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In this paper we consider only simple, finite, undirected graphs. A graph
of order p and size ¢ is edge-graceful [6] if the edges can be labeled by

1,2,...,q such that the vertex sums are distinct (mod p). A necessary
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condition for a graph with p vertices and g edges to be edge-graceful is that
g(g+1) = 28 (mod p).

A graph G = (V,E), |V| = p and |E| = g, is super edge-graceful (SEG)
[10] if there is a bijection f from E to {0,%1,+2,..., (g — 1)/2} when
q is odd and from E to {£1,+2,..., £g/2} when q is even such that the
induced vertex labeling f* defined by f*(u) = >_ f(uv) over all edges uv is
a bijection from V to {0,+1,%2,...,%(p — 1)/2} when p is odd and from
V to {£1,%2,...,%p/2} when p is even.

In [10], the authors showed that super edge-graceful trees are edge-
graceful. In particular, they noticed that if a graph G with p vertices and
g edges is super-edge graceful and p|q, if g is odd, or p | ¢ + 1, if ¢ is even,
then G is edge-graceful. Some families of graphs have been shown that
to be super edge-graceful. For example, paths of all orders except 2 and
4 and cycles of all orders except 4 and 6 [1] are super edge-graceful, as
are complete graphs on p > 5 vertices [5], complete bipartite graphs except
K32, K2 3, and K ,, if n is odd [4], complete tripartite graphs except K,1,2
[3] and trees of odd order with precisely three even vertices (7]. For more
information on this topic the reader may also consult [2, 8, 9, 11].

A kite is a graph formed by merging a cycle and a path at an endpoint
of the path. In this paper, we prove that all kites with n > 5 vertices,
n # 6, are super edge-graceful. In addition, we show that a kite with 6
vertices is super edge-graceful if and only if its tail length is 1 or 3. It is
easy to see that no kite with 4 vertices is super edge-graceful.

In Section 2, we first present the super edge-graceful labelings (SEGLs)
for even cycles given in [1] and will make use of these labelings in Section 5.
Then we introduce different SEGLs for even cycles and will employ thein
in Section 6. In Section 3, we prove that all kites with an odd number of
vertices are SEG. In Section 4, we deal with kites with a tail length 1 and
prove that such kites with even number of vertices at least 6 are SEG. When
the tail length of a kite with even vertices n is at least 2 we transform an
n-cycle equipped with a SEGL to the desired kite with a SEGL. For a given
kite the existence of such a transformation depends on the SEGL of the
n-cycle. In Section 5, we first state our transformation from cycles to kites
and then apply it to the SEGLs for even cycles given in [1]. Unfortunately,
this does not provide SEGLs for all kites with tail length at least 2. In
Section 6, we apply our transformation on n-cycles equipped with the new
SEGLs given in Section 2 to settle the remaining kites.

Throughout this paper, we will use the following notation. The vertex
set of a graph of order n is {1,2,3,...,,n}. An n-cycle is written as C, =
(1,2,3,...,n). So the edges are

{{1,2},{2,3},...,{n —1,n},{n,1}}.

We use the label e; for the edge {i,i + 1} and the label v; for the vertex

278



1 of Cp, where 1 < ¢ < n and addition is modulo n with the residue in
{1,2,...,n}.

2 Super edge-graceful labelings for even cy-
cles

In this section we first present the construction for the SEGLs of even cycles
given in [1]. We make use of these labelings in Section 5.
For 0<i < | ] — 1, define the 3-tuples a7, b7, 7', d as follows:

af =(3i+1,3¢ +3z3z+2)
b?=(‘"+3z+131+3 F+3i+2)
c;‘=(—3'— — 34, 3z—1)

dr = (3 -3i— 3 —3i—-3,3 -3 —1).

For n = 0 (mod 12), a SEGL for the cycle C, is given as follows:
the first n/2 edges are labeled with the members of a and b7 for i =
0,1,2,..., 75 — 1. The labels for edges {1,2}, {2, 3} and {3,4} are af, the
labels for edges {4,5}, {5,6} and {6, 7} are b§ and so on. The last /2 edges
are labeled with the members of ¢} and df for i = 5 - 1,5 —2,...,0.
The labels for the edges {m+1,m+2},{m+2,m+3} and {m+3,m+4}
are ¢ _,, the labels for the edges {m + 4,m + 5},{m + 5,m + 6} and
{m +6,m + 7}, are d%—l’ where m = n/2, and so on.

For n = 2,4,6,8,10 (mod 12) define k as follows: £k = 7 for n = 2
(mod 12), k = 8 for n = 4 (mod 12), k = 9 for n = 6 (mod 12), k = 4 for
n =8 (mod 12), and k¥ = 5 for n = 10 (mod 12).

The labels for the first § — k edges are the members of af and b7 for

i=0,1,2,...,272 1. The labels for edges {m +1,m + 2}, {m+2 m+
3},...,{n — 1,n}, where m = } + k, are the members of ¢} and d}f for
i= "Izz" -1, % —2,...,0. The remaining edge labels are:

for n =2 (mod 12),
n—10 —(n+14) n—6

(e-'ﬁ'--k+lse-'§”-—k+2a e 16'3-‘#-’0) = ( 4 » 1 ) 4 3
—(n+10) n—2 —-(n+6) n+2 —(n—6) n+14

4 T4 4 g’ 4 o4 7
—(n—10) n+6 —(n+2) —(n—-2) n+10

4 b 4 b 4 ) 4 b 4 )’
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for n =4 (mod 12),

-12 —(n+16

(eg—k+1)€3—k42s-. 1€ +k)—-( (4 )
n—8 —(n+12) n—4 —(n+8) n -—(n+4) —(n—4)
4 "’ 4 T4 4 "4’ 4 ’ 4 !
n+8 —n n+d —(n—12) n+16 —(n—8) n+12)'
4 "4’ 4 4 R 4 o4 7

for n =6 (mod 12),
n—14 —(n+18) n—10

(ei"—k+1:ei‘-—k+21 . ‘!ei'--i'k) = ( 4 ) 4 3 4 ]
—(n+14) n—6 —(n+10) n—2 —(n+6) n+2

4 b 4 b 4 ) 4 b 4 b 4 )
—(n—6) n+10 —(n—2) —(n+2) n+6 —(n—14)
4 ] 4 ) 4 b 4 b} 4 I 4 b
n+18 —(n—10) n+14

4 b 4 b 4 )7

for n = 8 (mod 12),
n— 4 —(n+8) n

(e3—k+1,€3—k+2s-€34k) = (—— R
—(n+4) —(n—4) n+8 -n n+4)_
4 7 4 7 4747 47

and for n = 10 (mod 12),
n— 6 —(n+10) n—-2 —(n+6)

(e-'z‘-—k+1ve-'§'-~k+2) 7+k) = ( 4 T4 ! 4 !
n+2 —(n-—6) 'n.+10 —(n—-2) —(n+2) n+6)
4 ) 4 ) 4 ) 4 ’ 4 ’ 4 .

Next we introduce new SEGLs for even n-cycles, n > 18. We will employ
these labelings in Section 6. In what follows the addition is modulo n with
the residue in {1,2,3,...,n}.

Construction 2.1. n =0 (mod 12), n > 24.
First label the vertices {1,2,...n} with

v;=F+i-1 for 2<i<n/2
Yn/2)+1 = 3

VYns2)43it2 =3 +2 for 0<i<(n—6)/6
Vns2)+3i43 =3i+1 for 0<i< (n—6)/6
Vin/2)+3i+4 =3i+3 for 0<i< (n—6)/6.
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Second, label the edge {1,2} with e; = 1 and the edge {¢,i + 1} with
e; = v;—e;_; for 2 < ¢ < n. The resulting labeling is a SEGL of an n-cycle,
n=0 (mod 12).

Construction 2.2. Let n =2 (mod 12), n > 26.
First label the vertices {1,2,...,n} with

vi=F+i—1 for 2<i<n/2
Yn/2)+1 = 2
U(n/2)+2 = 3
Yn/2)43 =1

Yn/2)+4 =
Yn/2)+3i+2 = 3i+1 for 1 <1< (
U(n/2)+3i+3 = 3i+3 for 1 <i< (n - 8)/6
V(n/2)+3i+4 = 3i+2 for 1 <i< (n - 8)/6
Second, label the edge {1,2} with e; = 1 and the edge {%,i + 1} with
e; = v; —e;—) for 2 < i < n. The resulting labeling is a SEGL of an n-cycle,
n =2 (mod 12).

Construction 2.3. n =4 (mod 12), n > 28.
Label the vertices {1,2,...,n} with

vi=F4+i-1 for 2<i<n/2
Vn/2)41 = F
Vn/2)+2 =3

Un/2)+3 =2

Yin/2)44 = 1

Yns2)+s =4

Vin/2)+6 =7

V(ns2)+7 =6

V(n/2)+8 =5

Y(n/2)+9 =

V(n/2)+3i+1 = 3i+1 for 3 <i< (n - 4)/6
Y(n/2)4+3i+2 = 3 for 3 <i<L (n - 4)/6

Y(n/2)+3i+3 = 3 +2 for 3<i<(n—4)/6.

Second, label the edge {1,2} with e; = 1 and the edge {i,%7 + 1} with
e; = v;—e;_ for 2 < i < n. The resulting labeling is a SEGL of an n-cycle,
n =4 (mod 12).

Construction 2.4. Let n =6 (mod 12), n > 18.
First label the vertices {1,2,...,n} with
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vi=F5+i-1 for 2<i<n/2

V(n/2)+1 =1

Vn/2)+2 = T

Vn/2)+3 =

U(n/2)+4 = 5

U(ns2)+6 = 4

V(n/2)+6 = 3

V(n/2)+3i+1 = 3 for 2 i< n/6

Vn/2)+si42 =3 +2 for 2<i<(n—6)/6
Vn/2)43i+3 =3i+1 for 2<i<(n—6)/6.

Second, label the edge {1,2} with e; = 1 and the edge {i,% + 1} with
e; = v; —e;) for 2 < i < n. The resulting labeling is a SEGL of an n-cycle,
n=6 (mod 12), n > 18.

When n = 8 (mod 12), n > 20, we present two different labelings for
an n-cycle.

Construction 2.5. Let n = 8 (mod 12), n > 20.
(A). First label the vertices {1,2,...,n} with

vy =3 +i-1 for 2<i<n/2
V(n/2)41 = G

Un/2)+2 =

V(n/2)+3 =1

U(n/2)+4 = 3

Y(n/2)+5 =

U(n/2)+6 = O

Un/2)+7 = 4

Un/2)+8 =1

V(n/2)+3i43 = 3i+3 for 2<i<(n—8)/6
V(n/2)+3i+a = 3i+2 for 2<i<(n—-8)/6
Vn/2)+3i+s = 3i+4 for 2<i<(n—8)/6.

Label the edge {1,2} with e; = 1 and the edge {i,7 + 1} with e; =
v; — e;—y for 2 < i < n. The resulting labeling is a SEGL of an n-cycle,
n =8 (mod 12), n > 20.

(B): First label the vertices {1,2,...,n} with
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vi=F+i-1 for 2<i<n/2

Un/2)+1 = T

Yn/2)43i42 =3i+2 for 0<i<(n—14)/6

U(n/2)+3i+3 = 3i+1 for 0<i< (TL —14)/6

Un/2)+3i+d = 3i+3 for O <1< (n - 14)/6

Up—g = (n—2)/2

Vp-1 = (n—4)/2

vp = (n —6)/2

v1 =n/2

As before, label the edge {1,2} with e; = 1 and the edge {%,i+ 1} with

e; = v;—e;_1 for 2 < i < n. The resulting labeling is a SEGL of an n-cycle,
n =8 (mod 12).

Construction 2.6. n =10 (mod 12}, n > 22.
First label the vertices {1,2,...,n} with

vi=3+i-1 for 2<i<n/2

Vin/2)+1 = 1

Un/2+2 = G

Yin/2)+3i43 =3i+2 for 0<i<(n—4)/6

Yin/2)+3i44 = 3i+4 for 0Li< (n—10)/6

Vin/2)+3its =3t +3 for 0< i< (n—10)/6.

Second, label the edge {1,2} with e; = 1 and the edge {7, + 1} with

e; = v; —e;_1 for 2 < i < n. The resulting labeling is a SEGL of an n-cycle,
n =10 (mod 12).

3 Kites with an odd number of vertices

In [1] it was shown that:

Theorem 3.1. The path P, is super edge-graceful for alln > 3, n # 4.
Theorem 3.2. All kites with an odd number of vertices are super-edge
graceful.

Proof. Let G be a kite with an odd number of vertices n > 5. Let e € G
be one of the edges on the cycle adjacent to the vertex of degree 3. Then
G\ {e} is a path with n vertices, therefore it has a SEGL by Theorem 3.1.
Label the edge e by 0 to obtain a SEGL for G. See Figure 1. O
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=2

-3

Figure 1: A SEGL for a kite with 11 vertices and a tail length 3

4 Kites with a tail length 1

In this section we present SEGLs for kites with an even number of vertices
n > 6 and a tail length 1.

Theorem 4.1. Any kite with an even number of vertices n > 6 and a tail
length 1 is super edge-graceful.

Proof. A kite with n vertices and a tail length 1 consists of a cycle (1,2,...,
n — 1) and a pendant edge {1,n}. We consider four cases.

Case 1: n =2 (mod 4). First label the vertices {1,2,...,n} with

N

v B

v = i—1 for 2<i<n/2
—_=n

VY(n/2)+1 = 3

Yn/2)+ier =t for 1<i<(n—4)/2

Un =35

Second, label the edge {1,2} with e; = —n/2, the edge {i,i + 1} with
ei =v;—e;_) for2 <i <n-2,theedge {1,n—1} withep,—1 = vp_1—e€pn_2
and the pendant edge {1,n} with e, = n/2. The resulting labeling is a
SEGL of a kite with n vertices and a tail length 1.

[
Nl:wl

Case 2: n =0 (mod 12). Figure 2 displays a SEGL for a kite with 12
vertices and a tail length 1.

-4 -1 -5 2
Figure 2: A SEGL for a kite with 12 vertices and a tail length 1

Now let n > 24. First label the vertices {1,2,...,n} with
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N

n—

m = -

vi=S+i-1 for 2<i<n/2
Vn/a+1 = 3

U(n/2)+i=5—i for 2<i<4
Yin/2)+5 = 4

U(n/2)+6 =

Yn/2)+7 =9

Vn/2)+3iv2 =3i+1 for 2<i<(n—18)/6
Yn/2)+3i43 =3t +3 for 2<i<(n—18)/6
Vn/2)+3i4a =3t +2 for 2<i<(n—18)/6
Vn-q) = 23

_n—4
Y(n-3) = Ze
U(n-2) = Zs
Yn-1) = T3
U =%

Second, label the edge {1,2} with e; = 1, the edge {i,i 4+ 1} with
e; =vi—ej_ for2<i<n-2 theedge {1,n—1} withe,_y =vh_1 —€n_2
and the pendant edge {1,n} with e, = n/2. The resulting labeling is a
SEGL of a kite with n vertices and a tail length 1.

Case 3: n =4 (mod 12). First label the vertices {1,2,...,n} with

v = "’T_2

vy=p+i-1 for 2<i<n/2
Yn/2)+1 = T

Un/2)+2 =

V(n/2)+3 = 2

Y(n/2)+4 = 1

Yn/2)+sie2 =3i+1 for 1<i<(n—~10)/6
Yn/2)+3i+3 =3i+3 for 1<i<(n—-10)/6
v(n/2):3i+4 =3i+2 for 1<i<(n-10)/6

‘Un'—'g

Second, label the edge {1,2} with e; = 1, the edge {i,7 + 1} with
e; =v;—ej_ for2<i<n-2, theedge {1,n—1} withe,_1 =vp—1—€n_2
and the pendant edge {1,n} with e, = n/2. The resulting labeling is a
SEGL of a kite with n vertices and a tail length 1.

Case 4: n =8 (mod 12). First label the vertices {1,2,...,n} with
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"M = n_—z-_2_
vi=F+i—1 for 2<i<n/2
Un/2+1 = 7

V(n/2)+3i+2 = 3t + 2 for 0<i<(n—-8)/6
v(n/2)+3i+3 =3 +1 for 0<1 S ('n - 8)/6
U(n/2)+3i+4 =3i + 3 for O S i S (n - 14)/6

’Un——-'g'

Second, label the edge {1,2} with e; = 1, the edge {i,i + 1} with

e; =v;—ei-y for 2 <i < n-—2, the edge {l,n—l} with e,y = Vn_1—€n—2

and the pendant edge {1,n} with e, = n/2. The resulting labeling is a
SEGL of a kite with n vertices and a tail length 1.

O

5 Kites with a tail length at least 2

In this section we use the SEGLs for even cycles given in [1] (see also Section
2). The following lemma shows that how to transform an n-cycle which is
equipped with a SEGL to specific kites with SEGLs.

Lemma 5.1. Let the n-cycle (1,2,...,n) have a super edge-graceful label-
ing. Let e; be the label of the edge {i,i + 1} and let v; be the label of the
vertex j such that e; = v; for some i and j. Then there exist SEGLs for
kites with n vertices and the tail lengths

Li—j+landn—(i—j)ifi>j;
2. j—iandn—(j—i)+1ifj>1.

Proof. We only prove Part 1. The proof of Part 2 is similar. Detach the
edges {i,i+ 1} and {¢ + 1,7 + 2} at vertex i + 1 to obtain a pathon n +1
vertices with a new vertex (i + 1)’. Identify vertices i + 1 and j to obtain
a kite with a tail length ¢ — j + 1. The vertex (i + 1)’ and edge {3, (: + 1)’}
both have label e; and the vertex j has label v; + e;11. The other labels
are unchanged. So we have a SEGL for this kite. If we detach the edges
{i —1,i} and {4,% + 1} at vertex i and then identify vertices i and j, we
will have a SEGL for a kite with a tail length n — (i — j). See Figure 3.

|

Lemma 5.2. Let n = 0 (mod 12). Any kite with n vertices and a tail
of length t, where t & {2,3+2,3 - 1,3,2 + 1,3 + 2,32 — 1}, is super
edge-graceful.
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Figure 3: SEGLs for kites with 12 vertices and tail lengths 4 and 9. Note
that eg = v3 = —4. The number at each vertex is not the induced label for

that vertex.

Proof. For a tail of length 1 apply Theorem 4.1. For a tail length of at
least 2 we apply Lemma 5.1 on n-cycles, n = 0 (mod 12), labeled with the
SEGLs given in [1] (see also Section 2).

First we note that v; = 5 — 1+ for 2 <4 < 2. One can now observe
that v; = ey; for 2 < ¢ < 2. Hence, by Lemma 5.1, a kite with n vertices,
where n = 0 (mod 12), and a tail length i + 1 or n — ¢ is SEGL, where
2<i<%.

Now let 2 +1<i< %. Ifi=0,2 (mod 3), then v; = ez;~3. So by
Lemma 5.1, a kite with n vertices, where n = 0 (mod 12), and a tail length
i—2orn—i+3is SEGL. If i = 1 (mod 3), then v; = es; ;3. So by Lemma
5.1, a kite with n vertices, where n = 0 (mod 12), and a tail length i + 4
orn—1—3is SEGL.

Since ¢ + 4 = (i + 6) — 2, we have generated SEGLs for all kites with
n =0 (mod 12) vertices and a tail of length 2 <t <% —2andt# 2 +2.
Similarly, since n —i — 3 = n — (i + 6) + 3, we have SEGLs for kites with
n = 0 (mod 12) vertices and a tail of length 2 +3 < ¢t < 3 +1 and
t # %" — 1. This completes the proof. O

Recall that for n = 2,4, 6, 8,10 (mod 12) we defined k as follows: k =7
for n =2 (mod 12), k =8 for n =4 (mod 12), k =9 for n =6 (mod 12),
k =4 for n =8 (mod 12), and k =5 for n =10 (mod 12).
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Lemma 5.3. Forn > 20 and n = 2,4,6,8,10 (mod 12), a kite with n
vertices and a tazloflength3<t < ——-+1 or 32 + <t<n-3is
super edge-graceful.

Proof. A closer look at the labelings given in [1] (see also Section 2) for
n = 2,4,6,8,10 (mod 12) reveals that in all cases, v; = 3% — 1+ 1 for
2 < i< 5. We observe that v; = ez for 2 < < -";4%. Hence, by Lemma
5.1, a kite with n vertices, where n is even and n # 0 (mod 12), and a
tail length i + 1 or n — i is SEGL, where 2 < i < 2525, So there exists a
SEGL for a kite with n vertices and a tail of length 3 <t < "—'4-2—’9 +1or
Ini2k <t<n-2. O

Lemma 5.4. For n > 20 and n = 2,4,6,8,10 (mod 12), a kite with n
vertices and a tail of length § + -’2i—1 St 5 -2,t# %4—%-&-2, or
"+3<t<———+2 t ——-5——1, 18 super edge-graceful.

Proof. Consider the labelings given in [1] (see also Section 2) for n-cycles,
n = 2,4,6,8,10 (mod 12). Let "+ +1<i< 3 Ifi=kk+2
(mod 3), then v; = ez;_3. So by Lemma 5.1, a kite with n vertices, where
n = 2,4,6,8,10 (mod 12), and a tail length i — 2 or n — ¢ 4+ 3 is SEGL.
Ifi=k+1 (mod 3), then v; = ey;43. So by Lemma 5.1, a kite with n
vertices, where n = 2,4, 6,8,10 (mod 12), and a tail length i+4orn—:i—3
is SEGL.

Since i + 4 = (i 4 6) — 2, we obtain SEGLs for kites with n vertices
and a tail of length Z + -’5 St<§-2,t# %+ -’29 + 2. Similarly, since
n—j—3=n-— (] + 6) + 3, we obtain SEGLs for kites with n vertices and
atail oflength 2 +3<t <3 kg ¢#3n_&_q

When t = n/4 +k/2—-1ort=3n/4—k/2+ 2 we proceed as follows:
If n = 2 (mod 12), en/242 = Y@n+18)/4 = (n + 14)/4, which gives tail
lengths (n + 10)/4 and (3n — 6)/4.

If n =4 (mod 12), en/243 = vnja41 = —n/4, which gives tail lengths
(n+12)/4 and (3n — 8)/4.

Ifn=6 (mod 12) and n > 30, en/2_4 = V@n—2)/4 = (n—6)/4, which gives
tail lengths (n + 14)/4 and (3n — 10)/4.

If n = 8 (mod 12), ey/2 = vpyg = —(n + 4)/4, which gives tail lengths
(n+4)/4 and 3n/4.

If n = 10 (mod 12), en/242 = Y@nt14y/4 = (n + 10)/4, which gives tail
lengths (n + 6)/4 and (3n — 2)/4.

Finally, when n = 30 we make use of the SEGL for C3g given in Con-
struction 2.4. One can ohserve that e;; = vgo = 6, which gives tail lengths
11 and 20. This completes the proof. [}

It is straightforward to see that kites with 4 vertices and a tail length 1
and kites with 6 vertices and a tail length 2 are not SEG. Figure 4 displays
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SEGLs for kites with 6 vertices and tail lengths 1 and 3.

1

Figure 4: SEGLs for kites with 6 vertices and tail lengths 1, 3

Lemma 5.5. 1. No kite with 4 vertices is super edge-graceful.
2. A kite with 6 vertices is super edge graceful if and only if its tail
length is 1 or 8.

Lemma 5.6. There are SEGLs for the following kites with n vertices.
1. n=2 (mod 12), tail lengths 2t22 and 318,
2. n=4 (mod 12), tail lengths "—'5—2—4 and -3"—4'29;
3. n=6 (mod 12), tail lengths M;—ZQ, 3"—;2—2, -'12:"1 and ¥4,
4. n=10 (mod 12), tail lengths 1‘—'%-15, @, "T"2 and Mz‘—".

Proof. We use the SEGLs given for even cycles in Section [1} (see also
Section 2) and apply Lemma 5.1 with the following ingredients.

Proof of 1: Apply Lemma 5.1 with e(ni10)2 = Vnt2)4 = —232 to
obtain the tail lengths 2422 and 3218,

Proof of 2: For n = 16,28 and 52, we see that e;; = vs = —4, eg7 =
v12 = —3 and ej3 = vgp = 7, which provide tail lengths of {7,10}, {16,13}
and {34,19}, respectively.

Now let n > 76 and n = 4 (mod 24). Then e(n_30)/2) = Y(3n—36)/4
= ""428, which gives tail lengths of (n + 24)/4 and (3n — 20)/4.

If n > 40 and n = 16 (mod 24), then e(n_g)/2) = V(@n+12)/4) = 25
which gives tail lengths of (n 4 24)/4 and (3n — 20)/4

Proof of 3: First we settle tail lengths 2428 and 3222, We observe that
e; = 13 = —9 when n = 18 and e; = v;g = —15 when n = 30, which
provide tail lengths of {8,11} and {14,17} by Lemma 5.1, respectively.

The following table displays a SEGL for a 42-cycle. Since ej1 = vpg = 6
we obtain tail lengths 17 and 26 by Lemma 5.1.
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i 1 2 3 4 5 6 7 8 9 10 11
e 1 21 2 -20 3 -19 4 -18 5 ~-17 6
v |21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11
i[12 13 14 15 16 17 18 19 20 21 22
e |-16 7 -15 8 -14 9 -13 10 -12 11 -10
»w[|-10 -9 -8 -7 6 -5 -4 -3 -2 -1 1
i [ 23 24 25 26 27 28 29 30 31 32 33
e |-11 13 -8 12 -9 15 -7 14 -5 16 -6
v | -21 2 5 4 3 6 8 7 9 11 10
i |3 3 36 37 38 39 40 41 42
e | 18 -4 17 -2 19 -3 21 -1 20
v, |12 14 13 15 17 16 18 20 19

Nowletn > 54and n = 6 (mod 12). Apply Lemma 5.1 with e(,_20y/2 =
V(an—14)/4 = 2528 for tail lengths 2428 and 38222,

For tail lengths 1'213 and ."_'2!,:2 we have e2 = v(n18)/2 = —5. Now the
result follows by Lemma 5.1.

Proof of 4: Apply Lemma 5.1 with e(n43)/2 = v(n.,.z) Ja = —22 for tail
lengths 2+12 8 3";“ and with e2 = v(n4g)/2 = —F for tail lengths 2 and
ntd
14,
]

We are ready to state the main result of this section.

Theorem 5.7. All kites with n > 8 vertices are super edge-graceful except
for possibly the following cases:

1. n =0 (mod 12) and the tail lengths

n+8n 2 nn+2 n+4d 3In— 4}
2 '2" 2 ' 2 ' 4 '

te {2,

2. n =2 (mod 12) and the tail lengths

n6n 2n+2n+6 n—-2n n+2
4 4 ' 4 ' 4 ' 2 '2" 2
n+4 3In—2 In+2 3n+6 3n+10}

2’ 4 ' 4 ' 4 ° 4 '

te{2,

3. n =4 (mod 12) and the tail lengths

n8n 4 nn+d n+8 n—-2n n+2
4 4 '4 4 ' 4 ' 2 2" 2
n+4 3n—4 _33 n+4 In+8 3n+12}
2 ' 4 4’ 4 ' 4 7 4 )

te{2
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4. n=6 (mod 12) and the tail lengths
t€{2 10,n 6'n 2’n+2’n+6’n+10’n’n+2,
4 4 4 4 4 27 2
3n 6 3n—2 3n+2 3n+6 3n+10 3n+14}
4 ° 4 ° 4 ' 4 ' 4 7 4 )
5. n =8 (mod 12) and the tail lengths
n n+16 n—-2nn+2 n+4d 3n—12 3n+4}
4 T2 '22 22 4 > a4 ”
6. n=10 (mod 12) and the tail lengths
n— 2n+2n'n+2 3n+2 3n+6}
4’2 2 ' 4 ' 4 U

te{z

te {2

6 SEGLs for the remaining kites

In this section we apply Lemma 5.1 on even cycles equipped with the SEGLs
given in Constructions 2.1-2.6 to find SEGLs for the remaining kites.

Lemma 6.1. Let n = 0 (mod 12), n > 24. There is a SEGL for a kite
with tail length
n+8 n—2nn+2 n+4 3n—4
2 '2' 2 ' 2 ' 4 12
Proof. Consider the SEGL given in Construction 2.1 and apply Lemma 5.1

te {2,

with e, = v, = — for a tail length 2, eﬂ/z 3 = Vsnj4—1 = ;4 for tail
lengths 7 +2 and 3— —1, e2 = V241 = — 5 for tail lengths 3 —1 and §+2,
and e,_3 = v, /2_2 = -3 for tail lengths g and % + 1. This completes the
proof. O

Lemma 6.2. Let n = 2 (mod 12), n > 26. There is a SEGL for a kite
with tail length

6n—-2n+2 n+6 n-2 n n4+2

t€{24 4 ' 4 ' 4 2’2 2
n+d In—-2 3n+2 3n+6 3n+10
2’ 4 7 4 7 4 4 }
Proof. Consider the SEGL given in Construction 2.2 and apply Lemma 5.1
with e, = a1 = (n — 2)/2 for a tail length 2, e(n_10)/2 = Y(n-10)/4 =

—-i-— for tail lengths nT-G and -'ﬁ'—l—, €(n—-6)/2 = 'U(n-G)/4 = _%0 for
ta.11 lengths -14:— and 388 e o0 = Yn-2)/a = —nd48 for tail lengths
242 and 3E2, ¢,y = v(3n+6)/4 = 242 for tail lengths nd6 and -2

e1 = V(nt6)/2 = 1 for tail lengths 252 and o4 and e,_3 = v(,,_4)/2 = —3
for tail lengths 2 and 232, O
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Lemma 6.3. Let n = 4 (mod 12), n > 28. There is a SEGL for a kite
with tail length

n—-8n—-4nn+4 n+8 n-2n n+2

te—— T T T 7
n+4 3n—4 3n 3n+4 In+8 3n+412

R U R et e aant £
Proof. Consider the SEGL given in Construction 2.3 and apply Lemma 5.1
with e, = vn—l = "’22 for a tail length 2, e(n-12)/2 = v(n_m)/4 = ——'t-—
for taJl lengths 238 and 3812 e, g /5 = ’U(n...g) 74 = — 2412 for tail lengths
and —-+—, e(,,_4)/2 = VYn-q)/a = — fOI‘ tail lengths % and —+—
en/2 = v,y = 234 for tail lengths and =, e(,.+4)/2 = U(3n+1s)/4 =
248 for tail lengths 8 and 3274 ey = v(n+2) /2 = —3 for tail lengths 252
and 244 and e3 = v(n+s) 2= 2 for tail lengths 3 and oi2, D

Lemma 6.4. Let n = 6 (mod 12), n > 30. There is a SEGL for a kite
with tail length

t€{2 10n 6 n—2n+2 n+6 n4+10 n n+2
T4 04 4 4 4 2 2

3n 6 3n—-2 3In+2 3n4+6 3n+10 3In+14
4 ' 4 4 7 4 4 7 4 -
Proof. Consider the SEGL given in Construction 2.4 and apply Lemma 5.1
with e, = vy = nT—2 for a tail length 2, €(n+10)/2 = V(3n+10)/4 = ﬁits-
for tail lengths n—TlO and -—'L, €(n-10)/2 = 'U(n—lo)/4 = —-m for tail
lengths 222 n—ﬁ and J’—, €(n—-6)/2 = Y(n—6)/4 = ——+—— for tail lengths T

and ——i—, e(n-2)/2 = Vn—2)/a = —232 for tail lengths "4 and 3242
€(n+6)/2 = ‘U(3n+13)/4 = Eﬂ- for tall lengths 246 gnd 2 —-, e(n+4)/2 =
V(nt2)/4 = — 242 for tail lengths 0 and 3"" and e; = VY(n4g)2 =1 for

tail lengths % and n2l
a

Lemma 6.5. Let n = 8 (mod 12), n > 20. There is a SEGL for a kite
with tail length

nn+l6 n—-2nn+2 n+4 In—-12 In+4

t - - .
e {27 4’ 4 1 2 ) 2 * 2 ) 2 ] 4 ) 4 }
Proof. Consider the SEGL given in Construction 2.5 (A) and apply Lemma
5.1 with ep = vn_) = 252 for a tail length 2, e(,_4)/2 = v(n_4)/4 = —n38

for tail lengths 7 and —+— ) €1 = V(n46) /2 =1 for tail lengths 2 —— and —L
and e7 = Ynsig)2 =4 fOl‘ ta.ll lengths & 3 and —t-
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For tail lengths E’%‘- and 3—"# we use the SEGL given in Construction
2.5 (B) and apply Lemma 5.1 with e(n_14)/2 = V(3n-12)/4 = ";12 for tail
lengths 2418 anq 3n-12, D

Lemma 6.6. Let n = 10 (mod 12), n > 22. There is a SEGL for a kite
with tail length

n—2n+2nn+2 3n+2 3n+6}

4 7 4 72 27 4 " 4 7
Proof. We use the SEGL given in Construction 2.6 and apply Lemma 5.1
with e, = vn_y = 232 for a tail length 2, e(n_g)/2 = V(n-6)/a = — 242
for tail lengths "—4‘-2- and i'ﬁﬂ, e(n-2)/2 = U(n-2)/4 = -£4L6 for tail lengths
242 and 32 and e = v(u42)/2 = 1 for tail lengths 3 and 242. O

te {2

Lemma 6.7. Every kite with 16 vertices is super edge-graceful.

Proof. For a tail length 1 apply Theorem 4.1. For the other tail lengths
we proceed as follows. Figure 5 displays two different SEGLs for a cycle
with 16 vertices. Applying Lemma 5.1 with Graph B and the edge label 7
we obtain a SEGL for a kite with 16 vertices and a tail length 2. For kites
with 16 vertices and the other tail lengths apply Lemma 5.1 with Graph A
and the edge labels given in the following table.

Edge Label: -1 -2 -3 —4 -5 7
Tail Lengths: 6,11 8,9 4,13 7,10 5,12 3

Graph A Graph B

Figure 5: Two different SEGLs for a 16-cycle
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Lemma 6.8. The kites on for n € {8,10,12,14,18} vertices are super
edge-graceful.

Proof. For a tail length 1 apply Theorem 4.1. For the other tail lengths we
proceed as follows:

For n = 8 label the edges of an 8-cycle with 1, —4, 2, -3, —1, 4, —2 and
3 clockwise (or anti clockwise). This is a SEGL for the cycle. Now apply
Lemma 5.1 to obtain SEGLs for kites of tail lengths 2, 3, 4, and 5.

For n = 10 apply Lemma 5.1 with the SEGL given for a 10-cycle given
in [1].

[F]or n = 12, 14 apply Lemma 5.1 with the SEGLs given in Constructions
2.1 and 2.2, respectively.

For n = 18 apply Lemma 5.1 with the SEGLs given for an 18-cycle in

[1] and in Construction 2.4.
a

We summarize our findings with the main theorem of this paper.

Main Theorem 6.9. All kites on n > 5, n # 6, vertices are super edge-
graceful. Kites on 4 vertices are not super edge-graceful and kites on 6
vertices are super edge-graceful if and only if their tail length is 1 or 3.

In the future, we wish to consider modified kites with multiple tails and
to determine whether they permit a super edge-graceful labeling.
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