From Connectivity to Coloring
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Abstract

A vertex set U C V in a connected graph G = (V, E) is a cutset if
G —U is disconnected. If no proper subset of U is also a cutset of G,
then U is a minimal cutset. An MVC-partition = = {V4,V,...,Vi}
of the vertex set V(G) of a connected graph G is a partition of V(G)
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such that every Vi € = is a minimal cutset of G. For an MVC-
partition w of G, the m-graph G» of G has vertex set 7 such that
V',V" € n are adjacent in G if and only if there exist v’ € V'
and v” € V" such that v'v"” € E(G). Graphs that are w-graphs
of cycles are characterized. A homomorphic image H of a graph
G can be obtained from a partition P = {W\1,V2,...,Vi} of V(G)
into independent sets such that V(H) = {v1,v2,..., v}, where v; is
adjacent to v; if and only if some vertex of V; is adjacent to some
vertex of V; in G. By investigating graphs H that are homomorphic
images of the Cartesian product H 00 K3, it is shown that for every
nontrivial connected graph H and every integer r 2> 2, there exists
an r-regular graph G such that H is a homomorphic image of G. It
is also shown that every nontrivial tree T is a homomorphic image
of T O K but that not all graphs H are homomorphic images of
H O K,.

1 Introduction

There are many areas of study in graph theory that involve partitions of
the vertex set or edge set of a graph, where each subset in the partition
possesses some prescribed property. Another area of study in graph theory
concerns the structure of a graph, especially the degree of connectedness of
the graph. The most common measure of this is the connectivity of a graph.
Combining these two areas leads to a coloring problem that we will discuss
here. We refer to the book [1} for graph theory notation and terminology
not described in this paper.

A (vertez) cutset U of a connected graph G is a subset of the vertex set
of G such that G — U is disconnected. If no proper subset of U is also a
cutset of G, then U is a minimal cutsef. A cutset containing a minimum
number of vertices is a minimum cutset of G. The number of vertices in
a minimum cutset of G is the connectivity of G and is denoted by (G).
The complete graph K, of order n contains no cutset but its connectivity
is defined as n — 1, that is, kK(K,) =n—1.

If a connected graph G contains a collection 7 of pairwise disjoint vertex
cutsets, then = is called a VC-collection. If each element of # is a minimal
cutset, then 7 is called an MVC-collection. An MYVC-collection of the
vertex set of a graph G that is a partition of V(G) is called an MVC-
partition. The prism G, = C¢ O K, (the Cartesian product of Cs and K3)
has connectivity 3 and is shown in Figure 1, where the sets V} = {1, v2,v6},
Vo = {v1,us,ue}, Va3 = {u4,vs,vs}, Va = {va4,us, us} are minimal cutsets
and so m; = {W, V2, V3, V4} is an MVC-collection. For Uy = {u;,vy,uq,v4},
U; = {u2,'U2,U5,’05}, Us = {u;;,vs,us,ve}, the set 7' = {U],UQ,U:;} is also
an MVYC-collection. The 10-cycle Ga = Cyg shown in Figure 1 has many
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MVC-collections. One such MVC-collection is mp = {V},V,, V3, V4, V51,
where V) = {v,v6}, Vo = {vg,v10}, V3 = {v3,vs}, V4 = {v4, %}, V5 =
{vs,v7}. In fact, the MVC-collections m; and m, above are both MVC-
partitions, as is 7/. While every noncomplete connected graph contains an
MVC-collection, not every such graph has an MVC-partition. For example,
no odd cycle has an MVC-partition.

vi

vi0 v2

vg v3

vg V4

vr
vs

Ve

G =Cs 0 Ko G2 =Cro
Figure 1: The prism G; = Cs O K3 and the 10-cycle G2 = Cjo

If V; is a set consisting of two nonadjacent vertices of the 4-cycle G3 =
Cy and V; = V(G3) — V}, then V; and V; are minimal cutsets and m3 =
{1, V2} is an MVC-partition. The fact that C; = K2 and C4 has an
MVC-partition consisting of two minimal cutsets serves to illustrate the
proposition below. First, it is necessary to describe a class of graphs con-
structed from two disconnected graphs.

let F=FR+F+---+F,and H = Hy + Hy + .- + Hy be two
disconnected graphs with a and b components, respectively, where a,b > 2.
A component join of F and H is constructed from F and H by adding edges
between F and H such that each vertex of F' is adjacent to at least one
vertex in each component of H and each vertex of H is adjacent to at least
one vertex in each component of F. Thus, a component join of F and H is
a connected subgraph of the join F A H of F and H. In particular, F A H
itself is a component join of F' and H. Therefore, for integers r, s > 2, the
complete bipartite graph K, , is a component join of K, and K,. Also,
for F = Ko+ K; and H = P3 + K3 + K}, the graph G of Figure 2 is a
component join of F and H.

Proposition 1.1 A connected graph G of order 4 or more has an MVC-
partition consisting of two minimal cutsets, each containing at least two
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Figure 2: A component join of F and H

vertices, if and only if G is a component join of two disconnected graphs.

Proof. First, suppose that G is a component join of two disconnected
graphs G; and Ga. Then {V(G,),V(G2)} is a VC-collection. Since every
vertex of G, is joined to at least one vertex in each component of Gy, it
follows that if U is a proper subset of V(G}), then G — U; is connected.
Also, if U; is a proper subset of V' (G,), then G—Us is connected. Therefore,
{V(G1),V(G2)} is an MVC-partition.

For the converse, assume that {V1, 5} is an MVC-partition of G, where
|Vi| 2 2 for ¢ = 1,2. This implies that F = G[V}] and H = G[V,] are
disconnected subgraphs of G. We claim that G is a component join of F
and H. Assume, to the contrary, that this is not the case. Then some vertex
v of F, say, is not adjacent to any vertex in some component H; of H. Then
v and H; belong to different components in the subgraph G — (V; — {v})
and so G — (V} — {v}) is disconnected, which is a contradiction. ]

2 7-Graphs of Graphs

For any partition 7 = {V3,V3,..., Vi} of the vertex set of a graph G, the
w-graph G, of G is defined as the graph whose vertices correspond 1-to-1
with the sets V1, V3, ..., Vi and two vertices V; and V; are adjacent in G,
if and only if there exist vertices « € V; and v € Vj such that u is adjacent
to v in G. In the case where 7 is an MVC-partition of G, the n-graph G,
represents the structure of . For the MVC-partitions 7, and w2 described
in Section 1, the my-graph and ma-graph of the graphs G, and G of Figure 1
are shown in Figure 3.

There is a fundamental property that all m-graphs of connected graphs
G possess for each MVC-partition 7 of G. For two sets A and B of vertices
of a connected graph G, let

d¢(A, B) = min{d¢(a,b) :a € A and b € B},
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Va Vi Va

Figure 3: The w-graphs of the graphs of Figure 1

where dg(a, b) is the distance between two vertices a and b (the length of
a shortest @ — b path in G).

Proposition 2.1 If G is a connected graph and 7 is an MVC-partition of
V(G), then the w-graph G, of G is connected.

Proof. Assume, to the contrary, that there is a connected graph G and
an MVC-partition 7 of V(G) such that G, is disconnected. Among all
pairs of vertices of G, that are not connected in Gy, let A and B be a
pair such that dg(4, B) = k is minimum. Let a € A and b € B such that
dg(a,b) = dg(A, B). Let P = (a = ao,a1,...,ax = b) be an a — b geodesic
in G. Necessarily, k > 2. Suppose that a; is the first vertex on P that does
not belong to A, where then 1 <i <k —1. Let a; € C € 7. Hence, C # A
in 7. Since a;_; € A, it follows that A and C are adjacent in G and so
the vertex C is in the same component as A in G,. Thus, C and B are not
connected in G. Since dg(C, B) < dg(ai,d) < k, this is a contradiction. m

Since every even cycle has an MVC-partition and each such partition
7 consists of pairs of nonadjacent vertices, the w-graphs of even cycles are
of special interest. The following theorem characterizes all graphs that
are m-graphs of even cycles. For two disjoint sets U and W of vertices in a
graph G, the set of edges joining U and W in G is denoted by E[U, W]. The
underlying graph of a multigraph M is the graph G for which V(G) = V(M)
and uv € E(G) if u and v are joined by at least one edge in M.

Theorem 2.2 A connected graph H of order 3 or more is a w-graph of
some even cycle if and only if H is the underlying graph of a 4-regular
multigraph.

Proof. First, assume that H is the underlying graph of a 4-regular multi-
graph M of order k > 3. Thus, M is an Eulerian multigraph of even size
2k. Let C = (v1,v2,...,v2,v1) be an Eulerian circuit in M. Since M is
4-regular, each vertex of M occurs exactly twice as nonconsecutive vertices
of C. Next, let G = Cyi = (u1,uz,. .., U2k, 1) be a 2k-cycle. Furthermore,
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let 7 = {W,Va,...,Vik} be the MVC-partition of V(G) in which two ver-
tices u, and up of G belong to the same element of 7 if and only if v, = v
on the circuit C. Then two vertices V; and V; of G are adjacent if and only
if some vertex in V; is adjacent to some vertex of V;, where 1 <i < j < k.
Let V; = {uq,up} and V; = {uc,ua}. Now, V; and V; are adjacent if and
only if |E[V;,V;]| 2 1. Thus, H = G,.

For the converse, assume that H is a connected graph of order k& that is
a m-graph of some even cycle G. Necessarily, G has order 2k. Suppose that
G = Cai = (uy, U2, ..., Uk, uy) is a 2k-cycle. Let # = {V,Va,...,Vor} be
an MVC-partition of V(G) such that G, = H. For each integer ¢ with
1 <i<k,let V; = {u;,u;,} where then u;, and u;, are two nonadjacent
vertices of G. Let M be the multigraph with V(M) = 7, where the number
of edges joining V; and Vj is |E[V;, Vj]| for ¢ # j. Thus, H is the underlying
graph of M. Since the two vertices in V; are nonadjacent, |E[V;,V(G) —
Vi]| =4 for 1 < i <k, it follows that M is 4-regular. [ ]

The following result is then an immediate corollary of Theorem 2.2.

Corollary 2.3 Every connected 4-regular graph is a w-graph of an even
cycle.

With the aid of Theorem 2.2, those cubic graphs that are m-graphs of
an even cycle with an MVYC-partition m can be determined. A 1-factor of
a graph G is a 1-regular spanning subgraph of G.

Corollary 2.4 A connected cubic graph H is a w-graph of an even cycle if
and only if H has a 1-factor.

Proof. Suppose that H is a connected cubic graph having a 1-factor F'
By replacing each edge in F by two parallel edges, a 4-regular multigraph
M is obtained. Thus, H is the underlying graph of M. It then follows by
Theorem 2.2 that H is a 7-graph of an even cycle.

For the converse, assume that H is a connected cubic graph that is a
w-graph of an even cycle G. Then H has even order, say 2k > 4. By
Theorem 2.2, H is the underlying graph of a 4-regular multigraph M. Let
v be a vertex of H. Since degy vy = 3 and degy, v1 = 4, it follows that v;
is incident with exactly one edge e; in M that does not belong to H, say
e1 = vyw;. Hence, e; is the only edge of M that is incident with w; that
does not belong to H. Continuing in this manner, we obtain k pairwise
nonadjacent edges e; = u;w; (1 < 7 < k) that belong to M but not to H.
Therefore, the edges u,w; (1 < i < k) of H form a 1-factor of H. ]

Since the cubic graph H; of order 10 in Figure 4 has a 1-factor, it follows
by Corollary 2.4 that H; is a m-graph of the cycle Cy9. On the other hand,
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Hy: X>‘—<X H, :%

Figure 4: Two cubic graphs H; and Hp

the cubic graph H; in Figure 4 has no 1-factor and so H; is not a w-graph
of any even cycle. -

Errera [2] proved that if all the bridges of a connected cubic graph G
lie on a single path of G, then G has a 1-factor. From this theorem and
Corollary 2.4, we have the following.

Corollary 2.5 Let G be a connected cubic graph. If all the bridges of G
lie on a single path of G, then G is a w-graph of an even cycle.

Corollary 2.4 also implies that (1) the graph K3 3 is a 7-graph of Cja,
(2) the Petersen graph is a w-graph of Cz and (3) the Mobius ladder My,
k > 2, is a w-graph of Cak, where My is obtained by joining diametrically
opposite vertices of the cycle Ca. In addition, we have the following:

Corollary 2.6 For each integer k > 3, the k-cycle Cy, is a w-graph of Cox.

Each graph of order 5 shown in Figure 5 is the underlying graph of a
4-regular multigraph and so it is a w-graph of Cjo by Theorem 2.2. The
corresponding MVC-partition 7 is given in Figure 5 for each graph, where
V; is the set of vertices labeled i.

For an MVC-partition = of Cyo, the m-graph G, of Cyo has order 5 and
each vertex of G, has degree 2, 3 or 4. With the aid of Theorem 2.2, the
following can be verified:

1. The unique graph K5 —e of order 5 and size 9 is not a m-graph of C)g.
2. There is a unique m-graph of C)¢ having size 8.

3. The graph K; V K3 is not a w-graph of Cjo.

4. The graph K; V P, is not a w-graph of Cjo.

5. The graph K3 3 is not a w-graph of Cyo.

In summary, Figure 5 shows all m-graphs of Cjo. Incidentally, the only
connected graphs of order 4 that are w-graphs of Cg are C,4 and Kj.
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Figure 5: Some MVC-partitions 7 and corresponding m-graphs G, of Cg

3 Homomorphic Images

We saw that if w is an MVYC-partition of an even cycle, then each element
of 7 is an independent set. In fact, if 7 is a partition of the vertex set of
a graph G such that each element of 7 is an independent set, then both #
and G, concern familiar concepts in graph theory.

A homomorphism from a graph G to a graph H’ is a function ¢ :
V(G) = V(H’) that maps adjacent vertices in G to adjacent vertices in
H. The subgraph H = (V, E) of H' whose vertex set is V(H) = ¢(V(G))
and whose edge set is the set E(H) = {¢(u)¢(v) : uv € E(G)} is called the
homomorphic image of G under ¢ and is denoted by ¢(G) = H. A graph
H is called a homomorphic image of a graph G is there is a homomorphism
¢ of G such that ¢(G) = H.

Let H = (V, E) be a homomorphic image of a graph G and let V(H) =
{v1,v2,...,vx}. For any vertex v € V(H), let ¢~}(v) = {u € V(G) :
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#(u) = v}. Since ¢ is a homomorphism, it follows that ¢—!(v) is an inde-
pendent set in G for every v € V(H). This defines a coloring of the vertices
of G, that is, m = {¢~(v1),¢~*(v2),...,97(vk)} is a partition of V(G)
into independent sets. It also follows that the w-graph G, is isomorphic to
H. In particular, if w is an MVC-partition of a graph G, where each set V;
(1 €1 < k) is independent, then ¢ represents a k-coloring of G where each
vertex of V; (1 < i < k) is colored ¢ and G, is the homomorphic image of
G resulting from this k-coloring.

For a nontrivial connected graph H that is & homomorphic image of
a cycle, let u(H) be the length of a shortest such cycle and let e(H) be
the length of a shortest Eulerian walk in H. (Eulerian walks are discussed
in [3])

Proposition 3.1 Every nontrivial connected graph H is a homomorphic
image of a cycle and so u(H) exists. Furthermore, u(H) = e(H).

Proof. Let H be a nontrivial connected graph with V(H) ={u1, uo, ...,
ug}. Let W =(w, wo, ..., wp, w;) be an Eulerian walk of minimum length
p in H. Thus, each edge in H occurs in W at least once. (Every edge of H
can occur exactly once if and only if H is Eulerian and W is an Eulerian
circuit.) Let C = (v1,vs,...,vp,v1) be a cycle of order p. For each integer
iwithl1 <i<k,let

Vi={v,eV(C): ws=u;and 1<t <p}.

Thus, each set V; is an independent set of vertices of H and a vertex in a
set V; is adjacent to a vertex in V; in C (1 <4 < j and i # j) if and only
if uju; € E(H). Hence, H is a homomorphic image of C. Therefore, u(H)
exists and u(H) < e(H).

Next, we show that e(H) < u(H). Let u(H) = £ and let

C= (1)1,’02,...,'02,1)1)

be a cycle such that H is a homomorphic image of C. Thus, there is a
partition P = {Uy,Us,...,Ui} of V(C) into independent sets such that
u;u; € E(H) if and only if some vertex in U; is adjacent to some vertex
in U; in C. Since each U; is an independent set of vertices of C, it follows
that every edge in C gives rise to an edge in H (although it is possible that
several edges in C produce the same edge in H). Furthermore, for each
edge u;ju; in H, there is at least one edge v,v,41 in C such that v, € U;
and v,41 € Uj. Identifying all vertices in each set U, producing a single
vertex denoted by u; for 1 < i < k, and following the ordering of vertices
in C, we obtain an Eulerian walk W = (wj,ws,...,we,w;) of length £ in
H. Thus, e(H) < p(H) and so e(H) = u(H). s
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By Proposition 3.1, every nontrivial connected graph is a homomor-
phic image of a connected 2-regular graph. Next, we show that every
nontrivial connected graph is, in fact, a homomorphic image of a con-
nected r-regular graph for each integer » > 3. First, we introduce some
notation. For a given integer n > 3, we denote an n-cycle by C, where
C = (v1,v2,...,Un,v;). Because several n-cycles will be encountered in
the graphs to be considered, we denote this first n-cycle by C(1) and
write C(1) = (vgl),vgl),...,v,(tl),vgl)). The Cartesian product C O K
of C and K, can also be expressed as C 00 Q,. This graph is constructed
with the aid of two disjoint n-cycles, namely the n-cycle C(1) and the n-
cycle C(2) = (vgz),vgz), cen ,v,(,z),viz)) together with the edges v§1)0§2) for
j=1,2,...,n. In the case where C is a 6-cycle, the graph C OO Q, is shown

in Figure 6. For each integer j with 1 < j < n, let V; = {vﬁl),vﬁ)l} be

the 2-element independent subset of V(C O Q;) where v,(:‘:,),l = v§2). Then

the n-cycle C is a homomorphic image of C [0 Q; defined by the partition
P ={V,Va,...,V;,} of the vertex set of C O Q,.

Figure 6: The graph Cs O Q;

The graph C O Q; is also (C O @Q;) O K,. This graph consists of
C O Q) described above, with another copy of C 00 Q;, where the vertex
vJ(f) (1 £3j <mn,i=1,2) in the first copy of C O Q, corresponds to the

vertex v§i+2) in the second copy of C 00 ;. In addition to the two copies
of C [J @, described above, each edge vgi)vgi”), 1<j<ni=1,2Iis
added to these two copies. The graph C 0 Q, has therefore 22 = 4 pairwise

disjoint n-cycles C(1),C(2),C(3),C(4) where

c() = P, v, ..., v8 v for 1 <i < 22,
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The graph C O @5, where C is a 6-cycle, is shown in Figure 7, where
an edge in the first copy of C O @, is indicated by a thin line, an edge
in the second copy of C O Q; is indicated by a dashed line and an edge
between these two copies of C 0 @, is indicated by a bold line. For each
integer j with 1 < j < n,let Vj; = {v(1 ,vf)} and V5 ; {0(2),11(3)} be
2-element independent subsets of V(C CI Q@2). Then the graph C D Qs
a homomorphic image of C [0 Q; defined by the partition P = {V;;: i =
1,2 and 1 < j < n} of the vertex set of C O Q.

Figure 7: The graph Cgs O Q2

Suppose now that the graph C [0 Qi has been constructed for an integer
k > 2. We describe the construction of C O Q1. By the construction of
C O Qx, it follows that C O Qi consists of 2* pairwise disjoint n-cycles,

namely

C(l) = (v(l)’ ’vr(;l)’vgl))
2
c@ = (v§”’,v2’,.--,v53>,v§ )
o= . .
c@) = )0, 02,0
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To construct C 0O Qg41, we have a second copy of C O Q, consisting of
the 2* pairwise disjoint n-cycles

- 1 1 1

C (1) — (.w( ) ( ) ..,w,(‘l),wg ))

- 2 2
c'(2) = (w&’,w” o ul®, w?)

. ’ - ’ k k ke 2k
c@) = @®,wf),... 0l w®),

where the vertex wg'), 1<j<mn,1<1i< 2% corresponds to the vertex
v](.i). Then each edge vj(.i)wj(-i) (1<j<n,1<1i<2*)is added to these two
copies producing the graph C O Qx41. The graph C O Q1 now has 2%+!
pairwise disjoint n-cycles C(1), C(2),...,C(2%+!) where C(2F +p) = C*(p)
for 1 <p <2k,

. For each pair ¢, j of integers with 1< j <n an(_i 1 < i < 2k, the vertex
vJ(-’) has degree k + 2 in C O Q. In particular, v;-‘) is adjacent to its two
neighbors in the cycle C(i) and is also adjacent to & additional vertices on
k of the 2F disjoint n-cycles in C O Q, (exactly one vertex from each of

these k cycles).
For 1 < £ < k, express i = 2%gy + 74, where 1 < r; < 28, Also, let

= [2eqe +1, 2ng + 2(] = {2et]g +1, 2qu +2,... ,2£Q¢ + 22}.

For each integer i with 1 < i < 2 and each j with 1 < j < n, the vertex
(') is adjacent to either v§'+2 R (=277 according to which of i 4 2¢-1
or i — 241 belongs to S;.

For example, in the graph C O Qs, the vertex 0;15) on the cycle C(15)
is adjacent to its two neighbors in the cycle C(15) and is adjacent to

orv

(1) v{'¥ since 16 =15+1€ 8 = [2-7+1, 27 +2] = [15,16],
(2) v{"¥ since 13=15-2€ S, = [4-3+ 1, 4-3+ 4] = [13,16),
(3) vi'V since 11=15—-4€ S3=[8-1+1, 8-1+8] =[9,16),
(4) v\” since 7=15-8¢€ S4=(16-0+1, 16-0+ 16] = [1,16],
(5) v$*V since 31 =15+ 16 € S5 = [32-0+ 1, 32-0+32] = [1,32).

As another example, in the graph C O Qs, the vertex '01(21) on the cycle

C(21) is adjacent to its two neighbors in the cycle C(21) and is adjacent to

(1) v since 22=214+1€ 5, =[2-10+1, 2-10 + 2] = [21,22],

214



(2) v{* since 23=21+2€ S, =[4-5+1, 4-5+4] = [21,24],
(3) v{' since 17=21-4€ 53 = [8-2+1, 8-2+8] = [17,24],
(4) v$® since 29 =21+8€ Sy =[16-1+1, 16-1+16] = [17,32),
(5) v since 5 =21 — 16 € S5 = [32- 0+ 1, 320+ 32] = [1,32].

Since the order of C O Qx41 is 2%n, the order of C O Qg4 is 2F+1n. For
each pair 4, j of integers where 1 < j < n, 1 < i < 2%, let V;; be the
2-element independent subset of V/(C O Q) defined by

{ {vJ(-i) wyﬂ)} if 4 is odd
W =

vJ(-i), wgi"l)} if i is even.
Thus, the graph C O Q4 is the homomorphic image of C O Qx4 defined
by the partition P = {V;; : 1 <i < 2¢and1<j < n} of the vertex set of
C O Qk+1. This results in the following theorem.

Theorem 3.2 For every pair k,n of positive integers where n > 3, the
graph C, O Qy is a homomorphic image of Cp, O Qr41.

The following is then a consequence of Proposition 3.1 and Theorem 3.2.

Corollary 3.3 Every nontrivial connected graph is a homomorphic image
of an r-regular graph for each integer r > 2.

Theorem 3.2 also states that H is a homomorphic image of H [0 K,
for H = C,, O Q. This suggests the problem of determining nontrivial
connected graphs H having the property that H is a homomorphic image
of H O K». For a vertex v in a connected graph G, let e(v) denote the
eccentricity of v (the largest distance from v to a vertex in G).

Theorem 3.4 Every nontrivial tree T is a homomorphic image of T O K».

Proof. Let T be a tree of order n > 2 and let v; be a leaf of T. The tree T
may then be considered as a rooted tree with root v;. Therefore, T' can be
considered as a directed tree where there is a directed v; —w path in T for
every vertex w of T. Let V/(T') = {v1,v2,...,v,} where d(vq,v;) < d(v1,v;)
for1 <i<j<n Let G=T 0O Ks, where G consists of the tree T' (as
labeled above), a second copy T" of T with V(T") = {u;,uz,...,us} such
that u; corresponds to v; and u;v; € E(G) for 1 <i < n.
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We now show that there is a proper n-coloring ¢ of G using the colors

1,2,...,n resulting in the color classes Vi, V2,...,V, such that the homo-
morphic image resulting from the n color classes V4, V3, ..., V, is isomorphic
to T. First, color each vertex v; the color i for i = 1,2,...,n.

The vertex ug is the only vertex at distance 1 from u; of T'. Assign the
color 2 to u; and the color 1 to u;. Next, assign the color 2 to each vertex
of T' at distance 1 from us. Proceeding recursively, assume that all vertices
of T’ at distance k from u; have been assigned a color where 2 < k < e(u;)
and let u; € V(T") such that dr/(uy,u;) = k+ 1. Let u; be the unique
vertex adjacent to u; on the u; — u; (directed) path P on T’. We then
assign the color ¢(v;) to u; (and so c(u;) = c(v;)).

Let a and b be distinct colors in {1,2,...,n} such that some vertex in
V. is adjacent to a vertex in V. Then v,y € E(T) where say a < b. Thus,
the edge u, is colored a. Also, the two incident vertices of an edge of T' are

assigned two distinct colors of {1,2,...,n} if and only if the two incident
vertices of some edge of T are also assigned these same two colors. Hence,
T is a homomorphic image of G. ]

To illustrate the coloring ¢ described in the proof of Theorem 3.4, con-
sider the tree T with V(T') = {v;,v2,...,v13} and construct T O K, as
shown in Figure 8, where one copy of T in T' O K is drawn with bold lines,
the second copy T” of T is drawn with thin lines and the edges between T
and T' are drawn with dashed lines. The color of each vertex of T O K is
indicated inside the vertex.

Figure 8: Illustrating the proof of Theorem 3.4
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Although every tree T is a homomorphic image of T O K5, not every
nontrivial connected graph G is & homomorphic image of G 0 K.

Proposition 3.5 The graph H of Figure 9 is not a homomorphic image
of HO K,.

v v2
v3
v4
H: vs v
vy
vs vg

Figure 9: The graph H

Proof. Assume, to the contrary, that H is a homomorphic image of G =
H 0O K,, shown in Figure 10. Consequently, there is a proper 9-coloring c
of G using the colors 1,2,...,9 resulting in the color classes V},V;,...,Vy
so that when the vertices of each set V; (1 < i < 9) are identified, producing
the vertex v;, the graph H is obtained.

G=HOK>:

Figure 10: The graph G = H [0 K,

Since every vertex in a triangle in H O K> belongs to a triangle in H,
the vertices of each of the four triangles in G must be colored 1,2,3 or
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7,8,9. Also, since there are adjacencies between the vertices of triangle
z),%3,z3 and triangle y;,y2,ys, the vertices in these triangles must both
be colored 1,2, 3 or both be colored 7, 8, 9. Similarly, the vertices of the
triangles z7,zs,T9 and y7,ys,ys must both be colored 1,2,3 or both be
colored 7,8,9.

Moreover, since any neighbor of a vertex colored 6 must be colored 5,
we deduce that none of x4,75,¥4 and ys is colored 6. Thus, either zg or
ye is colored 6. Without loss of generality, we may assume that c(ys) = 6,
implying that c¢(z¢) = c(ys) = 5. Then ¢(z5) € {4,7}. Furthermore, since
ys is adjacent to y7 and y7 is in a triangle, it follows that ¢(y;) = 7 and
the vertices of triangles y,vs,ys and z7,xs,z9 are colored 7,8,9. Thus,
c(z7) € {8,9}. Now z5 is adjacent to 7 and no vertex colored 4 has a
neighbor colored 8 or 9, so ¢(zs) = 7. But then z4 is adjacent to a vertex
colored 7 and a vertex in triangle colored 1, 2 or 3, and no such vertex exists
in H, producing the contradiction. "

4 Closing Comments

We close by noting that many problems remain, particularly those deal-
ing with the structure of wm-graphs obtained from vertex partitions 7 =
{W",Vs,...,Vi} whose elements have some property of interest. If each set
V; is an independent set, then these partitions give rise to proper colorings
of graphs and the corresponding w-graphs are just homomorphic images
of a graph. If each set V; induces a connected subgraph, then the corre-
sponding w-graphs are just contractions of a graph. In this case, the famous
Hadwiger’s conjecture [4] is worth noting; it can be stated as follows:

Conjecture 4.1 (Hadwiger’s Conjecture) For any graph G, if the
chromatic number x(G) = k, then G has a connected vertex partition m
whose corresponding wt-graph is the complete graph K.

This raises the following question: Is every graph G having chromatic
number k a homomorphic image of a regular graph having chromatic num-
ber k? If each set V; is an independent set of edges, then the m-graph is
a homomorphic image of the line graph of the graph. It is also of interest
to study w-graphs arising from vertex partitions 7 in which each element
is a so-called 1-dependent set consisting of a disjoint union of copies of K,
and K,. These w-graphs include the homomorphic images of the graph —
and more.

It is well known that the chromatic number of any homomeorphic image
of a graph G is at least the chromatic number of G. The regular graphs
constructed in the proof of Theorem 3.2 are bipartite. This raises the ques-
tion is whether the largest chromatic number & such that a graph G having
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chromatic number ¢ is a homomorphic image of a regular graph having
chromatic number k < ¢? In particular, is every graph having chromatic
number 3 a homomorphic image of a regular graph having chromatic num-
ber 37

Other problems include those of finding other classes of graphs G that
are homomorphic images of G 0 K5; graphs of the form G [0 K, are often
called prisms. So the question becomes: Which graphs are homomorphic
images of their own prisms? Theorem 3.4 asserts that every nontrivial tree
T is a homomorphic image of T O K. Is this also true for every bipartite
graph G? Note that the example given in Proposition 3.5 is not bipartite.

References

[1] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs, Fifth
Edition. Chapman & Hall/CRC, Boca Raton, FL (2010).

(2] A. Errera, Une demonstration du theoreme de Petersen. Mathesis 36
(1922) 56-61

[3] F. Fujie and P. Zhang, Covering Walks in Graphs. Springer, New York
(2014).

[4] H. Hadwiger, Uber eine Klassifikation der Streckenkomplexe.
Vierteljschr. Naturforsch. Ges. Zirich 88 (1943)

219



