Revisiting the Recognition of
Proper Interval Graphs

Lilian Markenzon *
NCE - Universidade Federal do Rio de Janeiro
markenzon@nce.ufrj.br

Christina F. E. M. Waga
IME - Universidade do Estado do Rio de Janeiro
waga@ime.uerj.br

Abstract

A well-known subclass of chordal graphs is formed by proper in-
terval graphs. Due to their very special structural properties, several
problems proved hard to solve for interval graphs can have better
solutions for this subclass. In this paper, we address the recogni-
tion problem, proposing an update of one of the first existing linear
algorithms. The outcome is a simple and efficient algorithm. In ad-
dition, we present a certifying algorithm for the recognition of proper
interval graphs.

1 Introduction

A well-known subclass of chordal graphs is formed by proper interval graphs.
Due to their very special structural properties, several problems proved hard
to solve for interval graphs can have better solutions for this subclass. In
this paper, we address the recognition problem, for which there are already
some algorithms in the literature. We propose an update of one of the first
linear algorithms presented. The resulting algorithm has time complexity
of O(n+ m) and its implementation is very simple. In addition, we extend
the proposal, showing a certifying recognition algorithm for the class.
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Let G = (V, E) be a graph, with |E| = m, |V| = n > 0. The set of
neighbors of a vertex v € V is denoted by N(v) = {w € V | {v,w} € E}
and its closed neighborhood is denoted by N[v] = N(v)U {v}. A vertex v is
said to be simplicial in G if N(v) is a clique in G. An asteroidal triple (AT)
in a graph G = (V, E) is a triple of distinct vertices such that each pair is
connected by some path avoiding the neighborhood of the third vertex.

A graph G is said to be chordal when every cycle of length 4 or more
has a chord (i.e. an edge joining two non-consecutive vertices of the cycle).
Basic concepts about chordal graphs can be found in Blair and Peyton [2]
and Golumbic {6]. All graphs in this text are assumed to be chordal.

A subset S C V is a vertex separator for non-adjacent vertices u and
v (a uv-separator) if the removal of S from the graph separates u and
v into distinct connected components. If no proper subset of S is a uv-
separator then S is a minimal uv-separator. When the pair of vertices
remains unspecified, we refer to S as a minimal vertez separaior.

A clique-tree of G is defined as a tree T whose vertices are the maximal
cliques of G such that for every two maximal cliques Q and @’ each clique
in the path from @ to Q' in T contains @ N Q'. The set of maximal cliques
of G is denoted by Q. Blair and Peyton (2] proved that, for a clique-tree
T = (Vr,Er), aset S C V is a minimal vertex separator of G if and only
if $ =Q' NQ", for some edge {Q’,Q"} € Er. Moreover, the multiset M
of the minimal vertex separators of G is the same for every clique-tree of
G. The multiplicity of the minimal vertex separator S, denoted by u(S),
is the number of times that S appears in M. The algorithm presented in
Markenzon and Pereira [10] computes the set S of minimal vertex separators
of a chordal graph G and their multiplicities in linear time.

2 Interval graphs

In this section we review some concepts of interval graphs.

An interval graph is the intersection graph of a family I of intervals on
the real line. There are several characterizations of this class.

Theorem 1 (8] Let G = (V, E) be a non-complete chordal graph. Then,
G is an interval graph if and only if G is AT-free graph, i.e., G does not
contain any asteroidal triple.

Theorem 2 [5] Let G = (V, E) be a non-complete chordal graph. Then, G
is an interval graph if and only if G has a cligue-tree that is a path.

The clique-tree which is a path will be called a clique-path, denoted by
(Q1)--.,Qq)-

230



Olariu [12] has defined an ordering of vertices which characterizes inter-
val graphs.

Theorem 3 A graph G = (V, E) is an interval graph if and only if there
exists a linear order <x on V such that for every choice of vertices u,v,w

u <x v <x w, {u,w} € E implies {u,v} € E. (1)

The ordering vy <x vy <* ... <* vp is called a greedy ordering.

The following algorithm determines the greedy ordering of an interval
graph. It walks through a clique-path, placing the vertices of the cliques in
buckets, which are ordered by the reappearance of the vertices in subsequent
cliques. A label H(v), for v € V, shows if v must be placed in the bucket or
not, and it also points to the maximal clique in which the vertex appears
for the last time; the label B(v) points to the maximal clique in which
it appears for the first time. Notice that the algorithm below is slightly
improved, since in the original version proposed by Looges and Olariu [9],
the buckets were ordered separately in a second step.

Algorithm Greedy-ordering,
Input: interval graph G and a clique-path (Q1,...,Qq);
Output: greedy ordering J;

begin
for v €V do H(v) « 0; % initialization
fori=1,...,qdo
for v € Q; do % vertices of the clique Q;
if H(v) =0 then
add v to bucket[i]; % bucket is a double linked list
B(v) «4;
Hw) « 3
v is moved to the end of the list bucket to which it belongs;
6 ()
for i=1,...,q do 6 + 0§ || bucket[];
end.

The symbol || represents the concatenation of sequences. At the end of
the process, each list bucket[i],1 < i < g, has at least one element.

Algorithm Greedy-ordering has time complexity of O(n + m). Firstly,
the label H(v) is initialized for v € V. Then the algorithm analyses the
maximal cliques, which is known to be O(n+m). Each vertex belongs only
to one bucket. The implementation of bucket by double linked lists allows
to move the vertices to the end of the list in constant time. Hence, the
algorithm is linear.
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3 Proper interval graphs

A proper interval graph is an interval graph that has an intersection model
in which no interval properly contains another. If each interval in the model
has unit length, G is called a unit interval graph. Roberts [14] has proved
that the classes of proper interval graphs and unit interval graphs are the
same. Corneil [3] summarized in the next theorem the results from Roberts
(14, 15).

Theorem 4 The following are equivalent:
1. G =(V,E) is a unit interval graph.
2. G = (V,E) is a proper interval graph.
3. G = (V,E) is an interval graph with no induced claw (K} 3).
4

There is an ordering of V such that for allv € V, N[v] is consecutive
( “the neighborhood condition”).

5. There is an ordering of V such that vertices contained in the same
mazimal clique are consecutive (“the cliqgue condition”).

Recognition algorithms for proper interval graphs (9, 4, 3] are based on
the following two approaches. In the first approach, we must previously
recognize if the graph is an interval graph; in the second one, the recogni-
tion is performed directly, that is, without determining if the graph is an
interval graph. The algorithm by Looges and Olariu [9] follows the first ap-
proach and it is criticized for this, since the recognition of an interval graph,
although of linear complexity, has not a simple implementation. The deter-
mination of the greedy ordering supports their characterization of proper
interval graphs, as we can see in the next theorem.

Theorem 5 [9] 4 graph G = (V, E) is a proper interval graph if and only
if there exists a linear order <- on V such that for every choice of vertices
U, v, w

u < v < w and {u,w} € Eimplies {u,v}, {v,w} € E. (2)

Corollary 5.1 An interval graph is a proper interval graph if and only if
a greedy ordering of the vertices of G satisfies condition (2).

The ordering that obeys condition (2) is called a canonical ordering.

The canonical ordering is equivalent to the orderings presented in The-
orem 4, as it is shown next.
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Theorem 6 Let G = (V, E) be a proper interval graph. Then a canonical
ordering o = (vy,...,v,) of V obeys the clique condition.

Proof: Consider a maximal clique Q and a canonical ordering ¢ of G.
Let i = min{¢: v, € Q} and let k = max{{: v¢ € Q}.

Consider vertices vj,,...,v;, such thati < j; <...<j, <k.
If s = 1 then, as o is a canonical ordering, {vi,vj,},{vj,,vx} € E and
vj, € Q. Suppose that vj,,...,v;,_, € Q. As 0 is a canonical ordering and

{vj,_1 vk} € E, then {vj,_,,v;,},{vj,,vx} € Eand v;, € Q. m

4 The recognition algorithm

The previous section has presented the theoretical framework for a recog-
nition algorithm:

Step 1: recognize if G is an interval graph;
if so, build a clique-path (Q1,...,Qq) and go to Step 2;

Step 2: huild the greedy ordering 6;

Step 3: verify if § obeys the neighborhood condition or the clique condition
(Theorem 4).

The algorithm is simple but, as we already mentioned, its main draw-
back is Step 1, the need to recognize if the graph is an interval graph. Thus,
we will modify this step, proving other properties of proper interval graphs.
In order to develop our results, we recall another class of graphs, defined
by Kumar and Madhavan [7].

A chordal graph is called a uniquely representable chordal graph (briefly
ur-chordal graph) if it has exactly one clique-tree. An interval graph that
is uniquely representable is called a uniquely representable interval graph
(briefly ur-interval graph).

Theorem 7 (7] Let G = (V,E) be a chordal graph. Then, G is uniquely
representable if and only if there is no proper containment between any min-
imal vertez separators and all minimal vertez separators are of multiplicity
one.

In the next theorem, we show that the ur-interval graphs are directly

related to proper interval graphs. It was previously proved by Panda and
Das [13]. Their proof can be significantly improved as shown below.
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Theorem 8 If G is a proper interval graph then G is an ur-interval graph.

Proof: Let S be the set of minimal vertex separators of G. If G is an
ur-interval graph then u(S)=1and S¢ S’, 8’ ¢ S, for all 5,5’ € S. We
will prove that if 4(S) # 1 or S C §’, for some S, S’ € S, then G is not a
proper interval graph.

If u(S) # 1 then there are at least three maximal cliques Q, Q' and
Q" suchthat QNQ' =QnNQR"=Q'NQR"=S. Forz € Q\ (Q'UQ"),
ye Q' \(QUQ") and z € Q"\ (QUQ') there is a path from z to y, T to 2
and y to z that goes through at least a vertex of S, say w. The subgraph
induced by vertices z, y, w and z is a claw and G is not a proper interval
graph.

If S C &' there are at least three cliques such that S € Q, S’ ¢ Q,
S’ C Q' and S’ C Q". Obviously S is a subset of @’ and Q”. Hence, as in
the previous case a claw can be identified and G cannot be a proper interval
graph. ®

As a result of Theorem 8, the recognition algorithm can be simplified:

Step 1: build a clique-tree T of G

if T is a path (Q1,...,Q,) then go to Step 2, otherwise G is not a
proper interval graph;

Step 2: build the greedy ordering §;

Step 3: verify if  obeys the neighborhood condition or the clique condition
(Theorem 4).

Notice that the construction of the clique-tree [16] is much more simple
than the interval graph recognition and directly provides the sequence of
cliques.

In order to develop Step 3, we use the clique condition. For each max-
imal clique we determine the least and the greatest indices of its vertices
in the greedy ordering. It is immediate that the difference of these indices
must be the size of the clique. Algorithm Test-clique-condition implements
this step.

The recognition of a proper interval graph has time complexity of O(n+
m). Step 1 can be performed by the linear algorithm presented in [16]. We
already know (Section 2) that Step 2 is linear. Algorithm Test-clique-
condition is very simple; the test performed on the maximal cliques has
time complexity of O(n + m).
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Algorithm Test-clique-condition;
Input: G, the clique-path (Q1,...,Qq),
a greedy ordering 6 = (v1,...,vn);
Output: recognition of G as a proper interval graph;
begin
proper « true; j « 1;
while j < ¢ and proper do
first-indez[j] « min{i | vi € Q;};
last-indez[j] + max{i| vi € Q;};
if last-index[j) — first-indez[j] # |Q;| — 1 then
proper «— false;

P—GIieq
Jeg+ 1
if proper then YEs (G is a proper interval graph) (%)
then NO (G is not a proper interval graph) (#%)

end.

5 The certifying algorithm

A certifying algorithm is an algorithm that provides a certificate for each
answer that it produces. A certificate is an evidence that the answer has
not been compromised by a bug in the implementation [1].

In this section, we present a linear-time certifying algorithm for the
recognition of proper interval graphs. We show that the certificate of non-
membership presented here can be authenticated in O(n + m) time.

The existing certifying algorithm for the recognition of proper interval
graphs [11] is based on a multi-sweep min-LexBFS algorithm. Our approach
takes advantage of the computation of Step 3, in the previous section. The
certificate for the answer YES is immediate: the ordering 8. For the answer
NO, we need to build a claw.

Let G = (V, E) be an interval graph, P = (Q,,...,Qq) a clique-path of
G and 0 = (vy,...,v,) a greedy ordering of G performed on P. Algorithm
Test-clique-condition verifies if § obeys the clique condition. If G is not a
proper interval graph, there is a maximal clique such that its vertices are
not consecutive in §. Let @, be the first maximal clique in the clique-path
in which this happens. Let v;, vk, ¢ < k, be vertices of Qp, with ¢ the least
and k the greatest of the indices in § of vertices belonging to the clique.
Let v; ¢ Qp, i < j < k, be a vertex of 4.

Since G is connected, at least the first vertex v; of @, belongs to Qp_1.
Vertex v; belongs to some maximal clique before Q,. Hence, it also belongs

235



to Qp—1 because it appears in J after v; and the greedy ordering obeys the
clique condition until Q,_;.

Moreover, v; also belongs to Q,_2, because if not it would belong
to the same bucket as v; and, when considered in Q, by the Algorithm
Greedy-ordering, it would be moved to the end, appearing after v; in 4.
The following cases must be considered:

¢ v; belongs only to Q,—; (v; is simplicial). In this case,
vi € (Qp N Qp-1 N Qp—2);
let a € Qp_2\ Qp—1 and let b€ Qp\ Qp—1;
claw: V = {v;,v;,a,b}; E = {{vi,a}, {vi, b}, {vi,v;}};
e v; is not simplicial. We know that the first clique to which v; belongs
is Qr,7 = B(vj). Vertex v; belongs to Q,_1.
v; €(QpN...0Qr-1);
UJ G (Qp_l n .« nQr);
leta € Qr_1\Qrandlet b€ Qp\ Qp_1;
claw: V = {v;,vj,a,b}; E = {{v;,a}, {vi, b}, {vi,v;}}.

Hence, in order to provide a certificate for the new algorithm, the lines
marked with () and (%*) become:

if proper then YESs; certificate: §
then No; certificate: build the claw with clique Q,

The authentication is immediate. The ordering § can be tested by any of
the conditions presented. An alternative authentication could be to build
the unit interval model, using the linear algorithm presented by Spinrad
(16]. As to the claw, the analysis presented above can be performed with
time complexity of O(n + m).
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