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Abstract

For a connected graph G = (V, E), its inverse degree is defined as
Yovev lei' Using an upper bound for the inverse degree of a graph
obtained by Cioaba in [6], In this note, we present new sufficient
conditions for some Hamiltonian properties of graphs.
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1. Introduction

We consider only finite undirected graphs without loops or multiple
edges. Notation and terminology not defined here follow that in [4]. For
a graph G = (V, E), we use n and e to denote its order [V| and size |E|,
respectively. We use § = d; < dp < --- € d, = A to denote the degree
sequence of G. If G is connected, its inverse degree is defined as ) .y, 3{1;5.
A cycle C in a graph G is called a Hamiltonian cycle of G if C contains
all the vertices of G. A graph G is called Hamiltonian if G has a Hamil-
tonian cycle. A path P in a graph G is called a Hamiltonian path of G if
P contains all the vertices of G. A graph G is called traceable if G has a
Hamiltonian path. A graph G is called Hamilton - connected if for each pair
of vertices in G there is a Hamiltonian path between them. A graph G is
called r - Hamiltonain (where r is a nonnegative integer) if for each subset
X of the vertex set of G with |X| < r the induced subgraph G[V(G) — X]
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is Hamiltonain (see [5] and [3]). Obviously, every 0 - Hamiltonian graph
is Hamiltonian. A graph G is called r - edge - Hamiltonain (where r is
a nonnegative integer) if any collection of vertex - disjoint paths with at
most r edges is contained in a Hamiltonian cycle of G (see Page 204 in
[2]). Obviously, every 0 - edge - Hamiltonian graph is Hamiltonian. The
smallest number of pairwise disjoint paths covering all the vertices of G is
denoted by pc(G) (see [3]). A graph G is called = - piece - traceable (where
r is a positive integer) if pc(G) < r, Obviously, every 1 - piece - traceable
graph is traceable. A graph G of order n is called pancyclic if G contains
cycles of lengths from 3 to n.

Using an upper bound for the inverse degree of a graph obtained by
Cioaba in [6], Li presented sufficient conditions for Hamiltonicity, traceabil-
ity, Hamilton - connectivity, and k - connectivity of graphs in [7]. Using the
ideas similar to the ones in (7], we in this note present sufficient conditions
for the Hamiltonicity of bipartite graphs, the r - Hamiltonicity, the 7 - edge
- Hamiltonicity, the r - piece - traceability, and the pancycility of graphs.
The main results are as follows.

Theorem 1. Let G = (X,Y; E), where X = {z1,%2,...,2:}, Y = {y1,¥2, -
Yn}, and n > 2, be a connected bipartite graph. If
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then G is Hamiltonian.

Theorem 2. Let G be a connected graph of order n > 3 and size e.
Suppose 7 is a nonnegative integer such that r <n — 3. If
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then G is 7 - Hamiltonian.

Theorem 3. Let G be a connected graph of order n > 3 and size e.
Suppose r is a nonnegative integer such that r < n —3. If
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then G is r - edge - Hamiltonian.
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Theorem 4. Let G be a connected graph of order n and size e. Suppose
r is a positive integer such that » <n —3. If

n? 1 1 2e n+r—1 1 1
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then G is r - piece - traceable.

Theorem 5. Let G be a connected graph of order n > 3 and size e. If

w (Lol -2 s L2
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then G is pancyclic or bipartite.

Plugging in 7 = 0 in Theorems 2 and 3, they become Theorem 2.1 in {7].
Thus Theorems 2 and 3 are generalizations of Theorem 2.1 in [7]. Plugging
in 7 = 1 in Theorem 4, it becomes Theorem 2.2 in (7]. Thus Theorem 4 is

a generalization of Theorem 2.2 in [7].
2. Lemmas

In order to prove the theorems above, we need the following results as
our lemmas. Lemma 1 below is Corollary 5 on Page 210 in {2].

Lemma 1. Let G = (X,Y;E) be a bipartite graph such that X =
{x1)$21'"axn}1 Y = {yl’yZV"ayn}? n 2 2! d(zl) S d(mz) S S d(xﬂ)’
and d(y1) < d(yz) < -+~ < d(ya). If

d(zk) Sk <n=>d(yn-k) 2n—k+1,
then G is Hamiltonian.

Lemma 2 below is Corollary 1.2 on Page 166 in [5].

Lemma 2. Let G be a graph of order n > 3 with degree sequence d; <
dy < -.- < d,. Suppose r is a nonnegative integer such that r <n - 3. If
for each k with1 <k < (n—1)/2

de <k+r=dp_g-_r2n—k,

then G is » - Hamiltonian.

Lemma 3 below is Theorem 8 on Page 204 in (2.
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Lemma 3. Let G be a graph of order n > 3 with degree sequence d; <
dy < --. < dy. Suppose r is a nonnegative integer such that r <n — 3. If
for each k withr+1<k<(n+7)/2

deer Lhk=dpnr2n—-k+r,

then G is r - edge - Hamiltonian.
Lemma 4 below is Theorem 5.1 on Pages 119 and 121 in [3].

Lemma 4. Let G be a graph of order n with degree sequence d; < dp <
-+ £ dn. Suppose r is a positive integer. If for each k with1 < k < (n—r)/2

epr <k=>dpr2n—k-r,

then G is r - piece - traceable.
Lemma 5 below is Theorem 1 on Pages 112 in [1].

Lemma 5. Let G be a graph of order n > 3 with degree sequence d; <
dy <-.-<d,. If for each k with 1 £ k < n/2

di Lk=d,_r>n-—k,
then G is pancyclic or bipartite.

Lemma 6 is from Theorem 9 on Page 1963 in [6].

Lemma 6. Let G be a connected graph of order n and size e. Then

Zd(v) =% (%_%) ("“1_%)

3. Proofs

Proof of Theorem 1. Let G be a graph satisfying the conditions in
Theorem 1. Suppose that G is not Hamiltonian. Without loss of generality,
we assume that d(z1) < d(z2) < -+ < d(z,) and d(y1) < d(y) < -+ <
d(yn). Then, from Lemma 1, there exists an integer k such that d(zx) <
k < n and d(yn—k) £ n — k. Obviously, & > 1. Therefore, from Lemma 6,

we have that on? L !
n e
7*(31) (2n-1-7)
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a contradiction. This completes the proof of Theorem 1. QED

+

Proof of Theorem 2. Let G be a graph satisfying the conditions in
Theorem 2. Suppose that G is not r - Hamiltonian. Then, from Lemma
2, there exists an integer k such that 1 <k < (n—7)/2, dx < k+r, and
dpn_g—r <n—k —1. Therefore, from Lemma 6, we have that

n? 1 1 2e 1
2t (6-3) (-5 S

SRSV PR SHIPUOFINR NI, S
dy di  dra dpnk—r Gnok—r1 dn

k n—-2k—-r k+'r> k n—-2k—-r k+r

> —
e AL NI Nl Sl ey S
1 1 147
>
“1l4r + n—2 + A
a contradiction. This completes the proof of Theorem 2. QED

Proof of Theorem 3. Let G be a graph satisfying the conditions in
Theorem 3. Suppose that G is not r - edge - Hamiltonian. Then, from
Lemma 3, there exists an integer k such that 7 +1 < k < (n +1r)/2,
dr_r < k,and dn_r < n—k+r—1. Therefore, from Lemma 6, we have

that )
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a contradiction. This completes the proof of Theorem 3. QED

Proof of Theorem 4. Let G be a graph satisfying the conditions in
Theorem 4. Suppose that G is not r - piece - traceable. Then, from Lemma
4, there exists an integer k such that such that 1 <k < (n—r)/2, dg4r < k,
and d,,_x < n—k —r — 1. Therefore, from Lemma 6, we have that
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a contradiction. This completes the proof of Theorem 4. QED

Proof of Theorem 5. Let G be a graph satisfying the conditions in
Theorem 5. Suppose that G is neither pancyclic nor bipartite. Then, from
Lemma 5, there exists an integer k such that 1 < k < %, de < k, and
dn_r < n—k —1. Therefore, from Lemma 6, we have that

n? 1 1 2e 1
%t (-3) (%) S

1,1 11
n—k dn—k+1 dn

d
k_ n-2 _k
k

+n—k—1+z

1 + 1
= n—-2 A’
a contradiction. This completes the proof of Theorem 5. QED
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