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Abstract

A GDD(n1 + n2,3; A1, A2) is a group divisible design with two
groups of sizes n; and np, where n1 < ng, with block size 3 such
that each pair of distinct elements from the same group occurs in A
blocks and each pair of elements from different groups occurs in Az
blocks. We prove that the necessary conditions are sufficient for the
existence of group divisible designs GDD(n,;+n2, 3; A1, A2) with equal
number of blocks of configuration (1,2) and (0, 3) for ny +n2 < 20,
n; # 2 and in general for ny = 1,3,4,n2 ~ 1, and ng — 2.

1 Introduction

Definition 1.1. A group divisible design GDD(n, m,k; A1, A2) is a collec-
tion of k-element subsets, called blocks, of an nm-set X where the elements
of X are partitioned into m subsets (called groups) of size n each; pairs of
distinct elements within the same group are called first associates of each
other and appear together in A, blocks while any two elements not in the
same group are called second associates and appear together in Ay blocks.

Example 1.2. A GDD(3,2,4;3,2) with two groups {1,2,3} and {4,5,6}
is {{1,29 37 4}’ {17 21 3y 5}’ {1’ 23 33 6}) {4! 51 67 1}9 {4’ 5, 61 2}’ {4’ 53 6’ 3}}'

Note as both the groups are of the same size, every element in the above
example occurs in exactly 4 blocks. In fact, in any GDD where the groups
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are of the same size, every element occurs a fixed number of times. This
replication number is usually denoted by r. Also, there are two groups both
of the same size and each block has (1, 3) configuration, meaning, each block
intersects a group in exactly three points or in exactly one point.

The necessary and sufficient conditions for the existence of GDDs with
block size 3 and A, = 0 are given below (1], p.255):

Theorem 1.3. A GDD(n,m,3; A1 =0,y = A) exists if and only if m > 3,
Am —1)n =0 (mod 2), and Am(m — 1)n? = 0 (mod 6).

A GDD(v,k,k;0,1) is also called a transversal design T'D(k,v) and it
has v? blocks. Group divisible designs are also defined when the group
sizes are not equal [10]. We use a simpler notation GDD(n; + ng, 3; A1, A2)
to represent a group divisible design with block size 3, two groups G; and
G, of distinct sizes n; and ne where the first associate pairs occur in \;
blocks and the second associate pairs occur in Ay blocks. It is common to
call the blocks of size 3 as triples or triangles. The elements do not have
the same replication numbers as the group sizes are different. We denote
the replication number for the elements of the first group by r, and the
replication number of the second group elements by rj.

Example 1.4. A GDD(2 + 3,3;3,1) with two groups of size 2 and 3, say
{1,2} and {3,4,5}, is {{1,2,3},{1,2,4},{1,2,5}, {3,4,5}, {3,4,5}, {3,4,5}}.

Note here r; = 3 and 5 = 4. Also, the number of blocks is six where three
blocks are of configuration (0, 3), meaning these blocks intersect one of the
groups in O points and the other group in 3 points, and exactly the same
number of blocks are of configuration (1,2), meaning these blocks intersect
one of the groups in one point and the other group in two points. From now
onwards, a GDD with equal number of blocks of configuration (0,3) and
(1,2) will be referred to as an EGDD, and blocks with configuration of type
(z,y) may be referred to as (z,y)-blocks. GDDs are building blocks for
several constructions of other designs including balanced incomplete block
designs defined below.

Definition 1.5. A Balanced Incomplete Block Design, (V, B), is a collec-
tion B of b k-subsets (called blocks) of a v-set V, such that each element
appears in exactly r of the blocks, every pair of distinct elements of V occurs
in A blocks, and k < v. Such a BIBD is usually denoted by BIBD(v, b, 7, k, \)
or BIBD(v, k, ).

For convenience, k = v is allowed and BIBD(v,v, ) is used to denote A
copies of the set V.

Definition 1.6. Suppose (X, A) is a BIBD(v,k,\). A parallel class in
(X, A) is a subset of disjoint blocks from A whose union is X. A parti-
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tion of A into r parallel classes is called a resolution, and (X, A) is called
a resolvable BIBD or RBIBD, if A has at least one resolution.

In other words, an RBIBD is a BIBD(v, k, ) whose blocks can be par-
titioned into r parallel classes. Observe that a parallel class contains %
blocks, and therefore a BIBD may have a parallel class only if v = 0 (mod
k).

A near parallel class is a partial parallel class missing exactly one point.
A design is called o-resolvable if its blocks can be partitioned into classes
in which each point occurs o times. Similarly one can define resolvability
for any block design including GDDs. The following are well known results,
these including the definitions from Graph theory are given here for ease of
reference only, see [19], [26], [29]:

e A BIBD(v, 3, 1) exists for v = 1,3 (mod 6) and has = v=1) blocks.
e A BIBD(v, 3,2) exists for v =0,1 (mod 3).

e A BIBD(v, 3, 3) exists for all v =1 (mod 2).

e A BIBD(v, 3, 6) exists for all v > 3.

Theorem 1.7. Necessary conditions for the existence of an a-resolvable
BIBD

(v,k, ) are

(i) A(v—1) =0 (mod (k — 1)a);

(i) Av(v — 1) =0 (mod k(k — 1));

(i) av =0 (mod k).

Theorem 1.8. The necessary conditions for the existence of an a-resolvable
BIBD(v,3,)) are sufficient except for v =16, a =1 and A =2 (mod 4).

Corollary 1.9. (i) A 3-resolvable BIBD(v,3,6) exists for all v > 3, with
(v —1) classes.

(ii) A resolvable BIBD(v,3,1) ezists for v =3 (mod 6).

(iti) A resolvable BIBD(v,3,2) exists for v =0 (mod 3) except for v =6.

Definition 1.10. (i) A complete graph K, is a graph on n vertices where
each distinct pair of vertices is connected by an edge.

(it) A one-factor is a set of edges from a complete graph in which each point
appears only once.

(iii) A one-factorization of a complete graph K., is the set of one-factors
that partitions the edges of the complete graph.

(iv) A 2-factor is a set of edges from a complete graph in which each vertex
appears twice.

(v) A 2-factorization of a complete graph K, is the set of 2-factors that
partitions the edges of the complete graph.
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Lemma 1.11. (i) There are (n — 1) one-factors in a one-factorization of
a complete graph K, with n =0 (mod 2) vertices.

(ii) There are "T'l 2-factors in a 2-factorization of a complete graph K,
withn =1 (mod 2) vertices.

2 Previous Work

Recently many papers on GDDs with A; # 0 are written. To prove that
the necessary conditions are sufficient when the number of groups is less
than the block size is especially difficult. In fact, even for the block size
4 where the number of groups m < 4 not much has been done. Below we
discuss some of the work done recently on this problem:

Clatworthy (2] has listed eleven GDDs with k = 4 and m = 3 with replica-
tion number at most 10. Henson and Sarvate [12] generalized two of these
designs. Then, Rodger and Rogers {23] generalized three more designs from
the said list. Subsequently in (24], they gave the generalization of another
five from that list. Gao and Ge [11] gave general methods of construction
of GDDs with k = 4 and independently generalized all the eleven designs.
Hurd and Sarvate [15] constructed GDDs with k¥ = 4 using Bhaskar Rao de-
signs. In this paper they gave necessary and sufficient conditions for these
designs for 3 <n < 8.

For GDDs with k& = 5, Hurd, Mishra, and Sarvate [13] have given an ex-
plicit construction using MOLS of order n, with m = 2 or 3 or 6 groups.
These designs are not listed in Clatworthy’s table [2] because their param-
eter range is beyond that of the table. Hurd, Mishra and Sarvate [14] took
into account the block-group intersection pattern to construct GDDs with
k =5 and m = 2 groups. Obviously, there are only three intersection pat-
terns, viz. (0,5),(1,4), and (2,3) with m = 2 and k = 5, where a block
is said to be of type (a,b) or with intersection pattern (a,b) if there are a
treatments from one of the groups and b treatments from another.
Keranen and Laffin {17] have constructed GDDs with two groups and block
size six. For the block configuration (s, t) = (3, 3), they proved that the nec-
essary conditions are sufficient for the existence of GDD(n, 2, 6; Ay, A2). Fur-
ther, for GDDs with the configuration (1, 5), they gave examples with min-
imal or near minimal index for group sizes n > 5, except for n = 10, 15, 160
and 190.

Going back to GDDs with block size 4 and two groups, i.e., a GDD(n, 2, 4;
A1,A2) in which every block intersects each group in exactly two points is
called an even GDD while a GDD(n, 2,4; A1, A2) in which each block inter-
sects each group either in one or three points is called an odd GDD. These
were first introduced by Hurd and Sarvate [16]. They proved that the nec-
essary conditions for the existence of even and odd GDD(n, 2,4; A,A;) are
sufficient.
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Ndungo and Sarvate [20], proved the existence of all but two families of
GDDs where number of even blocks is equal to the number of odd blocks.
On the other hand, Sarvate and Nanfuka [25] proved that the necessary con-
ditions are sufficient for the existence of two families of GDDs with block
size four and two groups where there are equal number of blocks of config-
urations (2,2), (1,3), and (0,4). They also gave some results when there are
three groups and there are equal number of blocks of configurations (2,2)
and (1,3). Now a natural question can be raised: What about the existence
of GDDs with block size three with two groups BUT unequal cardinality?
Recall that for block size 3 where the groups are of the same cardinality
can be answered using the results by Fu, Rodger and Sarvate [9] and Fu
and Rodger (8] where they completely settle the existence of group divisible
designs with k = 3. Later another proof was given by Colbourn and Rosa
(4]. Hence, in the present paper we concentrate on EGDDs with k = 3
and two groups of size n; and ng, where n; < nz and 2 ¢ {ni,n2}. We
must add that several mathematicians, for example, Pabhapote, Punnim,
Chaiyasena, Lapchinda, Uiyyasathian [3], [18], [21], [22], [27], (28] and El-
Zanati, Punnim, and Rodger [5] have obtained results for block size three
with unequal group sizes including the cases where the number of groups
is bigger than or equal to the block size 3.

3 Necessary Conditions

We will assume that n; < no. To find the replication number r; for
elements in G;, let x € G; and suppose it occurs in r; triples. Then
A{ny = 1)+ dong = 2r;, and ry = —A‘—("‘—_;H& Similarly, if z € Gy
and if it occurs in 7y triples then we have Aj(ny — 1) + A2ny = 273, and
Ty = M
Hence, necessary conditions include that both A;(n2—1)+Azn; and A (n;—
1) + Agnp are even and the following holds:

(i) If ny is odd and n, is even, then A; and Ay must be of the same parity.
(ii) If n; is even and ns is odd, A; and Ag are of the same parity.

(iii) If n, and ny are even, A, is even and

(iv) If n, and ny are odd, Xz is even.

As we want the number of blocks of the configuration (1, 2) and (0, 3) to
be the same, b must be even and max (ny,7n2) > 3. To summarize:

Theorem 3.1. The necessary conditions for the existence of an EGDD(n;+
ng, 3; A1, A2) are:

ny even n, odd
o | ny even A1 even A1 and A2 same parity
ng odd | A\, and Ay same parity Ay even
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o Asb = ninaAy must be even, n1naAy =0 (mod 2) and maz (ny,ng) >
3.

We also note that the 2°¢ associate pairs occur only in the blocks with
configuration (1,2) and each such block contains two second associate pairs
and one first associate pair. For EGDDs, as there are n,n, second associate
pairs and each occurs A3 times, 2% = b =njyngAy. Also 3b = nyr;+ngre and
hence b = marufnera _ A(u(u- 1)+"”("’_1))+2"‘"’>" . Therefore, we have
A {ni(ng = 1) + na(ne — 1)) + 2'n1n2)\2 6n1n3)2, which implies A; =
!n, +n§—n|—n3 )/\

4ning

4 =
m (m_l')'_}_:;(m_l)/\g or equivalently Ao

Hence, we want to construct EGDD(n; + ng, 3; A,
equivalently EGDD(n; + ns, 3; 4nyng A2, A2).

’ ny(ny—1)+n2(n2-1)

"1 -i-n2 —n;—n2

A1) or

4n1n2

4 General construction

nz+n§—n1—nz
g 1 2)‘1)

The family for the extreme case of EGDD(n;+ngz, 3; A1, s
is when \) = 4n;ny and Ag = n? + n2 — n; — ny. In this section we show
that it exists provided 2 ¢ {n;,n2}. Here after, we assume that no group
size is equal to 2.

Theorem 4.1. A GDD(n; + na, 3;4nynz, n? +n2 —ny —ny), for all values
of ny and ng, where 2 € {ny,ns}, exists.

Proof. The construction of EGDD(n) +ngy, 3; 4nng, nf +n3—n; —ny) be-
low will be referred to by “the general construction” in other sections as

required.
Let G, = {1,2,--- ,m} and G2 = {a1,a2, -+ ,an,}. Use the edges of
n1K,, with a; to construct (1,2) type triples for i = 1,2,--- ,ny. Simi-

larly use the edges of nK,,, with i € G; to construct (1,2) type triples.
Hence the pairs (i a;) occur required number of times. The number of
(1,2) blocks is nani(ni—1) + "1"2(“2 1) _ ning(n(ni— 1)+n2("z—l)) , which is
exactly half of the required number of blocks If BIBD(n1,3 3n1n2) and
BIBD(n2, 3,3n)n;) exist we are done as the total number of triples from
these BIBDs 2munzta(mi-1) | 3"‘"""6’("’_1) is equal to § as required. Now
if n; or ny is even these BIBDs exist 3njny = 0 (mod 6). If n; and np
both are odd, then also these BIBDs exist, because BIBD(v, 3, 3) exists for
odd v’s. O

Using Theorem 4.1 and the necessary conditions, we have:

Corollary 4.2. For the following pairs of ny and ns, the smallest possible
EGDD(ny + ng,3; A1 = dnyne, A2 = ni(ng — 1) + na(np — 1)) exists :
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(nl = 3, Ng = 8), (nl = 3, Ng = 17), (n1 = 4, Ng = 7), (n1 = 4,
ng=11), (n1 =5, ny =14), (ny =7, ng =13), (n; =8, nz =11).

2,2
One of our aims is to construct EGDD(n; +na, 3; A, M/\l) or

4nin;
equivalently EGDD(n; +n2, 3; n:(n:—‘:’;-;-:i(nz—l) A2, A2) when ny +n9 < 20,
but first we will give some general results.
The following techniques will be used frequently in the next sections: (i)
Splitting a block, say {z,y, z} with a point w, means creating blocks {z,y, w},
{z,z,w}, and {y, z,w}.
(ii) Using z copies of a graph G with X means creating x copies of triples
eU {i} Ve € E(G) and Vi € X. More specifically, a procedure which will be
used often in this paper is “use a set of edges, E, (for example, of a graph
or a one-factor) to create triples with an element z,” which means create
triple {¢,j,z} for each edge {3, j} € E.

5 GDD(1+n,3; A, A)

For ny = 1 and ny = n, the number of blocks b = njnzA2 = nA; and as

b must be even, we must have n =0 (mod 2) or A2 =0 (mod 2). We also
have Ay = (";1)/\1. Let G; = {a} and G, = {1,2,--- ,n}. When n is odd,
for A\ =4 and X2 = n — 1, we can easily construct the required EGDDs.
The triples {i,j,a}, 1 <i < j < n (so we are using the edges of K,, with a
to get (1,2) triples) and ﬂ"z—'lz blocks of a BIBD(n, 3, 3) together give the
required blocks of an EGDD(1 +n,3;4,n — 1).

Example 5.1. GDD(1 + 7,3;4,6): We use a K7 on G2 = {1,2,---,7}
with G, = {a}, which gives Ay = 6, and the blocks of a BIBD(7,3,3),
which provides the required number of (0, 3) type triples.

Though such a family is easy to construct, it is not enough to prove that
the necessary conditions are sufficient. For n odd, n — 1 is even and the
smallest A\; need not be 4. For example, if n = 4t + 1, smallest allowable
A1 is 1 and corresponding A; = ¢, but as 1 and n both are odd, A has to
be even and hence for ¢t odd, EGDD(1 + (4¢ + 1), 3;1,t) does not exist. For
t even, such EGDDs exist as we shall see soon.

Example 5.2. Fort =2, an EGDD(1 + 9, 3;1,2) exists as follows. As a
resolvable BIBD(9,3,1) exzists, split the blocks of one of its parallel classes,
say {1,2,3},{4,5,6},{7,8,9}, to obtain the (1,2) triples. These triples
together with the remaining 9 triples of the RBIBD(9, 3,1) give the required
EGDD.

If n is odd, then
(i)ifn =1 (mod 4), say n = 4t +1, smallest A; = 1 for t even and smallest
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A1 =2 for t odd.
(ii) if n = 3 (mod 4), then (4""34_ LD (5""42)’\‘ = (2”'21))“ , hence smallest
A1 =4 as Ay has to hbe even as 1 and n both are odd.

Hence for n = 4t + 3, smallest such EGDD must he EGDD(1 + (4t +
3),3;4,2(2t + 1) = 4t + 2), which exists by our earlier general construction
for any odd n.

If n is even, then, as Ay = 5—";—12/\1, A1 has to be a multiple of 4, but
EGDD(1 + n,3;4t,(n — 1)t) does not exist for odd ¢ as 1 and n are of
opposite parity and 4¢ and (n —~ 1)t are also of opposite parity. For t even,
EGDD(1 + n, 3;4t, (n — 1)t) exists as EGDD(1 + n, 3; 8,2(n — 1)), can be
constructed as follows. A BIBD(n,3,6), on G has n(n — 1) blocks. These
blocks are of (0,3) configuration and the (1,2) configuration triples are
obtained by taking 2 copies of {i,7,a} 1 < i < j < n. It is easy to check
that we have the required smallest EGDD, and its multiples give all required
EGDDs for n even.

Hence we have following result:

Theorem 5.3. Forn odd andt > 1, EGDD(1 + n,3;4t,(n — 1)t) always
exists. Hence, for n = 3 (mod 4), the necessary conditions are sufficient
Jor the ezistence of EGDD(1 4+ n,3; A = 4t, Ay = (n — 1)t).

Forn even andt > 1, EGDD(1+n, 3; 8t,2(n—1)t) always exists and hence
the necessary conditions are sufficient. here as well.

Now what remains for ny = 1 is to construct the required EGDDs for
n=4t +1.

5.0.1 Construction for EGDD(1 + (4t + 1), 3;1,¢) for t even

First we notice the following results: (i) Let t = 0 (mod 6) and t = 6s.
Then, 4t +1=24s+1 =1 (mod 6) = 6(4s) + 1. Therefore, there exists a
cyclic solution for BIBD(4t + 1, 3,1). That is, there are 4s difference sets
which generate BIBD(4t + 1, 3,1).
(ii) Let t = 2 (mod 6) and t = 6s+2. Then (4¢+1) = 4(6s +2)+ 1. Hence
a RBIBD(4t + 1,3, 1) exists with 3(4s + 1) + 1 parallel classes.
(iii) Let t = 4 (mod 6) and t = 65+ 4 = 6(4s + 2) + 5. From Faruqi and
Sarvate (6], we know that there are (4s + 2) difference sets covering 12s + 6
differences modulo 24s + 17 (out of the possible 12s + 8 differences). Let
G, ={a} and G2 = {1,2,--- ,4t+1}. Now, if t = 0 (mod 6), then we split
the blocks generated by £ difference sets of BIBD(4t + 1, 3,1) with a to get
the required EGDD. If ¢t = 2 (mod 6), then we split £ parallel classes of
BIBD(4t + 1,3,1) with a. If t = 4 (mod 6), we split the blocks generated
by 2s difference sets with a and also use the edges with the remaining
2 differences not covered by the difference family with a to create (1,2)
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type triples. Now for n = 4t + 1 when ¢ is odd, we want to construct an
EGDD(1 + (4t + 1), 3; 2, 2¢).
5.0.2 Construction of EGDD(1 + (4t + 1), 3;2,2t) for t odd

If t is odd, the smallest indices A\; and Az are 2 and 2t respectively. The
construction for these EGDDs are exactly the same as in the case for even
t.
We observe that if t = 6s+1, 4t + 1 = 24s + 5, from Faruqi and Sarvate (6]
we can get 4s difference sets covering 12s differences, with two differences
missing. As A\; = 2, we use two copies of these differences and two copies of
the available difference sets. The union of the edges of these two differences
with G, gives us a contribution of 8 towards A;. To get remaining 12s +
2 — 8 = 125 — 6 value of A, we use 4s — 2 difference sets, and use each block
{4,7,k} developed by these difference sets to get three (1,2) type blocks,
viz, {i,3,a}, {i, k,a}, {j, k,a} for the required EGDD, where we recall that
G, = {a}. For other cases when t = 65+ 3 and t = 6s + 5, we have
4t+1 = 6(4s+2)+1 and 4t+1 = 6(4s+3)+3 and we can use difference sets
for BIBD(6(4s+2)+1,3,2) and parallel classes for BIBD(6(4s+3) +3, 3,2)
exactly in the same way as we did for ¢ even case.

Theorem 5.4. The necessary conditions are sufficient for the existence of
EGDD(1 + n,3; A1, A2) for alln > 3.

6 ny = MNg — 1

For an EGDD((n — 1) +n, 3; A1, A2) as n; and ny are of opposite parity,

2 2

A1 and Ap must be of the same parity. As we know, A = MWM,
we have Ay = Q‘;TI)AI. Necessary conditions imply that when n even,
EGDD((n — 1) + n,3;2n,(n — 1)) can not exist (2n is even and (n — 1)
is odd). Hence, the EGDD with the smallest indices is EGDD((n ~ 1) +
n,3;4n,2(n—1)). We know that once we construct EGDD with the smallest
indies, together with its multiples, we have the result that the necessary
conditions are sufficient. For n odd, EGDD((n — 1) + n,3;2n,(n — 1)) is
possible as (n — 1) and 2n both are even. Also we need to consider two
cases when n is odd as we will see below. We will let G; = {a1, -+ ,@n-1}
and Gz = {bl,bz, v ,bn}.

6.1 EGDD((n-1)+n;3;4n,2(n —1)) : even n.

Note, Ay —Ag = 2(n+1). Observe first that for n = 2 (mod 6),2(n+1) =
0 (mod 6) and hence a BIBD(n, 3,2(n + 1)) exists. On the other hand, for
n = 0,4 (mod 6), BIBD(n, 3,2) exists. Hence BIBD(n,3,2(n + 1)) exists
for all even n. Secondly, a BIBD((n — 1),3,4n) also exists for all even n as
n—1lisoddson—1=1,3,5 (mod 6). Then, if n—1=1,3 (mod 6), a
BIBD(n — 1,3,1) exists and if n — 1 = 5 (mod 6), i.e., n = 0 (mod 6), a
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BIBD(n — 1, 3,4n) exists.

For the actual construction, we take edges of 2K,, with each element of G,
to create n(n — 1)2 triples with configuration (1,2). Then, the blocks of a
BIBD(n,3,2(n+1)) on G, together with the blocks of a BIBD(n —1, 3, 4n)
on G, give us the required (0, 3) triples.

6.2 EGDD((n—-1)+n;3;2n,(n—1)) : odd n.

Note that 2n and n — 1 both are even. Hence this is not a family with
smallest indices for all odd n. Indeed, when n = 2t 4+ 1 and ¢ is odd, the
smallest EGDD we need to construct is EGDD((n—1)+n, 3; n, 51;—1-1) which
will be constructed in the next subsection. Presently, we will prove that
EGDD((n — 1) +n,3;2n,n — 1) exists for all odd n.

We observe that when n is odd, BIBD(n,3,n + 1) exists because when
n=0,1 (mod 3), BIBD(n, 3, 2) exists and when n =2 (mod 3) ie.,n=5
(mod 6), (n+1) =0 (mod 6), a BIBD(n,3,n+1) exists. Similarly one can
check that a BIBD(n — 1, 3,2n) exists for all integers n, because if n = 1,2
{mod 3), a BIBD(n — 1,3,2) exists and if n = 0 (mod 3), then 2n = 0
(mod 6) and hence BIBD(n — 1, 3,2n) exists. For odd n > 4, we use a
BIBD(n, 3,7 + 1) on second group G2 and a BIBD(n — 1, 3,2n) on the first
group G to obtain blocks of configuration (0, 3), and we construct blocks
with configuration (1,2) by using the edges of K, on G5 with each element
of Gl .

For n = 3, the required EGDD is given in the example below:

Example 6.1. Forn = 3, the blocks of the required EGDD(2+3, 3; 6,2) are
the 6 blocks of (1,2)-configuration {a,b,1},{a,b,1}, {a,b, 2}, {a, b, 2}, {e, b,3}
and {a,b,3} together with siz copies of the block {1,2,3} which is of (0, 3)-
configuration.

6.3 GDD((n—1)+n,3;n, &), n=2t+1, t odd
Let n = 45 + 3. We will construct an EGDD((4s + 2) + (4s + 3), 3;4s +
3,25 +1).

There are two cases:
Case (a) when 2541 = 0,1 (mod 3) and Case (b) when 2s+1 = 2 (mod 3).
Construction for Case (a) : It is known ([8], [7]) that a GDD(2,(2s +
1),3;0,1), (a GDD with 2s + 1 groups of size 2) for 2s +1 = 0,1 (mod 3)
exists. Use 2 copies of the groups of the GDD as one-factors of Ky, o
on G; as well as the 4s + 1 one-factors of a K412 on G, with 4s 4+ 3
elements of G and create (1,2)- triples. To complete the requirement for
Ay for the elements of G, we notice that a BIBD((4s + 2),3,4s) on G,
exists as (i) 2s+1 =0 (mod 3) implies (4s +2) =0 (mod 6), and hence a
BIBD((4s + 2), 3,4s) exists.
(ii) 2s +1 = 1 (mod 3) implies (4s + 2) = 2 (mod 3), hence as 4s = 0
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(mod 6) a BIBD((4s + 2), 3, 4s) exists.

There are 2s(2s + 1) = s(4s + 2) two-factors of a 2sK4543 on Ga. Use s
two-factors with each of the elements of G;. Note Ay count for the EGDD
has been met. Now, remaining blocks are of a BIBD(4s + 3,3,2s + 3) on
G,, which exists because 4s + 3 = 1,3 (mod 6).

Example 6.2. An EGDD((10-+11),3;11,5): Construct e GDD(2,5,3;0, 6)
on Gi. Take siz copies of the groups as siz one-factors of Ko on G;. Also
note there are 27 one-factors of 3K1o. Use three one-factors with each of
the elements of G2. Use 1 two-factor of 2K, with each element of G
to get remaining (1,2)-triples. Hence the count for Ay = 3+ 2 = 5. Use
the block of a BIBD(10,3,2) and of the EGDD(2,5,3;0,6) on G, and of a
BIBD(11,3,9) on G2 as the (0,3)-blocks of the required design.

Now we will look at Case (b). Construction for Case (b): In this case,
25+ 1 =2 (mod 3) and hence s =2 (mod 3). Let s = 3z + 2. Our aim is
to construct an EGDD((4s+2) + (4s+3),3;4s+3,2s+1) = EGDD((12z +
10) + (12z + 11), 3; 12z + 11, 6z + 5).

Note a GDD(2,2s + 1,3;0,6) exists. Use 6 copies of the groups of the
GDD (2,2s+1,3;0,6) on G, as one-factors along with 3(4s +1) one-factors
of 3K,42 on Gy, we have 3(4ds + 1) + 6 = 12s + 9 one-factors, use three
with each of the elements of G, and create triples with configuration (1, 2).
We have until now first associate pairs from G; occurring 9 times and these
blocks contribute 3 towards A,. Note that a BIBD({(4s+2),3,12z+2) on G,
exists, because the necessary conditions for the existence are met as 4s+1 =
3 (mod 6). As 2K,,43 has 4s + 2 two-factors, (6x + 2)K4s43 has (3z +
1)(4s + 2) two-factors and use 3z + 1 two-factors with each of the elements
of G;. We know that a BIBD((4s + 3),3,6z + 9) exists as BIBD(v, 3, 3)
exists for all odd v’s. Hence, the remaining blocks are ohtained by taking
a BIBD((4s + 3),3,6z 4+ 9) on Gs.

Hence, we have the result:

Theorem 6.3. Necessary conditions are sufficient for the existence of
EGDD((n — 1) + n, 3; A1, A2) for all integer values of n.

7 GDD((n—2)+n,3; M\, 2) 3 ne=mny + 2.
Here, if n is odd, then Az must2 be even, and if n even then A; must be

2 2
even. We know that A, = Z1¥02-M702 ), therefore, Ay = U;,J:T;a Al

dning
Note that (n? — 3n + 3) is odd and therefore A; has to be even.
Also note that ged(n? — 3n + 3,n(n - 2)) = 1 if n = 1,2 (mod 3) and
ged(n? —3n + 3,n(n — 2)) = 3 if n =0 (mod 3). (This can be seen easily
by using Euclidean algorithm) Therefore, for n = 1,2 (mod 3) smallest
possible A; would be 2n(n — 2}, but n? —3n+3 is odd and hence for n odd,
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we need EGDD((n — 2) + n, 3;4n(n — 2),2(n? — 3n + 3)) and for even n we
need to construct EGDD((n — 2) +n, 3; 2n(n — 2),n%2 — 3n + 3). For odd n,
the required EGDDs exist by the general construction given in Section 3.
Hence, we need to consider only even n.

We will deal with the case of n = 0 (mod 3) where ged(n? — 3n + 3,n(n —
2)} = 3 after the following subsection.
7.1 Construction of EGDD((n — 2) +n, 3;2n(n — 2),n? —

3n+3) n even.
We construct triples with configuration (1,2), by using the edges of
"%21(,,_2 with each point from the second group G, and the edges of
3K, with each point from the first group G;. The first associates for

both groups occur ﬂnz_-21 times in the process, and second associate pairs
occur m—_ii)ég;zl + Mgﬂ times, which is exactly the value of A\s. We
complete the construction by observing that A; — "("2_2) = 3"('2'_2) and
both BIBD(n, 3, 3L(",_,-_—21) on G2 and BIBD(n -2, 3, w) on G exist as
for even n as M‘z:_%l is a multiple of six..

Example 7.1. For n = 8, we construct a EGDD(6 + 8,3;16 - 6 = 96,64 —
21 = 43). Use 3K with each i € Go, and 4K with each i € G, to create
(1,2)-triples. For (0,3)-triples we use the triples of BIBD(8,3,96 — 24)
= BIBD(8,3,72) and BIBD(6,3,96 — 24) = BIBD(6,3,72) on G3 and G,
respectively. Note that these BIBDs exist.

7.2 n=0 (mod 3)

We consider two subcases n =0 (mod 6) and n = 3 (mod 6).
7.2.1 n=0 (mod 6)

We will construct an EGDD((6t — 2) + 6t, 3; 4t(6t — 2),12¢> — 6t + 1).
Use the edges of Kg;_2 on G; with each point of G2. This means second
associate pairs will occur (6t — 3) times. Note required A; — (6t — 3) =
2(6t2 — 6t + 2) is even. Hence, we split the triples of 6t2 — 6t + 2 parallel
classes of a BIBD(6t, 3,4¢(6t — 2)) with each element of G;. Remaining
triples will, as usual, play the role of (0, 3)-triples along with the triples of
BIBD(6t — 2, 3, 4t(6t — 2) — 6t) on Gj.

7.3 n=0 (mod 3)

Let n = 6t+3. The GDD with the smallest indices should be EGDD((6¢+
1) + (6t + 3),3;2(2¢ + 1)(6t + 1),12t2 4 6t + 1), but Ay has to be even as
n is odd. Therefore, the smallest EGDD in this case is EGDD((6t + 1) +
(6t + 3),3;4(2t 4 1)(6t + 1),2(12t2 + 6t + 1)). As ), is even and there are
enough parallel classes in a BIBD(6t + 3,3,4(2t + 1)(6t + 1)) on Gs, we
split 12¢2 + 6t + 1 parallel classes with each element of G;. As usual, the
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remaining triples and the triples of BIBD(6t + 1, 3,4(2t + 1)(6¢ + 1)) are
the required (0, 3)-triples for the EGDD. As we have constructed EGDDs

with the smallest possible indices, we have

Theorem 7.2. Necessary conditions are sufficient for the existence of
EGDD((n — 2) + n,3; A1, A2) with equal number of blocks of both config-
urations (0,3) and (1,2).

8 EGDD(3 +n, 3; AL, /\2)

In this section, we assume G| = {a,b,c} and Gy = {1,..,n2 = n}. In
addition, as in the earlier sections, when we split some of the blocks of a
BIBD, it is assumed that the rest of the blocks of the BIBD are used as the
(0, 3)-triples.

Let n = 12t for some integer ¢t = 0,1 (mod 3). In this case, we need to con-
struct EGDD(3 + 12, 3; 48¢, 48t% — 4t + 2). We split 24t — 2t + 1 resolvable
classes of an RBIBD(12t, 3, 48¢) with each element of G;. In addition, we
take the blocks of a BIBD(3, 3, 48t).

Let n = 36t + 24 for some integer ¢{. In this case, we need to construct
EGDD(3+ (36t +24), 3; 48t + 32, 144t% + 188t + 62). We split 72t2 494t + 31
resolvable classes of an RBIBD(36¢ + 24, 3,48t + 32) with each element of
G,. In addition, we take the blocks of a BIBD(3, 3, 48¢ + 32).

Let n = 12t + 1 for some integer ¢t. In this case, we need to construct
EGDD(3 + (12t + 1), 3;48t + 4,482 + 4t + 2). We split 8t> 3-resolvable
classes of 3-RBIBD(12¢ + 1, 3,48t) with each element of G;. We also take
2t 2-factors of Kg:4) with each element of G; and 1 copy of K3 with each
element of G,. In addition, we take the blocks of a BIBD(3, 3, 36¢ + 3) on
G, and the blocks of a BIBD(12¢ + 1,3, 3) on G,.

Let n = 48t + 2 for some integer t. In this case, we need to construct
EGDD(3 + (48t + 2),3; 72t + 3,288t2 + 18t + 1). We split 48t — 5t 3-
resolvable classes of 3-RBIBD(48t + 2, 3, 72t) with each element of G;. We
also take 1 copy of K4g:42 with each element of G;. In addition, we take
the blocks of a BIBD(3, 3,72t + 3).

Let n = 12t + 2 for some integer ¢t = 2 (mod 4). In this case, we need to
construct EGDD(3 + (12t + 2), 3; 36t + 6, 36t% + 9t + 2). We split 1—2%:"—35
3-resolvable classes of a 3-RBIBD(12t + 2, 3,36t + 6) with each element of
G,. We also take one copy of K3 with each element of G2. In addition, we
take the blocks of a BIBD(3, 3, 24t + 4).

Let n = 12t + 2 for some integer t = 1 (mod 2). In this case, we need to
construct EGDD(3 4 (12t +2), 3; 72t + 12, 72> + 18t + 4). We split 12t> + 3t
3-resolvable classes of a 3-RBIBD(12t + 2, 3, 72t + 12) with each element of
G,. We also take 2 copies of K3 with each element of G2. In addition, we
take the blocks of a BIBD(3, 3, 48t + 8).
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Let n = 12t + 3 for some integer ¢ = 0,2 (mod 6). In this case, we need to
construct EGDD(3+ (12t +3), 3; 24t +6,24t2 + 10t +2). We split 12t2+5t+1
parallel classes of RBIBD(12t + 3, 3,24t + 6) with each element of G;. In
addition, we take the blocks of a BIBD(3, 3, 24t + 6).

Let n = 12t + 3 for some integer ¢t = 3,5 (mod 6). In this case, we need to
construct EGDD(3 + (12t + 3), 3; 12¢ + 3, 12t2 + 5¢ + 1). We split -1-3‘%—5-‘-*—1-
parallel classes of RBIBD(12¢ + 3, 3,12t + 3) with each element of G;. In
addition, we take the blocks of a BIBD(3, 3,12t + 3).

Let n = 36t + 15 for some integer ¢ = 0 (mod 2). In this case, we need to
construct EGDD(3+(36¢-+15), 3; 12t+5, 36¢2+29t +6). We split 36£°+29t+6
parallel classes of RBIBD(36t + 15, 3,12t + 5) with each element of G;. In
addition, we take the blocks of a BIBD(3, 3,12t + 5).

Let n = 36t + 15 for some integer ¢t = 1 (mod 2). In this case, we need
to construct EGDD(3 + (36t + 15), 3; 24t + 10, 72t? + 58t + 12). We split
36t + 29t + 6 parallel classes of RBIBD(36t + 15, 3,24t + 10) with each
element of G;. In addition, we take the blocks of a BIBD(3, 3, 24¢ + 10).
Let n = 12t + 4 for some integer ¢. In this case, we need to construct
EGDD(3 + (12t + 4), 3; 48t + 16,48t2 + 28t + 6). We split 8t 4 2t 3-
resolvable classes of 3-RBIBD(12t + 4, 3,48t + 12) with each element of
G1. We also take 16t + 4 one-factors of 4K9;44 with each element of G,
and 1 copy of K3 with each element of G5. In addition, we take the blocks
of a BIBD(3, 3, 36t + 12).

Let n = 12t + 5 for some integer ¢{. In this case, the required EGDD to
construct EGDD(3 + (12t + 5), 3; 144t + 60, 144t + 108t + 26). However,
since in this case A; = 4ning, such an EGDD has been proven to exist by
Theorem 3.1.

Let n = 72t + 6 for some integer ¢t. In this case, we need to construct
EGDD(3 + (72t + 6), 3; 48¢ + 4, 288¢2 + 44t + 2). We split 144¢2 + 22t + 1
parallel classes of RBIBD(72t + 6, 3,48t + 4) with each element of G,. In
addition, we take the blocks of a BIBD(3, 3,48t + 4).

Let n = 144¢ + 18 for some integer t. In this case, we need to construct
EGDD(3+ (144t +18),3; 72t +9, 8642 + 210t + 13). We split 432¢2 4 33t —2
parallel classes of RBIBD(144¢ + 18,3, 72t + 6) with each element of G;.
We also take 1 copy of Kj44¢418 With each element of G;. In addtion, we
take the blocks of a BIBD(3, 3, 72¢ + 9).

For the case of t = 0, n = 18, we need to construct EGDD(3 + 18, 3;9, 13).
We split 2 3-resolvable class of 3-RBIBD(18, 3, 6) with each element of G,.
We also take the blocks of a BIBD(3 + 18,3,1). In addition, we take the
blocks of a BIBD(3, 3, 8) and the blocks of a BIBD(18, 3, 2).

Let n = 144t + 66 for some integer t. In this case, we need to con-
struct EGDD(3 + (144t + 66), 3; 72t + 33,864t2 + 786t + 179). We split
432t + 321t + 57 parallel classes of RBIBD(144t + 66, 3, 72t + 30) with each
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element of G;. We also take 1 copy of Kj44:4.66 With each element of G} in
addition, we take the blocks of a BIBD(3, 3,72t + 33). _
Let n = 12t +6 for some integer ¢t = 7,11 (mod 12). In this case, we need to

construct EGDD(3+ (12t +6), 3; 12t +6, 12t2+ 112+ 3). We split L‘z"'zli'ﬁ
parallel classes of RBIBD(12¢ + 6, 3,12t + 6) with each element of G;. In
addition, we take the blocks of a BIBD(3, 3,12¢ + 6).

Let n = 12t + 6 for some integer t = 2,4 (mod 6). In this case, we need
to construct EGDD(3 + (12t + 6), 3; 24t + 12,24¢2 + 22t + 6). We split
12t2 + 11t + 3 parallel classes of RBIBD(12t + 6, 3, 24t + 12) with each ele-
ment of G;. In addition, we take the blocks of a BIBD(3, 3,24t + 12).

Let n = 72t + 42 for some integer ¢t = 0 (mod 2). In this case, we need to
construct EGDD(3 + (72t + 42), 3; 24t + 14, 144t + 166t + 48). We split
72t2 + 83t + 24 parallel classes of RBIBD(72¢ + 42, 3,24t + 14) with each
element of G;. In addition, we take the blocks of a BIBD{3, 3, 24t + 14).
Let n = 72t + 42 for some integer ¢ = 1 (mod 2). In this case, we need to
construct EGDD(3+ (72t +42), 3; 12t + 7, 72¢2 + 83t +24). We split 21 412
parallel classes of RBIBD(72¢ + 42, 3,9t + 7) with each element of G,. We
also take ¢ copies of K72¢442 With each element of G;. In addition, we take
the blocks of a BIBD(3, 3,12t + 7).

Let n = 12t + 7 for some integer ¢t = 0 (mod 2). In this case, we need to
construct EGDD(3 + (12t + 7), 3; 12t + 7,12t + 13t + 4). We split i‘%s—‘
3-resolvable classes of 3-RBIBD(12t +7, 3, 12t 4- 6) with each element of G;.
We also take 2¢ + 1 2-factors of Kg:47 With each element of G, and 1 copy
of K3 with each element of G.

Let n = 12t + 7 for some integer ¢t = 1 (mod 2). In this case, we need to
construct EGDD(3 + (12t + 7), 3; 24t + 14, 24t + 26t + 8). We split 4t2 + 3t
3-resolvable classes of 3-RBIBD(12t + 7,3, 24t + 12) with each element of
G,. We also take 4t + 2 2-factors of 2Kj9¢47 with each element of G; and
2 copies of K3 with each element of G.

Let n = 12¢ + 8 for some integer t. In this case, the required EGDD to
construct is EGDD(3 + (12t + 8), 3; 144t + 96, 144¢2 + 180t + 62). However,
since in this case, A\; = 4n1n2, such an EGDD has been proven to exists by
Theorem 3.1. )

Let n = 12t + 9 for some integer ¢ = 0,1 (mod 3). In this case, we need
to construct EGDD(3 + (12t + 9), 3; 48t + 36,48t + 68t + 26). We split
24t? + 34t + 13 parallel classes of RBIBD(12t + 9, 3, 48t + 36) with each
element of G;. In addition, we take the blocks of a BIBD(3, 3, 48t + 36).
Let n = 36t + 33 for some integer t. In this case, we need to construct
EGDD(3+(36t+33), 3; 48t +44, 144t2+260t+118). We split 72t +130t+59
parallel classes of RBIBD(36t + 33, 3, 48t + 44) with each element of G;. In
addition, we take the blocks of a BIBD(3, 3, 48t + 44).

Let n = 12t 4 10 for some integer ¢ = 0 (mod 4). In this case, we need to
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construct EGDD(3+ (12t +10), 3; 12¢ + 10, 122 + 19¢ + 8). We split 4%t=2
3-resolvable classes of 3-RBIBD(12t + 10, 3,12t + 6) with each element of
G). We also take 16t + 12 one-factors of 4Kj94410 with each element of
G, and 1 copy of K3 with each element of G5. For the case of t = 0,
n = 10. In this case, we need to construct EGDD(3 + 10, 3; 10, 8). We split
1 3-resolvable class of 3-RBIBD(10, 3,6) with each element of G;. We also
use one copy of K3 with each element of G3. In addition, we use the blocks
of a BIBD(10, 3, 4).

Let n = 48t + 34 for some integer ¢. In this case, we need to construct
EGDD(3 + (48t + 34), 3; 24t + 17,96t2 + 134t + 47). We split 16t +22t + 7
3-resolvable classes of 3-RBIBD(48t + 34, 3,18t + 12) with each element
of G;. We also take the blocks of a BIBD(3 + (48t + 34),3,2¢ + 5). In
addition, we use the blocks of a BIBD(3, 3,22t + 12) and the blocks of a
BIBD(48t + 34, 3, 4¢).

Let n = 12t + 10 for some integer t = 1 (mod 2). In this case, we need
to construct EGDD(3 + (12t + 10), 3; 24t + 20, 24t% + 38t + 16). We split
4t2 + 5t + 1 3-resolvable classes of 3-RBIBD(12¢ + 10, 3, 24t + 18) with each
element of G;. We also take 8t + 6 one-factors of 2K9,410 With each ele-
ment of G; and 2 copies of K3 with each element of Gs.

Let n = 12t + 11 for some integer t = 0 (mod 2). In this case, we need
to construct EGDD(3 + (12t + 11), 3; 72t + 66, 72t + 126t + 58). We split
12t% + 21t + 9 3-resolvable classes of a 3-RBIBD(12t + 11,3, 72t + 66). We
also use 2 copies of K3 with each element of G5. In addition, we take the
blocks of a BIBD(3, 3,48t + 44).

Let n = 12t + 11 for some integer t = 1 (mod 2). In this case, we need
to construct EGDD(3 + (12t + 11), 3; 36t + 33, 36t> + 63t + 29). We split
L‘z"‘f—“ﬁ 3-resolvable classes of a 3-RBIBD(12t + 11, 3, 36t + 30). We also
use 1 copy of K3 with each element of G5. In addition, we take the blocks
of a BIBD(3, 3, 24t + 22) and the blocks of a BIBD(12¢ + 11, 3,3).

9 EGDD(4 +n,3; A1, A2)

In this section, we assume G; = {a,b,c,d} and G, = {1,...,ny = n}.
In addition, when we split some blocks of a BIBD, it is assumed that the
remaining triples of the BIBD are used for (0, 3) blocks.

Lemma 9.1. Necessary conditions are sufficient for an EGDD(4+4n, 3; A1, A2)
for some number n =0 (mod 4).

Proof. We need to consider many cases as the minimum ),’s depend on
modulus 24 arithmetic.

Case n =0 (mod 8)

Let n = 24t for some integer t. In this case, we need to construct EGDD(4+
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(24t), 3; 32t, 48t% — 2t + 1). We use 24t one-factors of 8K, on Gy, one with
each of the elements of G5 and 2t copies of K24; on G with each element
of G;. In addition, we take the blocks of a BIBD(24t, 3, 24t) and the blocks
of a BIBD(4, 3, 24t).

Let n = 4t for some integer t = 2,4 (mod 6). We need to construct
EGDD(4 + (4t), 3;16t,3 + t(4t — 1)). We take one copy of K4 on G; with
each element of G2 and t copies of K4 on G2 with each element of G;.
In addition, we take the blocks of a BIBD(4,3,12¢) and the blocks of a
BIBD(4t, 3, 12t).

Case n =4 (mod 8)

Let n = 48t + 4 for some integer t. In this case, we need to construct
EGDD(4 + (48t + 4), 3; 8(12¢ + 1),288t2 + 42t + 3). We split 48t% + 7t 3-
resolvable classes of a 3-RBIBD(48t + 4, 3,96t) with each element of G,.
Also, we take one copy of K4 on G; with each element of G;. In ad-
dition, we take the blocks of a BIBD(48t + 4,3,8) and the blocks of a
BIBD(4, 3,48t + 4).

Let n = 96t + 12 for some integer ¢t. In this case, we need to construct
EGDD(4 + (96t + 12), 3; 4(8t + 1), 192t? + 46t + 3). We split 96t + 23t + 1
parallel classes of RBIBD(96t + 12, 3,4(8t + 1)) with each element of G;.
We also use 1 one-factor of 4(8¢t+1) K4 with each element of G to construct
the remaining (1, 2)-triples.

Let n = 48t + 20 for some integer t. In this case, we need to construct
EGDD(4 + (48t + 20),3;8(12t + 5),288t2 + 234t + 49). We split 12t + 5
3-resolvable classes of a 3-RBIBD(48t + 20, 3, 72t + 36) with each element
of G;. Also, we take 6t + 1 copies of Kyst420 With each element of G,. In
addition, we take the blocks of a BIBD(4, 3,8(12t + 5)).

Let n = 96t + 28 for some integer t. In this case, we need to construct
EGDD(4 + (96t + 28),3;2(24t + 7), 288t + 165t + 24). We split 14¢ + 4
3-resolvable classes of a 3-RBIBD(96t + 28,3,36t + 6) with each element
of G;. Also, we take 3t copies of Kogti28 With each element of Gyi. In
addition, we take the blocks of a BIBD(96t + 28, 3,8) and the blocks of a
BIBD(4, 3,2(24t + 7)).

Let n = 48t + 36 for some integer t. In this case, we need to construct
EGDD(4 + (48t + 36), 3; 8(4t + 3), 96¢2 + 142t + 53). We split 48t% + 71t +26
parallel classes of RBIBD(48t+ 36, 3, 8(4t+3)) with each element of G;. We
also take 1 one-factor of 4(4t + 3) K4 with each element of G. In addition,
we take the blocks of a BIBD(4, 3, 4(4t + 3)).

Let n = 96t + 44 for some integer t. In this case, we need to construct
EGDD(4 + (96t + 44), 3; 4(24t + 11), 576t + 522t + 119). We split 60t + 27
3-resolvable classes of a 3-RBIBD(96t +44, 3,4(18t+12)) with each element
of G,. Also, we take 6t — 1 copies of Kost+44 With each element of G;. In
addition, we take the blocks of a BIBD(4, 3,96t +44). For the case of t =0,
n = 44. In this case, we need to construct EGDD(4 + 44, 3;44,119). We
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split 5 3-resolvable classes of a 3-RBIBD(44, 3, 36) with each element of G,.
We also take a copy of K4 with each element of G5 and 2 copies of K44
with each element of G;.

Let n = 96t + 60 for some integer ¢. In this case, we need to construct
EGDD(4 + (96t + 60), 3;2(8t + 5),96t2 + 119t + 37). We split 26t + 16
3-resolvable classes of 3-RBIBD(96¢ + 60, 3,12t + 12) with each element
of G;. We also take t — 1 copies of Kggir60 on G2 with each element
of G1. In addition, we take the blocks of a BIBD(96t + 60, 3,2) and the
blocks of a BIBD(4, 3,16t + 10). For the case of t = 0, n = 60. Here, we
need to construct EGDD(4 + 60, 3;10,37). We split 18 parallel classes
of RBIBD(60, 3,6) with each element of G;. We take the blocks of a
BIBD(61,3,1) on i U G2 for each element i in G;. In addition, we take
the blocks of a BIBD(4, 3, 10).

Let n = 96t + 76 for some integer t. In this case, we need to construct
EGDD(4 + (96t + 76), 3; 4(24t + 19),576t2 + 906t + 357). We split 96¢2 +
151t + 59 3-resolvable classes of a 3-RBIBD(96t + 76, 3,4(24t + 18)) with
each element of G;. Also, we take 1 copy of K4 with each element of G,.
In addition, we take the blocks of a BIBD(96¢ + 76, 3, 4).

Let n = 96t 4+ 92 for some integer ¢. In this case, we need to construct
EGDD(4 + (96t + 92), 3; 2(24t + 23), 2882 + 549t + 262). We split 78t + 74
3-resolvable classes of a 3-RBIBD(96¢ 492, 3, 36t + 54) with each element of
G,. Also, we take 3t — 2 copies of Kge;192 With each element of G,. In addi-
tion, we take the blocks of a BIBD(4, 3,2(24¢ + 23)). For the case of t = 0,
n = 92. Here, we need to construct EGDD(4 + 92, 3; 46,262). We split
43 3-resolvable classes of 3-RBIBD(92, 3,42). We also take the blocks of a
BIBD(4 + 92, 3,4). In addition, we take the blocks of a BIBD(4, 3,42). O

Lemma 9.2. Necessary conditions are sufficient for the existence of an
EGDD(4 4+ n,3; A1, A) for all integers n =1 (mod 4).

Proof. To complete the proof, we need to consider many cases as the min-
imum A;’s depend on modulus 24 arithmetic.

Case n =1 (mod 8)

Let n = 8¢ + 1 for some integer ¢t = 0,2 (mod 3). In this case, we need to
construct EGDD(4 + (8t + 1), 3; 8(8t + 1), 4t(8t + 1) + 6). We take 2 copies
of K4 on G, with each element of G, and 2(8t + 1) copies of Kg;4; on G,
with G). In addition, we take the blocks of BIBD(4, 3,6(8¢ + 1)) and the
blocks of BIBD(8t + 1,3, 6(8t + 1)).

Let n = 24t + 9 for some integer ¢. In this case, we need to construct
EGDD(4 + (24t + 9), 3; 8(8¢ + 3), (8t + 3)(12t + 4) + 2). We split 1 parallel
class of RBIBD(24t + 9, 3, 4(8t + 3)) with each element in G, and we take
(8t + 3) copies of Ko4:4+9 with each element of G. In addition, we take the
blocks of BIBD(4, 3, 8(8t + 3)).

Case n =5 (mod 8)
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Let n = 48t + 5 for some integer ¢ = 1 (mod 2). In this case, we need to
construct EGDD(4+(48t+5), 3; 48¢+5, 1442 +27t+2). We split 5_%22_&_—_3
classes of 3-RBIBD(48t + 5, 3, 6(8t — 1)) with each element of G;. Also, we
take 2 copies of Kyg¢+5 with each element of G; and 1 copy of K4 with each
element of G2. In addition, we take the blocks of a BIBD(48t + 5, 3, 3).
Let n = 48t + 5 for some integer ¢ = 0 (mod 2). In this case, we need to
construct EGDD(4 + (48t + 5), 3; 2(48¢t + 5), 2(144¢2 + 27t + 2)). We split
48t? — 23t — 3 3-resolvable classes of a 3-RBIBD(48t + 5, 3, 12(8t — 1)) with
each element of G;. Also, we take 4 copies of Kyg:,5 with each element of
G, and 2 copies of K4 with each element of G;. In addition, we take the
blocks of a BIBD(48t + 5, 3, 6). However, for the case of ¢ = 0, one can note
that ng = n1 + 1 and thus an EGDD with np = 5 has been proven to exist.
Let n = 48t 4+ 13 for some integer ¢t. In this case, we need to construct
EGDD(4+ (48t +13), 3; 4(48¢t+13), 576t +300t +42). We split 96¢2+50t+-7
3-resolvable classes of 3-RBIBD(48t + 13, 3,48¢ + 18) with each element of
G,. In addition, we take the blocks of a BIBD(48¢t + 13,3, 144t + 34) and
the blocks of a BIBD(4, 3, 4(48t + 13)).

Let n = 48t + 21 for some integer ¢ = 0 (mod 2). In this case, we need to
construct EGDD(4 + (48t + 21),3; 16¢ + 7,48t% 4 41t +9). We split 214+2
parallel classes of RBIBD(48¢+21, 3, 12t +7) with each element of G;. Also,
we take 1 one-factor of (16t + 7)K4 with each element of G2 and t copies
of Ky4gi4+21 With each element of G;.

Let n = 48t + 21 for some integer t = 1 (mod 2). In this case, we need to
construct EGDD(4 + (48t + 21), 3; 2(16¢ + 7),2(48t2 + 41t + 9)). We split
21t + 8 parallel classes of RBIBD(48t + 21, 3,2(12t + 7)) with each element
of G1. Also, we take 2 one-factors of 2(16t +7)K4 with each element of G2
and 2t copies of Kygy401 with each element of G;.

Let n = 48t + 29 for some integer ¢. In this case, we need to construct
EGDD(4 + (48t + 29), 3; 4(48t + 29), 5762 + 684t + 206). We split 962 +
98t 4 25 3-resolvable classes of 3-RBIBD(48t + 29, 3,48¢ + 24) with each
element of G;. We also take 2 copies of Kyst4+29 on G2 with each element
of G;. In addition, we take the blocks of a BIBD (48t + 29, 3, 144t 4 84) and
the blocks of a BIBD(4, 3, 4(48t + 29).

Let n = 48t + 37 for some integer t = 1 (mod 2). In this case, we need to
construct EGDD(4 + (48t + 37), 3; 48t + 37, 144t% + 219¢ + 84). We split
5—‘;—3 classes of a 3-RBIBD(48t + 37, 3,36t + 24) with each element of G;.
Also, we take 3t 4+ 2 copies of K4g:4+37 on G2 with each element of G; and 1
copy of K4 on G, with each element of G3. In addition, we take the blocks
of a BIBD(48t + 37,3, 5).

Let n = 48t + 37 for some integer t = 0 (mod 2). In this case, we need to
construct EGDD(4+ (48t +37), 3; 2(48t+37),2(144t2+219t +84)). We split
5t + 3 3-resolvable classes of a 3-RBIBD(48t + 37, 3,2(36t + 24)) with each
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element of G;. Also, we take 2(3t + 2) copies of Kygt+37 on G, with each
element of G;. In addition, we take the blocks of a BIBD(48t + 37, 3, 10)
on G, and a BIBD(4, 3, 2(48t + 37)).

Let n = 48t + 45 for some integer ¢. In this case, we need to construct
EGDD(4 + (48t + 45), 3; 4(16¢t + 15), 2(96t2 + 178¢ + 83)). We split 96¢% +
178t 4+ 83 classes of RBIBD(48t + 45, 3, 4(16t + 5)) with each element of G,.

In addition, we take the blocks of a BIBD(4, 3, 4(16t + 15)).
a

Lemma 9.3. Necessary conditions are sufficient for the existence of an
EGDD(4 + n, 3; A1, A2) for integers n =2 (mod 4).

Proof. There are two cases:

(i) n = 4t + 2 for t = 0,2 (mod 3): In this case, we need to construct
EGDD(4+ (4t +2),3;16(2t+1), (2t +1)(4t+1) +6). We take 2 copies
of K4 on Gy with each element of G, and (2t + 1) copies of K42
on G, with each element in G;. In addition, we take the blocks of
BIBD(4t + 2,3,12(2t + 1)) and the blocks of BIBD(4, 3,12(2¢ + 1)).

(ii) n = 12t + 6 for some integer ¢: In this case, we need to construct
EGDD(4 + (12t + 6), 3; 16(2t + 1), (2t + 1)(12¢ + 5) + 2). We split 1
parallel class of RBIBD(12t + 6, 3,12(2t + 1)) with each element in
G). We also take (2t + 1) copies of Kjo¢4+6 on G with each element
of G;. In addition, we take the bhlocks of BIBD(4, 3, 16(2¢t + 1)).

O

Lemma 9.4. Necessary conditions are sufficient for the existence of an
EGDD(4 4+ n,3; M1, Ag) for integers n =3 (mod 4).

Proof. There are two cases:

(i) n = 12t + 3 for some integer ¢: In this case, we need to construct
EGDD(4 + (12t + 3),3;16(4¢ + 1), (4¢ + 1)(12t + 2) + 4). We split 2
parallel classes of RBIBD(12¢ + 3, 3,2) with each element of G;. We
also take (4t + 1) copies of Kjo¢4+3 on Gy with each element in G;. In
addition, we take the blocks of BIBD(4, 3,16(4t + 1)) and the blocks
of BIBD(12¢ + 3, 3, 48¢ + 10).

(ii) n =4t + 3 for t = 1,2 (mod 3): In this case, we need to construct
EGDD(4 + (4t + 3), 3; 16(4t + 3), (4t 4 3){4t +2) + 12). However, since
in this case A} = 4nny, this EGDD has been proven to exist.

O

As an aside, we have
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Theorem 9.5. Necessary conditions are sufficient for the existence of a
GDD(ny +n?,3; A1, A2) where Ay =n?, A =n} —1 foralln, >2.

Proof. Suppose we have two groups, G1 = {aj,a2,...,an,} and Gy =
{1,...,n?}. Then, if we use a K,, on G; with each element of G2 and
ny copies of K,z on G with each element of Gy, we get an EGDD(n; +

2 3.
n?,3;n?,n} -1). m]

10 EGDD(’I’Ll + ng, 3; A1, )\2), ny +ng < 20
10.1 EGDD(5 + n,3; A1, A2)

Now, we assume G = {a,b,c,d,e} and G2 = {1, ...,n2 = n}.
For EGDD(5 + 8,3; A1, A2), A1 = %g-/\z. Hence, for some integer t > 1,
A1 = 40t and Ay = 19¢. In order for an EGDD(5 + 8, 3; 40¢,19t) to exist,
t =0 (mod 2). We use the blocks of BIBD(13, 3, 38), BIBD(5, 3, 42), and
BIBD(8, 3,42).
For EGDD(5 + 9,3; A\, A2), A = %%/\2. Hence, for some integer t > 1,
Ay = 45t and Ay = 23t. In order for an EGDD(5 + 9, 3; 45¢, 23t) to exist,
t = 0 (mod 2). We use 23 parallel classes of RBIBD(9, 3,6) with each
element of G,. In addition, we use the blocks of a BIBD (5,3,90) on G,
and the blocks of a BIBD(9, 3,84) on Ga.
For EGDD(5 + 10,3; A1, A2), Ay = ;. Hence, for some integer t > 1,
A1 = 20t and A2 = 11t. In order for an EGDD(5 + 10, 3; 20t, 11t) to exist,
t =0 (mod 2). We use 1 copy of K5 on G, with each element of G2 and
2 copies of Ko on G5 with each element of G;. In addition, we use the
blocks of a BIBD(5, 3, 30) on G and the blocks of a BIBD(10, 3, 30) on Ga.
For EGDD(5 + 11, 3; A1, A2), A1 = %/\2. Hence, for some integer t > 1,
A1 = 22t and A2 = 13¢. In order for an EGDD(5 + 11, 3;22¢, 13%) to exist,
t =0 (mod 2). We use 4 copies of K5 on G; with each element of G2 and 1
copy of K1, on G, with each element of G;. In addition, we use the blocks
of a BIBD(11, 3,39) on Ga.
For EGDD(5 + 12,3; A1, A2), A\ = :1’—8/\2. Hence, for some integer ¢ > 1,
A1 = 30t and Ay = 19¢. In order for an EGDD(5 + 12, 3; 30t, 19¢) to exist,
t =0 (mod 2). We use 4 copies of K5 on G; with each element of G2 and
2 copies of K13 on Gy with each element of G;. In addition, we use the
blocks of a BIBD(5, 3,12) on G and the blocks of a BIBD(12, 3,50) on Ga.
For EGDD(5 + 13,3; A1, A2), A\ = %Ag. Hence, for some integer ¢t > 1,
A1 = 65t and Ay = 44t. We use 2 copies of K5 on G; with each element of
G3 and 3 copies of K3 on G2 with each element of G;. In addition, we use
the blocks of a BIBD(5, 3, 39) on G; and the blocks of a BIBD(13, 3,50) on
Gs.
From Corollary 4.2, EGDD(5 + 14, 3; 280¢t, 202t) exists.
For EGDD(5 + 15,3; A1, Ag), A\; = %)\2. Hence, for some integer ¢t > 1,
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A1 = 30t and Ay = 23¢. In order for an EGDD(5 + 15, 3; 30t, 23t) to exist,
t =0 (mod 2). We use 1 copy of K5 on G; with each element of G2 and
3 copies of K5 on G5 with each element of G;. In addition, we use the
blocks of a BIBD(5, 4, 45) on G and the blocks of a BIBD(15, 4, 45) on G».

10.2 EGDD(6 + n, 3; /\1, )\2)

Now, we assume G; = {a,b,¢,d,¢, f} and G = {1,...,n2 = n}.
For EGDD(6 + 9,3; A1, A2), A\ = :15—3/\2. Hence, for some integer ¢t > 1,
A1 = 36t and A = 17¢. In order for an EGDD(6 + 9, 3; 36¢,17t) to exist,
t =0 (mod 2). We split 17 paralle] classes from the RBIBD(9, 3,6) with
each element of G;. In addition, we use the blocks of a BIBD(6, 3,72) on
G, and the blocks of a BIBD(9, 3,66) on G,.
For EGDD(6 + 10,3; A1, A2), A1 = 2X;. Hence, for some integer ¢ > 1,
A; =2t and Ay =t. We use t one-factors of 2t K on G; with each element
of Go. In addition, we use a BIBD(10, 3, 2t).
For EGDD(6 + 11, 3; A1, A2), Ay = %/\2. Hence, for some integer ¢t > 1,
A1 = 66t and Ay = 35¢. In order for an EGDD(6 + 11, 3; 66t, 35t) to exist,
t =0 (mod 2). We split 10 3-resolvable classes from the 3-RBIBD(11, 3, 6)
with each element of G; and use 1 copy of K;; on G5 with each element of
G). In addition, we use the blocks of a BIBD(8, 3,132) and the blocks of a
BIBD(11, 3,120) on Gs.
For EGDD(6 + 12,3; A1, A2), A = 1—;’)\2. Hence, for some integer ¢t > 1,
A1 = 16t and X3 = 9t. We split 2 parallel classes from RBIBD(12,3,2)
with each element of G; and use 1 copy of Kg on G; with each element of
G». In addition, we use the blocks of a BIBD(6,3,4) on G, and the blocks
of a BIBD(12, 3,14) on Gs.
For EGDD(6 + 13,3; A1, A2), A1 = 32),. Hence, for some integer t > 1,
A1 = 52t and Ay = 31t. In order for an EGDD(6 + 13, 3;52¢, 31¢) to exist,
t =0 (mod 2). We split 7 3-resolvable classes from the 3-RBIBD(13, 3, 6)
with each element of G; and use 4 copies of K¢ on G; with each element
of G2. In addition, we use the blocks of a BIBD(13,3,98) on G and the
blocks of a BIBD(G6, 3,52) on G,.
For EGDD(6+14, 3; A1, A2), Ay = %)\2. Hence, for some integert > 1, A\; =
84t and A; = 53t. We split 8 3-resolvable classes from the 3-RBIBD(14, 3, 6)
with each element of G; and 1 copy of K on G; with each element of G,.
In addition, we use the blocks of a BIBD(6,3,70) on G; and the blocks of
a BIBD(14,3,78) on G,.

10.3 EGDD(7 +n,3; A1, A2)

Now, we assume G, = {a,b,c,d,e, f,g9} and G; = {1, ...,n2 = n}.
For EGDD(7 + 10, 3; M1, A2), A\ = ;—g/\g. Hence, for some integer t > 1,
A1 = 70t and Ay = 33¢t. In order for an EGDD(7 + 10, 3; 70t, 33t) to exist,
t =0 (mod 2). We use 11 copies of K7 on G with each element of G,. In
addition, we use the blocks of a BIBD(10, 3,140) on G and the blocks of



a BIBD(7,3,30) on G;.

For EGDD(7 + 11,3; A1, A2), A = —;%)\2. Hence, for some integer ¢t > 1,
A1 = 77t and Ay = 38t. We use 3 copies of K7 on G; with each element of
G, and 2 copies of K1; on G with each element of G;. In addition, we use
the blocks of a BIBD(7, 3,44) on G, and the blocks of a BIBD(11, 3,63) on
Gs.

For EGDD(7 + 12,3; A1, A2), A1 = %/\g. Hence, for some integer t > 1,
A = 56t and Ay = 29¢. In order for an EGDD(7 + 12, 3; 56¢, 29t) to exist,
t =0 (mod 2). We use 6 copies of K7 on G, with each element of G2 and
2 copies of K12 on G2 with each element of G;. In addition, we use the
blocks of a BIBD(7, 3,40) on G, and the blocks of a BIBD(12, 3,98) on G».
From Corollary 4.2, EGDD(7 + 13, 3; 364t, 198t) exists.

10.4 EGDD(8 + n,3; A1, A2)

Now, we assume G; = {a,b,c,d,e, f,g,h} and G2 = {1,...,n2 = n}.
From Corollary 4.2, EGDD(8 + 11, 3; 352t, 166t) exists.
For EGDD(8 + 12,3; A1, A2), A1 = %g/\z. Hence, for some integer ¢ > 1,
A1 = 96t and Ay = 47t. We use 2 copies of Kg on G; with each element of
G5 and 3 copies of K1 on G with each element of G;. In addition, we use
the blocks of a BIBD(8, 3,72) on G, and the blocks of a BIBD(12,3,72) on
Gs.

11 Summary
Theorem 11.1. The necessary conditions are sufficient for the existence
of EGDD(n; + na, 3; A1, A2) when ny + ng < 20,

We have also proved:

Theorem 11.2. The necessary conditions are sufficient for the existence
of EGDD(ny + ng, 3; A1, Ag) forny =ng — 1,2 —2,1,3,4.

Many GDDs can be constructed by taking appropriate BIBDs on G
and G away from the EGDD constructions. A small sample of such GDDs,
which are not EGDDs, are shown in the following table, assuming an integer
t>1:

41



ny | A Ag Comment

8 | 38t | 38t | Section 10.1
9 6t | 46t | Section 10.1
10 | 10t | 22t | Section 10.1
12 | 48t | 38t | Section 10.1
13 | 26t | 44t | Section 10.1
15 | 15t | 46t | Section 10.1
9 6t | 34t | Section 10.2
11| 12t [ 70t | Section 10.2
12 ] 12t | 9t | Section 10.2
13 | 52t | 62t | Section 10.2
14 | 18t | 53t | Section 10.2
10 | 110t | 66¢ | Section 10.3
11 | 35t | 38t | Section 10.3
12 | 72t | 58t | Section 10.3
12 | 24t | 47t | Section 10.4
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