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Abstract

A bipartite graph on 2n vertices is called bipancyclic if it contains
cycles of every length from 4 to 2n. In this paper we address the
question: what is the minimum number of edges in a bipancyclic
graph? We present a simple analysis of some small orders using
chord patterns.

1 Introduction

For definitions and theorems involving graph theory, the reader is referred
to standard texts on the subject, such as [12]. Graphs are finite, simple
and undirected.

A graph with v vertices is called pancyclic if it contains cycles of ev-
ery length from 3 to v. Pancyclic graphs were introduced by Bondy [2],
although the directed equivalent had been discussed earlier (see [1, 6, 8]),
and have been studied by several authors: see, for example, [3, 9, 11, 5].
In particular, some papers have investigated the smallest possible number
of edges in such a graph. A pancyclic graph with this number of edges
is called minimal. In 1978, Sridharan [11] gave constructions that found
upper bounds for the number of edges in a minimal pancyclic graph.

In 1982, Schmeichel and Mitchem [10] introduced the concept of bipan-
cyclic graphs. A graph is called bipancyclic if it is bipartite, and contains
cycles of every even length from 4 up to and including the number of ver-
tices. Any bipartite graph has two disjoint sets of vertices, V; and V; say,
such that every edge has one endpoint in V; and the other in V5. A bi-
pancyclic graph must be Hamiltonian, which implies that the sets V; and
V> must be of equal size (a bipartite graph with this property is called bal-
anced), so it will be a subgraph of Kn n, where n is the common size of V;
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and Vg.

While minimal bipancyclic graphs can be defined analogously to mini-
mal pancyclic graphs, they have not been investigated extensively. In this
paper, we shall discuss some of the smaller cases.

Another idea that has been explored is uniqueness. A pancyclic graph is
uniquely pancyclic if it contains exactly one cycle of every possible length;
uniquely bipancyclic graphs are defined analogously. While the discussion
of uniquely pancyclic graphs has proven difficult, there has been more work
on uniquely bipancyclic graphs; two recent papers are [7] and [13].

2 Some basics

For every positive integer n > 2 there will be an integer m*(2n) such that
any bipancyclic graph with 2n vertices must have at least m*(2n) edges; a
bipancyclic graph with 2n vertices and m*(2n) edges is called minimal. If
a graph G has e(G) edges and v(G) vertices then the difference e(G) —v(G)
is called the ezcess of G, so m*(2n) is the value such that m*(2n) — 2n is
the minimum excess for a bipancyclic graph on 2n vertices.

We would conjecture that one cannot decrease m*(2n) by increasing v;
in other words,

m*(2n) > m*(2n - 2)

There is an easy construction for bipancyclic graphs. Take a 2n-cycle
(a1,a2,...a24,a1) and add edges from a; to a; for i = 4,6,...,n if n is
even, and up to n — 1 if n is odd. The resulting graph is bipancyclic, but
the excess is quite large for large n. Another result, proven by Entringer
and Schmeichel in 1988, is

Theorem 1 [4] Suppose G is a balanced bipartite graph on 2n vertices. If
G has more than n(n — 1) + 1 edges, then G is bipancyclic.

For convenience we shall denote the vertices of a bipartite graph of order
2n by a,as,...,a2,, where (a),as,...,a2n,0;) is the Hamilton cycle; the
component V), consists of the vertices with odd subscripts and V, contains
the even vertices. The edges not in the Hamilton cycle are called chords,
so the excess equals the number of chords in the graph.
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3 Minimal bipancyclic graphs with excess less
than 2

It is obvious that the only bipancyclic graph on four vertices is the 4-cycle.

Suppose a bipancyclic graph has six vertices. Then it must contain
cycles of length 4 and 6. The graph will contain a Hamilton cycle, so it will
be a 6-cycle with additional edges. It is easy to add a 4-cycle by adding
one edge, say from a; to a4. The graph will in fact contain two 4-cycles.

It was shown in [13] that there is a uniquely bipancyclic graph on 8
vertices. This graph and the examples on 4 and 6 vertices are shown in
Figure 1.

A graph consisting of a Hamilton cycle and one chord can contain at
most three cycles. A bipancyclic graph on 10 or more vertices must contain
at least four cycles, so it must contain at least two chords.

OO O

Figure 1: Minimal bipancyclic graphs up to order 8

4 Excess 2

There are three possible patterns for two chords: case A, where the chords
share an endpoint; case B, where they do not cross in the standard diagram,
and case C, where they cross. The three types are illustrated in Figure 2.

1019

Figure 2: Possible patterns for two chords

Types A and B contain 6 cycles and type C has 7, so the graph can only
be bipancyeclic if there are 16 or fewer vertices. So we need only consider

cases 2n = 10, 12, 14 and 16.

223



Figure 3 shows a graph on 2n vertices with two chords, X and Y’; the
circle represents the Hamilton cycle, and the numbers on the cycle show
the number of edges in the segment.

2n-8

Figure 3: Minimal bipancyclic graphs of orders 10 to 14

The Hamilton cycle is a cycle of length 2n, the cycles containing X but
not Y (the X-cycles) have lengths 4 and 2n —2, the Y-cycles have lengths 6
and 2n—4, and the XY-cycle is of length 2n—6. So the graph is bipancyclic
for 2n = 10,12 or 14.

In the 16-vertex case, the total number of edges in the two cycles con-
taining a given chord (but not the other one) will total 18, the two cycles
that contain both chords will have a total of 20 edges, and the Hamiltonian
cycle contains 16. So the seven cycles have a total of 16 + 18+ 18420 = 72
edges (with repetitions counted multiply). But 4+6+8+104+12+14416 =
70. So there are too many edges for exactly one cycle of every length, and
not enough if any repeated cycle lengths are allowed.

5 Excess 3

Suppose a Hamiltonian graph contains three chords. It will contain the
Hamilton cycle, six one-chord cycles, three to six two-chord cycles, and
one or two three-chord cycles, totalling between 11 and 15 cycles. So a
three-chord bipancyclic graph could have anywhere up to 32 vertices.

The possible arrangements of three chords were analyzed in [13] and
were illustrated in that paper; the types are illustrated in Figure 4, which
was taken from that paper.

Figure 5 below shows a graph of type AAC on 2n vertices with three
chords, X,Y, Z; the circle represents the Hamilton cycle, and the numbers
on the cycle show the number of edges in the segment. The Hamilton cycle
has length 2n, the X-cycles have lengths 2n — 8 and 10, the Y-cycles have
length 6 and 2n — 4, the Z-cycles have length 4 and 2n — 2, the XY-cycles
have length 14 and 2n — 10, the X Z-cycle has length 8, the Y Z-cycle has
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AAAI AAAii AABI AABIi ABBi ABBii
ABC AC Bi BBBii

Figure 4: Cases of three chords

length 2n—6, and the XY Z-cycle has length 12. So the graph is bipancyclic
for 10 < 2n < 26.

2n-13 1

3

Figure 5: Minimal bipancyclic graphs of orders 16 to 26

A bipancyclic graph on 28 or more vertices must contain at least 13
cycles, so the only possible chord cases with three chords are BCC, ACC or
CCC (these patterns are defined in Figure 4). Type BCC has 13 cycles, so a
bipancyclic graph of that type on 28 vertices would be uniquely bipancyclic,
which was shown in [13] to be impossible. The remaining cases are shown
in Figure 6, with the chords named and the lengths of arcs marked.

Type ACC has 14 cycles. In order to achieve 28 or more vertices, we can
have at most one pair of cycles of the same length, but this cannot occur.
The possible arc lengths to achieve a 4-cycle are a = 2,b = 1 or equivalent
(a=1,b=2o0ore=1,f=20re=2,f=1),orc=d=1.Ifa=2,b=1,
there are an X-cycle and an XY -cycle of length c+e+ 3, and an X Z-cycle
and an XY Z-cycle of length ¢+ f + 4; if c = d = 1, the XY -cycles are of
lengths b+ e + 3 and a + f + 3, and the X Z-cycles are of the same two
lengths. In either case we have at most 12 distinct cycle lengths. So any
bipancyclic graph on more than 26 vertices must have an excess of at least
4.
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ACC cccC

Figure 6: Chord patterns ACC and CCC

6 Excess 4

A graph with four chords could have as many as 31 cycles, so it is conceiv-
able, though unlikely, that one might find a 4-chord bipancyclic graph with
as many as 64 vertices. Very little work has been done on this topic. A
uniquely bipancyclic graph on 44 vertices was found in (7], so we shall look
at cases up to 44.

Figure 7 shows a pattern of graph with four chords and 2n vertices,
where 2n must be at least 28. The numbers on the arcs are the number
of edges. We list the lengths of the cycles according to the chords they
contain:

2n-26

Figure 7: A model for 28 to 44 vertices
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No chords, 2n;

A only, 10,2n — 8; B only, 18,2n — 16;
C only, 4,2n — 2; D only, 6,2n — 4;
A and B, 2n — 24; A and C,8;

Aand D,14,2n —10; B and C,2n — 18;
B and D,16,2n-12; C and D,2n —6;

A, B, C, no cycle; A,B,D, 24,2n — 18;
A,C,D,12; B,C,D,2n — 14;
A, B,C,D,22

So we always have cycles of all even lengths from 4 to 18, 22 and 24,
2n — 24 and all orders from 2n — 20 to 2n. So the graph is bipancyclic
provided 2n < 44. (When 2n = 44, the graph is the UBPC graph presented
in [7).)

We have
Theorem 2 The minimum excess m*(2n) of a bipancyclic graph on 2n
vertices satisfies m*(4) = 0, m*(6) = m*(8) = 1, m*(2n) = 2 for 10 <

2n <16, m*(2n) = 3 for 18 < 2n < 26, m*(2n) = 4 for 28 < 2n < 44, and
m*(2n) > 4 for 2n > 46.
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