tree with root v_1 . Therefore, T can be considered as a directed tree where there is a directed $v_1 - w$ path in T for every vertex w of T. Let $V(T) = \{v_1, v_2, \ldots, v_n\}$ where $d(v_1, v_i) \leq d(v_1, v_j)$ for $1 \leq i \leq j \leq n$. Let $G = T \square K_2$, where G consists of the tree T (as labeled above), a second copy T' of T with $V(T') = \{u_1, u_2, \ldots, u_n\}$ such that u_i corresponds to v_i and $u_i v_i \in E(G)$ for $1 \leq i \leq n$.

We now show that there is a proper n-coloring c of G using the colors $1, 2, \ldots, n$ resulting in the color classes V_1, V_2, \ldots, V_n such that the homomorphic image resulting from the n color classes V_1, V_2, \ldots, V_n is isomorphic to T. First, color each vertex v_i the color i for $i = 1, 2, \ldots, n$.

The vertex u_2 is the only vertex at distance 1 from u_1 of T'. Assign the color 2 to u_1 and the color 1 to u_2 . Next, assign the color 2 to each vertex of T' at distance 1 from u_2 . Proceeding recursively, assume that all vertices of T' at distance k from u_1 have been assigned a color where $2 \le k < e(u_1)$ and let $u_j \in V(T')$ such that $d_{T'}(u_1, u_j) = k + 1$. Let u_i be the unique vertex adjacent to u_j on the $u_1 - u_j$ (directed) path P on T'. We then assign the color $c(v_i)$ to u_j (and so $c(u_j) = c(v_i)$).

Let a and b be distinct colors in $\{1, 2, ..., n\}$ such that some vertex in V_a is adjacent to a vertex in V_b . Then $v_a v_b \in E(T)$ where say a < b. Thus, the edge u_b is colored a. Also, the two incident vertices of an edge of T' are assigned two distinct colors of $\{1, 2, ..., n\}$ if and only if the two incident vertices of some edge of T are also assigned these same two colors. Hence, T is a homomorphic image of G.

To illustrate the coloring c described in the proof of Theorem 3.4, consider the tree T with $V(T) = \{v_1, v_2, \ldots, v_{13}\}$ and construct $T \square K_2$ as shown in Figure 8, where one copy of T in $T \square K_2$ is drawn with bold lines, the second copy T' of T is drawn with thin lines and the edges between T and T' are drawn with dashed lines. The color of each vertex of $T \square K_2$ is indicated inside the vertex.

Figure 8: Illustrating the proof of Theorem 3.4

Although every tree T is a homomorphic image of $T \square K_2$, not every nontrivial connected graph G is a homomorphic image of $G \square K_2$.

Proposition 3.5 The graph H of Figure 9 is not a homomorphic image of $H \square K_2$.

Figure 9: The graph H

Proof. Assume, to the contrary, that H is a homomorphic image of $G = H \square K_2$, shown in Figure 10. Consequently, there is a proper 9-coloring c of G using the colors $1, 2, \ldots, 9$ resulting in the color classes V_1, V_2, \ldots, V_9 so that when the vertices of each set V_i $(1 \le i \le 9)$ are identified, producing the vertex v_i , the graph H is obtained.

Figure 10: The graph $G = H \square K_2$

Since every vertex in a triangle in $H \square K_2$ belongs to a triangle in H, the vertices of each of the four triangles in G must be colored 1,2,3 or

7,8,9. Also, since there are adjacencies between the vertices of triangle x_1, x_2, x_3 and triangle y_1, y_2, y_3 , the vertices in these triangles must both be colored 1,2, 3 or both be colored 7, 8, 9. Similarly, the vertices of the triangles x_7, x_8, x_9 and y_7, y_8, y_9 must both be colored 1,2,3 or both be colored 7,8,9.

Moreover, since any neighbor of a vertex colored 6 must be colored 5, we deduce that none of x_4, x_5, y_4 and y_5 is colored 6. Thus, either x_6 or y_6 is colored 6. Without loss of generality, we may assume that $c(y_6) = 6$, implying that $c(x_6) = c(y_5) = 5$. Then $c(x_5) \in \{4,7\}$. Furthermore, since y_5 is adjacent to y_7 and y_7 is in a triangle, it follows that $c(y_7) = 7$ and the vertices of triangles y_7, y_8, y_9 and x_7, x_8, x_9 are colored 7, 8, 9. Thus, $c(x_7) \in \{8,9\}$. Now x_5 is adjacent to x_7 and no vertex colored 4 has a neighbor colored 8 or 9, so $c(x_5) = 7$. But then x_4 is adjacent to a vertex colored 7 and a vertex in triangle colored 1, 2 or 3, and no such vertex exists in H, producing the contradiction.

4 Closing Comments

We close by noting that many problems remain, particularly those dealing with the structure of π -graphs obtained from vertex partitions $\pi = \{V_1, V_2, \ldots, V_k\}$ whose elements have some property of interest. If each set V_i is an independent set, then these partitions give rise to proper colorings of graphs and the corresponding π -graphs are just homomorphic images of a graph. If each set V_i induces a connected subgraph, then the corresponding π -graphs are just contractions of a graph. In this case, the famous Hadwiger's conjecture [4] is worth noting; it can be stated as follows:

Conjecture 4.1 (Hadwiger's Conjecture) For any graph G, if the chromatic number $\chi(G) = k$, then G has a connected vertex partition π whose corresponding π -graph is the complete graph K_k .

This raises the following question: Is every graph G having chromatic number k a homomorphic image of a regular graph having chromatic number k? If each set V_i is an independent set of edges, then the π -graph is a homomorphic image of the line graph of the graph. It is also of interest to study π -graphs arising from vertex partitions π in which each element is a so-called 1-dependent set consisting of a disjoint union of copies of K_1 and K_2 . These π -graphs include the homomorphic images of the graph — and more.

It is well known that the chromatic number of any homomorphic image of a graph G is at least the chromatic number of G. The regular graphs constructed in the proof of Theorem 3.2 are bipartite. This raises the question is whether the largest chromatic number k such that a graph G having

chromatic number ℓ is a homomorphic image of a regular graph having chromatic number $k \leq \ell$? In particular, is every graph having chromatic number 3 a homomorphic image of a regular graph having chromatic number 3?

Other problems include those of finding other classes of graphs G that are homomorphic images of $G \square K_2$; graphs of the form $G \square K_2$ are often called prisms. So the question becomes: Which graphs are homomorphic images of their own prisms? Theorem 3.4 asserts that every nontrivial tree T is a homomorphic image of $T \square K_2$. Is this also true for every bipartite graph G? Note that the example given in Proposition 3.5 is not bipartite.

References

- [1] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs, Fifth Edition. Chapman & Hall/CRC, Boca Raton, FL (2010).
- [2] A. Errera, Une demonstration du theoreme de Petersen. Mathesis 36 (1922) 56-61
- [3] F. Fujie and P. Zhang, Covering Walks in Graphs. Springer, New York (2014).
- [4] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Naturforsch. Ges. Zürich 88 (1943)