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Abstract

A handicap distance antimagic labeling of a graph G = (V, E) with
n vertices is a bijection f : V = {1,2,...,n} with the property that
f(z:) = i and the sequence of the weights w(x1), w(z2),..., w(zn) (Where
w(z:) = Y f(z;j)) forms an increasing arithmetic progression. A
z;EN(z:)
graph G isj a handicap distance antimagic graph if it allows a handicap
distance antimagic labeling.
We construct regular handicap distance antimagic graphs for every
feasible odd order.
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1 Motivation

The notion of handicap distance antimagic graphs is motivated by a search for
round-robin type tournaments in which the weaker teams would have a better
chance of winning than in a complete round-robin.

A complete round robin tournament of n teams is a tournament in which
every team plays the remaining n — 1 teams. When the teams are ranked
1,2,...,n according to their standings, that is, the strongest team is ranked
1 and the weakest is ranked n, it is apparent that the sum of rankings of all
opponents of the i-th ranked team, denoted w(i), is w(i) = n{n + 1)/2 — ¢, and

the sequence w(l),w(2),...,w(n) is a decreasing arithmetic progression with
difference one. A tournament of n teams in which every team plays precisely
opponents, where r < n — 1 and the sequence w(1),w(2),...,w(n) is a decreas-

ing arithmetic progression with difference one is called a fair incomplete round
robin tournament. This is so because complete round robin tournaments, which
obviously satisfy the requirements, are generally considered to be fair.
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However, in such a tournament the best team plays the weakest opponents,
while the weakest team plays the strongest opponents, which can be undesirable.
This property is eliminated in equalized incomplete round robin tournaments in
which the sum of rankings of all opponents of every team is the same. Some
results on existence of fair and equalized incomplete round robin tournaments
can be found in (8] and {2].

Even this type of tournament does not give the weaker teams the same chance
of winning, simply because if a weak team plays the same opponents as a strong
one, it is likely that the total winning record will be worse. Hence, we want the
weakest team to play the weakest opponents, while the strongest team should
play the strongest ones. That is, the sequence w(l), w(2),...,w(n) should be
an increasing arithmetic progression. A tournament in which this condition is
satisfied, and every team plays r < n — 1 games, is called a handicap incomplete
tournament.

The existence of such tournaments with n = 0 (mod 4) is studied by Fron-
cek and Shepanik in [6] and Kovar and Kovarova [15). Kovar, Kovarova, and
Kraje [14] found such tournaments for n = 2 (mod 4) and r €< n — 11 and
proved that they can exist only when r =3 mod 4 and r < n—7. Froncek and
Shepanik in [7] completed that result by finding such graphs for r = n — 7 with
a few exceptions for small n. The exceptional cases for n € {14, 18,22,26} were
later found computationally by Kovar (13] and for n = 34,38 by Shepanik [18].

For n odd, there was no such classification so far. Constructions based on
magic rectangles and magic rectangle sets for non-prime orders were found by
the author [3, 4]. This is the first attempt to find such graphs for all odd orders.
We present regular handicap graphs with relatively high degrees for all odd
orders n > 13,n = 9 and show that for n = 3, 5,7, 11 no such graphs exist.

2 Definitions

Distance magic labeling was introduced by several sets of authors under at least
three different names. Motivated by properties of magic squares, Vilfred [20]
introduced the concept of sigma labelings. Miller et al. [17] used the term
1-vertex magic vertex labeling while Sugeng et al. [19] introduced distance
magic labeling, which has been most commonly used. A survey on distance
magic graphs was published recently [1]. Many newer results can by found in
an extensive survey with much wider focus by Gallian [9).

Definition 2.1. A distance magic labeling of a graph G of order n is a bijection
f:V = {1,2,...,n} with the property that there is a positive integer u such
that 3= f(y) = pfor every z € V. The constant 1 is called the magic constant
YEN(z)
of the labeling f. The sum Y f(y) is called the weight of the vertex = and
yEN(z)
is denoted by w(z).
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When we identify vertices with their labels (that is, rankings), we can see
that a distance magic graph is providing a structure of a fair incomplete tour-
nament described above. It is easy to observe that an incomplete tournament
is fair if and only if its complementing tournament is equalized. This type of
tournament is related to distance antimagic labeling.

Definition 2.2. A distance d-antimagic labeling of a graph G = (V, E) with
n vertices is a bijection f : V — {1,2,...,n} with the property that there
exists an ordering of the vertices of G such that the sequence of weights
w(z1), w(z2),...,w(z,) forms an arithmetic progression with difference d. When
d =1, then f is called just distance antimagic labeling. A graph G is a distance
d-antimagic graph if it allows a distance d-antimagic labeling, and a distance
antimagic graph when d = 1.

The concept of handicap tournaments and handicap distance antimagic la-
belings was introduced by the author [3] (who called the labeling ordered dis-
tance antimagic). The term “handicap distance antimagic labeling” was coined
by Kovarova {16].

In distance antimagic graphs the weight of a vertex is not required to depend
on its own label. We only require that the sequence of weights w(z; ), w(z2),...,
w(z,) forms an arithmetic progression. To provide models for handicap tour-
naments, we impose an additional condition on the labeling and require that a
vertex with a lower label has a lower weight than a vertex with a higher label.

Definition 2.3. A handicap distance d-antimagic labeling of a graph G = (V, E)
with n vertices is a bijection f : V — {1,2,...,n} with the property that
f(x:) = i and the sequence of the weights w(z,), w(xs),...,w(z,) forms an
increasing arithmetic progression with difference d. When d = 1, the labeling
is called just a handicap distance antimagic labeling (or a handicap labeling for
short).

A graph G is a handicap distance d-antimagic graph if it allows a handicap
distance d-antimagic labeling, and a haendicap distance antimagic graph or a
handicap graph when d = 1.

Again, if we identify each team in a tournament with its ranking, then an
r-regular handicap distance d-antimagic graph is nothing else than a model of
a handicap incomplete tournament, since the sum of rankings of opponents of
team 1 is its weight w(¢) and the sequence of weights is an increasing arithmetic
progression.

Our constructions will be based on the properties of magic rectangles, which
are a generalization of magic squares mentioned above.

Definition 2.4. A magic rectangle M R{a, b) is an a x b array whose entries are
1,2,...,ab, each appearing once, with all row sums equal to a constant p and

all column sums equal to a constant o.
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It is easy to observe that a and b must be either both even or both odd.
The following existence result was proved by T. Harmuth [11, 12] more than
130 years ago.

Theorem 2.5. [11, 12] A magic rectangle M R(a,b) exists if and only if a,b >
1, ab> 4, and a = b (mod 2).

However, magic rectangles only allow construction of a relatively narrow
class of handicap graphs. For n = ab, they only provide graphs with regularity
{a~1)(b~1). To construct handicap graphs for a wider spectrum of orders, the
author introduced a generalization of magic rectangles, called magic rectangle
sets.

Definition 2.6. A magic rectangle set M RS(a, b;c) is a collection of ¢ arrays,
each of size a x b, whose entries are elements of {1,2,...,abc}, each appearing
once, with all row sums in every rectangle equal to a constant p and all column
sums in every rectangle equal to a constant o.

Observe that this generalization is less restrictive than the notion of n-
dimensional magic rectangle, which was introduced by Hagedorn in [10]. We
present the definition just for a 3-dimensional case, as the higher dimensions are
not relevant to our results.

Definition 2.7. An 3-dimensional magic rectangle 3-M R(a,, az, a3) is an a; x
as X ag array with entries d;, i, i, Which are elements of {1,2,...,a,a2a3}, each
appearing once, such that all sums in the k-th direction are equal to a constant
ok. That is, we have

ay az az
> diby by =01, Y du, 56, = 02, > diybpj =03
=1 j=1 i=1

for every selection of indices by, ba, b3, and oy = ax(ajasas + 1)/2.

3 Known results

We denote by H(n,r,d) an r-regular handicap distance d-antimagic graph of or-
der n. When d = 1, we use just H(n, 7). For n even, a complete characterization
of such graphs for d = 1 follows from results by Kovar, Kovarova, and Krajc [14],
Kovar and Kovarova [15], Froncek and Shepanik [6, 7], and Kovar [13].

Theorem 3.1. Let H(n,r) be an r-regular handicap graph on n vertices. For
n =0 (mod 4) an H(n,r) ezists if and only if r is odd and 3 < r <n —5. For
n=2 (mod 4) an H(n,r) ezists if and only if r =3 (mod 4) and3 <r<n-7
except for r =3 and n < 26.

256



It is common to denote the Cartesian product of two graphs, H; and Ho,
by H)0H,. Also, cH is commonly used to denote the disjoint union of ¢ copies
of a given graph H. To avoid confusion, we formally define the disjoint union
of uniform Cartesian products of complete graphs. Let a,b > 1, ¢ > 1, then
G = ¢(K,0K,) with V(G) = {vf; [ 1<i<a,1<j<bl<k<c}and
EG)={vff|1<i<e 1<j<I<b 1<k ctU{vfof;|1<
i<l<a 1<j<b1<k<c Lt M={Rf|1<k<c}bea
magic rectangle set M RS(a,b;c) with row sums p and column sums ¢o. Then
the labeling f(vf;) = 7§; is obviously a distance 2-antimagic labeling (except
when a = b = 2), for when f(vf,j) = ‘rf'j = p, then wc(vf"j) = p+0o —2p. Hence,
the following observation holds. A formal proof can be found in (3].

Observation 3.2. [3] The graph G = ¢(K,0K}) admits a distance 2-antimagic
labeling f such that f(z) = p implies we(z) = (a + b)(abc +1)/2 — 2p for every
z € V(G) whenever there erists a magic rectangle set M RS(a, b;c).

In [4] the author made the following observation.

Observation 3.3. [4] Let G be an r-regular distance 2-antimagic graph with
vertices 1,22, ...,Tn, labeling f and weight function w such that f(z;) =i and
w(z;) = k — 2 for some constant k. Then G, the complement of G, is an
(n = r — 1)-regular handicap graph with labeling f and weight function @ such
that W(x;) = n(n + 1)/2 — k + i. The converse is obviously also true.

An obvious consequence for the existence of handicap graphs of odd non-
prime orders follows immediately from Theorem 2.5 and Observations 3.2 and 3.3.

Corollary 3.4. Let n be an odd composite integer, say n = ab. Then there
exists an (a — 1)(b — 1)-regular handicap graph of order n.

The following theorem for 3-dimensional magic rectangles of odd order was
proved by Hagedorn.

Theorem 3.5. [10] A 3-dimensional magic rectangle 3-M R(ay, a2,a3) of an
odd order n = ajaqay ezists whenever ged(as, a;) > 1 for some 4,5 € {1,2,3}.

This result implies existence of some magic rectangle sets, since slicing a 3-
dimensional magic rectangle into single layers in any direction produces magic
rectangle sets M RS(a;, a;; ax) for any permutation of {3, j, k} = {1,2,3}.

The following is a direct corollary of Theorem 3.5 and Observation 3.2.

Theorem 3.8. Let a,b,c be positive odd integers such that 1 < a < b, and
q > 1 divides at least two of a,b,c. Let n = abc and G = ¢(K,0Ky). Then the
complement of G is an (abc — a — b + 1)-regular handicap distance antimagic
graph with n vertices.
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The author proved the existence of magic rectangle sets for the cases that are
not covered by Theorem 3.5 in [5]. Hence, a complete existence characterization
of magic rectangle sets of odd order is given.

Theorem 3.7. (5] Let a,b,c be positive odd integers such that 1 < a < b, and
¢ > 1. Then a magic rectangle set M R(a,b;c) ezists.

4 New results

Our construction for prime orders will be based on a new generalization of
magic rectangle sets. Our sets will consist of rectangles of different sizes, and
rather than requiring that in every rectangle the sum of each row is equal to
the same constant p and the sum of each column equals &, we require that in
each rectangle the sum of any column and any row equals the same constant
7. Obviously, if the rectangles are of the same size, then 7 = p + o. If they
are different, then we still must have within each rectangle the sums of all rows
equal, but they may differ if the rectangles have different sizes. The same holds
for column sums. We will call such sets semi-magic rectangle sets.
An example is shown in Figure 1.

5 10 | 12 1 16 | 15 4
13 6 8 17 2 3 14
9 11 7

Figure 1: 6-regular semi-magic rectangle set

Definition 4.1. Let ¢ > 1 and (a;,b;) be pairs of positive integers for i =
1,2,...,csuch that 1 < a; < b;. Set n= 3 {_, a;b; and denote by R’ an a; x b;
rectangle with entries Tk for1 <i<e¢,1<7<a;l <k <b;, where each entry
is a distinct element of the set {1,2,...,n} . The set of rectangles is called a
semi-magic rectangle set of order n if in all rectangles the sum of entries in any
row and any column is equal to a given constant. More precisely, we have a
positive integer 7 called a semi-magic constant such that

b,‘ a;
i i
er" + Zr’vk -

t=1 s=1
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for every triple (%, 7,k). The set is called a d-regular semi-magic rectangle set
or simply regular semi-magic rectangle setif a; + b; =d foreveryi =1,2,...,c
and some positive constant d.

For our purpose of finding handicap graphs of sufficiently large odd orders
we need to find regular semi-magic rectangle sets of these orders regardless of
the sizes of particular rectangles in the sets. We will show their existence for
the cases where one rectangle is of an odd order while the remaining ones are of
even orders. As in the case of magic rectangles, the even order rectangles will

have both sides even.
First we calculate the semi-magic constant for a given regular semi-magic

rectangle set.

Lemma 4.2. Letc>1and R ={R} ,, |i=1,2,...,c} be a d-regular semi-
magic rectangle set of an odd order n with the semi-magic constant T where
d=2d'. Thent=d'(n+1).

Proof. We know that forany 1 < i <¢ 1 < j < a;,l <k < b; we have
DML TESD DT LN Summing up all such sums for all admissible
triples (2, ], k), we count every entry 7 precnsely d = g + b; times: Twice
in Yy % w+ 2oy T ks ONCE in each Zu.—.l v+ Z L1 7h g for w # j (total

a; — 1 times), and once in each 0 Thu+ Doomy Tow for w# k (total b; — 1
times). Because the sum of all entries in R is n(n + 1)/2 and every entry was
counted d times, and we calculated T for each of the a;b; entries in every R;.' xb;
which is Y_¢_, a;b; = n times total, we get

n{n + l)

n = d————>= 5

Substituting d = 2d’ and cancelling, we get
r=d(n+1)

as claimed. (]

Now we show how we can extend a regular semi-magic rectangle set of an
odd order by adding an extra rectangle of an even order.

>1and R = (R, ., | i = 1,2,...,¢} be a d-regular
semi-magic rectangle set of an odd order. Let ag =0 (mod 2), b =0 (mod 4)
and ag + bg = d. Then there exists a d-regular semi-magic rectangle set Q =

{Qi;xbi |i=0,1,...,c},

Proof. Fori=1,2,...,c denote the entries of Ri ., by ri , where1<u<a;
and 1 < v < b;. Let ag = 2a and by = 4b.

Lemma 4.3. Let ¢ >
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32 2 30| 4 5 27 | 7 25

24 | 10| 2 | 12| 13| 19} 15| 17

Figure 2: 12-regular semi-magic rectangle R xs

First we construct a magic rectangle Py ., with entries pJ, as follows. For
s=12,...,2aand ¢t = 1,2,...,2b we define %, = ["ljbo+twhen s+tis
even and r_,t =agbo +1 - (|_’ 1_|bo +1) when s+tisodd. Fors=1,2,...,2e
and t=2b+1,2b+2,...,4b we define r%, = | 251 )bo + ¢ when s+ t is odd and

9 =aobo + 1 - (|25 1Jbo +t) when s+t is even. Observe that PJ _, has the
semi-magic constant 7% = (a + 2b)(8ab + 1). An example is shown in Figure 2.

1 7 6 4 1 6 8
8 2 3 5 9 2 4
5 7 3

Figure 3: 6-regular rectangles PJ, , and R}, ,

Then we construct Q9 ., by taking P? , and increasing the entries equal
to dab + 1,4ab+2,...,8ab by Y i_, ab; each whlle keepmg the lower entrnes
equal to 1,2,. 4ab ﬁxed More formally, g9, = p3, if p}, < 4ab and ¢, =
P, + Z,_ a, lf pl, > 4ab. Then we construct the remaining rectangles by
setting ¢;, , = ru » + 4ab. An example of initial PQ,, and R},; is in Figure 3,
and resultmg Q2x 4 and Q1,5 are shown in Figure 4.

Now we need to check that Q is really a d-regular semi-magic rectangle set.
The regularity is obvious, so we just need to check the semi-magic constant.
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17 2 3 14 13 6 8

Figure 4: 6-regular rectangles Q2. , and Q.4

Denote the semi-magic constant of R by 7. We want to show that Q has a
semi-magic constant 7/ = 7 4 4abd. For i = 1,2,...,c we have for every entry

g3, =74, +4ab. Recall that 7 = > 5o+ e Thx and d = a; + ;. Then
we obtain

b; a; b; a;
=3, + Y dih =D (rh.+4ab)+ D (ri, + dab)
v=1

u=1 v=1 u=1

b; a;
= Z r;,v + Z T:"_k + (b, + a,~)4ab
v=1 u=1

=7 + 4abd

Then we examine the row and column sums in Q3 ., . First we notice that
in each row and each column of Q9 ., exactly half of the entries remained the

same as in P2 _, , while the other half increased by 3 ;_; a;b; each. We know

that d must be even, say d = 2d’, since have we a; = b; (mod 2) for every
1=0,1,...,c. Hence, we have

bo aop c c
D+ Sp=""+d abi=(a+2b)8ab+1)+d' Y ab;. (1)
t=1 s=1 =1 i=1

c

It remains to show that (a + 2b)(8ab+ 1) +d'>";_, a;b; = 7. We proved in
Lemma 4.2 that

r=d(n+1).
It follows that

dn=7-d. 2)
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Now substituting (2) into the right-hand side of (1) and recalling that d =
2d’ = 2a + 4b and hence d’' = a + 2b, we obtain

(a+2b)(8ab+1)+dn=d'(8ab+1)+7 - d'
=8abd + T
=dabd +7=17,

which is precisely what we wanted to show. O

The following theorem is then a straightforward consequence of Lemma 4.3
and can be stated without proof.

Theorem 4.4. Letc > 1 and R = {R, ,, | i = 1,2,...,c} be a d-regular
semi-magic rectangle set of an odd order. If there exist a and b such that 2a +
4b = d, then for any ¢ > c there ezists a d-regular semi-magic rectangle set
Q={Q., w |i=01,..,c} witha, =a;, b, =b; fori=1,2,...,c and
a) =2a,b€=‘4bfori=c+1,c+2,...,c’.

Now we can prove an existence result for regular semi-magic rectangle sets
of prime orders.

Theorem 4.5. There ezists a regular semi-magic rectangle set of a prime order
n if and only if n = 17 or n 2 31.

Proof. First we show that for prime values n < 29 no such set exists except
when n = 17. Obviously, as the sets are regular, we cannot have R}, ;. Because
the order is odd, there must be an odd order rectangle. In particular, it must be
one of R}, 3, R} s, Rix7, Rixe, Rixs. None of them would fit in a set of order
3,5, or 7. We can also observe that no regular semi-magic rectangle set can
contain an R}, as the sums of r{ ; and r}, are different.

For n = 11, the odd rectangle would have to be R}, 5, which would not leave
enough room for another one. For n = 13, we would also need R}, 5, which
would force R%,,, a nonsense. For n = 19, R}, ; would imply d = 6 and leave
us with 10 other entries. As we cannot have R2,,, they would all have to be in
one rectangle, namely R2, s, which has d = 2+ 7 # 6. Also, R}, 5 would force
R2, ,, which is impossible.

For n = 23, R}, 3 would imply d = 6. The only even rectangle with d = 6
is R3.,, but we have 14 more entries, which cannot be accommodated. If we
have R} g, then d = 8. But there are exactly 8 entries left, which would force
R}, , with d = 6, a contradiction. Finally, R}, is clearly impossible, as there
are only two additional entries.

For n = 29, R}, forces d = 6. The only even rectangle with d = 6 is R%,,
and we have 20 more entries, which cannot be accommodated. If we have R}, 5,
then d = 8. We have 14 additional entries, so R%,, is not a valid option, and
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we would need R}, ¢ with 12 entries, which does not use all 14 that need to be
used.

Choosing R}, gives d = 10, but we have only 8 vertices left, so this is
impossible. Similarly, R}, 5 gives d = 10 with only 4 vertices left. Finally,
R}, g or Ry ; fori=1,2,3 leaves out only 2 vertices. Therefore, no such set is
possible.

The constructive part is divided into cases based on congruence classes mod-
ulo 8. Although the theorem is stated only for primes, we construct the sets for
all orders, as it is easier to follow.

Case 1: n=1 (mod 8)
We choose R}, ; and R, , fori > 2.

Case 2: n =3 (mod 8)
The cases n = 11 and n = 19 are impossible as shown above.
For n > 27, choose Ri, g for i =1,2,3 and R}, , for i > 4.

Case 3: n =5 (mod 8)
The cases n = 5 and n = 13 are impossible as shown above.
For n =5 (mod 16), choose R}, , and R}, for i > 2.
For n =13 (mod 18), n = 29 is impossible as shown above.
When n > 45, we choose R}, ;, R%,¢ and R},g for i > 3.

Case 4: n =7 (mod 8)
Subcase 4.1: n =7 (mod 186)
The case n = 23 is impossible as shown above.
For n = 39, we use R}, 3.
For n = 55, we use R}_,;.
For n = 71, we use R}, 5 for i =1,2,...,7 and R§,,.
For n = 87, we use R}, 9.
For n = 103, we use R}, ;5 and R} 4.
For n =119, we use Ri, 3 fori=1,2,...,7and R},, fori =8,9,...,14.
For n > 135, we have R}, fori=1,2,...,9 and R}, for i > 10.
Subcase 4.2: n =15 (mod 16)
When n = 15 (mod 16), we have R}, and R}, , for i > 2. o

We now need to prove an equivalent of Observation 3.2 for regular semi-
magic rectangle sets.

Theorem 4.6. Letc > 1 and R = {R, , | i = 1,2,...,¢} be a d-regular
semi-magic rectangle set of an odd order n with the semi-magic constant . Let
G =J;_, K..OK,, and G be the complement of G. Then there ezists a distance
2-antimagic labeling f and weight function w of G such that when f(x) = then
w(z) =7 — 2l and G is an (n — d + 1)-regular handicap graph with labeling f

and weight function @ such that when f(z) =1 thenW(z) =n(n+1)/2 -7+ L.
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Proof. We denote the vertices in K, OKp, by a:";.’k forl<i<e 1<j<
ai, 1 < k < b; and define the labeling function as f(z},) = ;.'k, where 73, is
an entry in R} _, . Because the sum of all entries in row j and column k in
every rectangle is equal to 7, the sum of labels of vertices in j-th copy of Kj,
and k-th copy of K, is also 7. The label of the vertex :t;,k, call it I, is counted
twice in 7, and hence w(z},) = 7 - 2L

We know that the sum of all labels in K, is n(n + 1)/2, therefore assuming
that f(z},) = ! we have

E(:c;-'k) =n(n+1)/2-l—-(r=-2)=n(n+1)/2 -7+,
which we wanted to show. (]

The following observation will be useful in our main theorem.

Observation 4.7. There is no (n — 3)-regular handicap graph of an odd order
n.

Proof. It is easy to see that in an r-regular handicap graph H = H(n,r) with
f(z;) = i we have w(z;) = (r—1)}(n+1)/2+4. Denote by w' the weight function
in H under the same labeling. By Observation 3.3, H is and (n — 1 — r)-regular
distance 2-antimagic graph with w'(z;) = (n—r+1)(n+1)/2-2i. Forr =n-3
we then get w'(z;) = 2n+2—2i and specifically for z, it means that v'(z,) = 2.
However, this is impossible, as x,, has two neighbors whose labels cannot add
up to 2. a

We observe that the above results cover all odd values of n except when
n € {11,13,19, 23,29}. Kovar [13] used computer assisted search to show that
for n = 11 no such graph exists and found regular handicap graphs for the
remaining values n = 13,19,23,29. Based on this, Theorem 4.5 and Theorem
4.6, we can now state our main result.

Theorem 4.8. There exists a regular handicap graph of an odd order n if and
onlyifn=9 orn > 13.

Proof. The existence part follows from [13], Theorems 4.5 and 4.6. Non-existence
for n = 11 was proved by Kovar [13] and for » = 3,5 was shown in [14]. In
the same paper it was shown that no 2-regular handicap graph exists, and by
Observation 4.7 an (n — 3)-regular handicap graph does not exist either. This
excludes n = 7. O

Recall that for n even, all pairs (n,r) for which there exists an r-regular
handicap graph of order n have been characterized. Our result is just a small
first step in this direction for odd orders.
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