Decompositions of AK,, into LW and OW Graphs

Derek W. Hein

ABSTRACT. In this paper, we identify LW and OW graphs, find the
minimum A for decomposition of AK, into these graphs, and show
that for all viable values of A, the necessary conditions are sufficient
for LW- and OW-decompositions using cyclic decompeositions from
base graphs.

1. Introduction

Decompositions of graphs into subgraphs is a well-known classi-
cal problem; for an excellent survey on graph decompositions, see [1].
Recently, several people including Chan [4], El-Zanati, Lapchinda,
Tangsupphathawat and Wannasit (5], Hein [6, 7], Hurd {11}, Sar-
vate [8, 9, 10}, Winter (13, 14] and Zhang [15] have worked on
decomposing AK,, into multigraphs. In fact, similar decompositions
have been attempted earlier in various papers; see [12]. Ternary
designs also provide such decompositions; see {2, 3].

2. Preliminaries

For simplicity of notation, we use the “alphabetic labeling” used
in [6, 7, 8, 9, 10, 13, 14, 15]:

DEFINITION 1. An LW graph (denoted [a,b,c]) on V = {a,b,c}
is a graph with 5 edges where the frequencies of edges {a, b} and {b,c}
are 1 and 4 (respectively).
a b g c
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DEFINITION 2. An OW graph (denoted ||a,b,c||) on V = {a,b,c}
is a graph with 6 edges where the frequencies of edges {a, b} and {b, c}
are 2 and 4 (respectively). X
a é C

DEFINITION 3. For positive integers n > 3 and A > 4, an LW-
decomposition of AK,, (denoted LW(n, X)) is a collection of LW graphs
such that the multiunion of their edge sets contains A copies of all
edges in a K,,.

DEFINITION 4. For positive integers n > 3 and A > 4, an OW-
decomposition of AK, (denoted OW(n,]))) is a collection of OW
graphs such that the multiunion of their edge sets contains A\ copies
of all edges in a K,,.

One of the powerful techniques to construct combinatorial de-
signs is based on difference sets and difference families; see [16] for
details. This technique is modified to achieve our decompositions of
AK, — in general, we exhibit the base graphs, which can be devel-
oped to obtain the decomposition.

EXAMPLE 1. Considering the set of points to be V = Z3, the
LW base graph [0,1,2] (when developed modulo 3) constitutes an

LW(3, 5).
0 1 é 2
multmnum
1 2 é 0
dt:wmp(nuwn
2 [ é 1

EXAMPLE 2. Considering the set of pomts to be V = Zg, the
OW base graph ||0,1,2|| (when developed modulo 3) constitutes an

OW(3, 6).
0 1 é 2
multumwn
1 2 é 0
dewmpoattum
2 [ é 1

We note that special attention is needed with the base graphs
containing the “dummy element” oco; the non-oo elements are devel-
oped, while co is simply rewritten each time.



EXAMPLE 3. Considering the set of points to be V = Z3 U {o0},
the LW base graphs [0,1,00] and [00,0,1] (when developed modulo
3) constitute an LW(4,5).

0 lgoo oo Ogl

multiunion

&~ ™
decomposition

EXAMPLE 4. Considering the set of points to be V = Z3 U {00},
the OW base graphs |0, 1, 0of| and ||0o,0,1|| (when developed modulo
3) constitute an OW(4,6).

0 lgoo oo Oél
1 zgoo L) 1§2
2 ng o0 ‘Zéﬂ

multiunion

decomposition

3. LW-Decompositions

We first address the minimum values of A in an LW(n, A). Recall
that A > 4.

THEOREM 3.1. Let n > 3. The minimum values of A for which
an LW(n, \) ezists are A = 4 whenn = 0,1 (mod 5) and A = 5 when
n#0,1 (mod 5).

PROOF. Since there are -)‘l(—"z—"ﬁ edges in a AK,,, and 5 edges in
an LW graph, we must have that An(n — 1) = 0 (mod 10) (where
n > 3 and A > 4) for LW-decompositions. The result follows from
cases on n (mod 10). |

We are now in a position to prove the main results of the paper.
We first remark that an LW graph has 3 vertices; that is, we consider
n > 3. Also, necessarily A > 4. We note that we use difference sets
to achieve our decompositions of AK,. In general, we exhibit the
hase graphs, which can be developed (modulo either n or n — 1) to
obtain the decomposition. We also note that the frequency of the
edges is fixed by position, as per the LW graph.

THEOREM 3.2. The minimum number copies of K, (as given in
Theorem 3.1) can be decomposed into LW graphs.

65



PROOF. Let n > 3. We proceed by cases on n (mod 10).

If n = 10t (for ¢ > 1), we consider the set V as Z;g;—; U{oo}. The
number of graphs required for LW(10t, 4) is ﬂl—ot%ﬁﬂ—) = 4$(10t—1).
Thus, we need 4t base graphs (modulo 10t —1). Then, the differences
we must achieve (modulo 10t—1) are 1,2, ...,5t—1. For the first four
base graphs, use [1, 0, o0], [0,1, 5¢], [0,1,5¢t—1] and [0, 1, 5¢t—2]. We
also use the 4¢—4 base graphs [0, 2, 5t—2], [0, 2, 5¢t—3], [0, 2, 5t—4],
[0,2,5t—5],..., [0, t,2t+4], [0,t,2t+3], [0,t,2¢t+2] and [0, ¢,2¢t+1]
if necessary. Hence, in this case, LW(10¢, 4) exists.

If n =10t + 1 (for t > 1), we consider the set V' as Zjoz41-
The number of graphs required for LW(10¢ + 1,4) is ﬂ%—w =
4t(10t + 1). Thus, we need 4t base graphs (modulo 10t + 1). Ther,
the differences we must achieve (modulo 10t +1) are 1,2,...,5t. We
use the base graphs [0, 1,5t+1], [0, 1, 5¢], [0,1, 5¢—-1], [0, 1, 5t—2],
[0,2,5t-2], [0,2,5t—3], [0,2,5t—4], [0,2,5t-5],...,[0,t,2t+4],
[0,t,2¢t + 3], [0,¢,2t + 2] and [0,%,2t + 1]. Hence, in this case,
LW(10t + 1,4) exists.

If n =10¢+ 2 (for t > 1), we consider the set V' as Zjgi4+1 U {00}.
The number of graphs required for LW(10t + 2, 5) is m)é—m—tﬂ =
(5t + 1)(10¢ + 1). Thus, we need 5t + 1 base graphs (modulo 10t +
1). Then, the differences we must achieve (modulo 10t + 1) are
1,2,...,5t. For the first six base graphs, use [1,0,00], [00,0,1],
[0,2,4], [0,3,6], [0,4, 8] and [0,5,10]. We also use the 5t — 5 base
graphs [0,6,12], [0,7,14],..., [0, 5¢,10¢] if necessary. Hence, in this
case, LW(10t + 2, 5) exists.

If n = 10t + 3 (for t > 0), we consider the set V as Zjot4+3. The
number of graphs required for LW(10t+3, 5) is M%M = (5t+
1)(10t+3). Thus, we need 5t+1 base graphs (modulo 10¢+3). Then,
the differences we must achieve (modulo 10t + 3) are 1,2,...,5t+ 1.
We use the base graphs [0, 1, 5¢+2], [0, 2,5t+2], ..., [0, 5t+1, 5¢+2].
Hence, in this case, LW(10¢ + 3, 5) exists.

If n = 10t + 4 (for t > 0), we consider the set V as Zjgt43U {00}.
The number of graphs required for LW (10t +4,5) is 2(1—0‘-1'—41109@ =
(5t + 2)(10t + 3). Thus, we need 5t + 2 base graphs (modulo 10t +
3). Then, the differences we must achieve (modulo 10t + 3) are
1,2,...,5¢t + 1. For the first two base graphs, we use [1,0,00] and
[00,0,1]. We also use the 5t base graphs [0, 2,4], {0,3,6],..., [0, 5t+
1,10t + 2] if necessary. Hence, in this case, LW(10t + 4, 5) exists.
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If n =10t +5 (for t > 0), we consider the set V as Zjgt+4 U {00}.
The number of graphs required for LW(10t + 5, 4) is ﬂl—oi)—sm(lw =
(4t + 2)(10¢ + 4). Thus, we need 4t + 2 base graphs (modulo 10¢ +
4). Then, the differences we must achieve (modulo 10t + 4) are
1,2,...,5t + 2. For the first two base graphs, we use [5¢ + 2,0, 0o]
and [0, 5¢ + 2,10t 4+ 3]. We also use the 4t base graphs [0,1,5¢t +
11, [0,1,5¢], [0,1,5t — 1], [0,1,5¢t — 2], [0,2,5¢t — 2], [0,2,5t — 3],
[0,2,5t—4], [0,2,5t— 5], ..., [0,t,2t +4], [0,t,2t + 3], [0,t,2¢t +2]
and [0,t,2¢t + 1] if necessary. Hence, in this case, LW(10t + 5,4)
exists.

If n = 10t + 6 (for ¢ > 0), we consider the set V as Zjot+6. The
number of graphs required for LW (10t 46, 4) is 5&%% = (4t+
2)(10t+6). Thus, we need 4t+2 base graphs (modulo 10¢+6). Then,
the differences we must achieve (modulo 10t + 6) are 1,2, ...,5t + 3.
For the first two base graphs, we use [0, 5t + 3,10t + 5] and [0, 5 +
3,10t + 4]. We also use the 4t base graphs [0,1,5¢ + 1], [0, 1,5t],
[0,1,5¢t — 1], [0,1,5t — 2], [0,2,5t — 2], [0,2,5t — 3], [0,2,5¢t — 4],
[0,2,5t-5],...,[0,t,2t+4], [0,¢t,2t+3], [0,t,2t+2] and [0, ¢, 2t+1]
if necessary. Hence, in this case, LW(10t + 6, 4) exists.

If n = 10t + 7 (for t > 0), we consider the set V' as Zig+7. The
number of graphs required for LW(10t+7, 5) is 5(106+7)(10646) (5t+
3)(10t+7). Thus, we need 5t+3 base graphs (modulo 10¢+7). Then,
the differences we must achieve (modulo 10t +7) are 1,2, ...,5t + 3.
We use the base graphs [0, 1, 5t+4], [0, 2,5t+4],..., [0, 5t+3, 5t+4].
Hence, in this case, LW(10t + 7, 5) exists.

If n = 10t + 8 (for t > 0), we consider the set V' as Zg¢47U {00}
The number of graphs required for LW(10t + 8, 5) is ﬂl%‘%lo(_m_tiﬁ =
(5¢ + 4)(10t + 7). Thus, we need 5¢ + 4 base graphs (modulo 10t +
7). Then, the differences we must achieve (modulo 10f + 7) are
1,2,...,5t + 3. For the first four base graphs, we use [5¢ + 3,0, o]
[00,0,1] 0,1, 3] and [0, 2, 5]. We also use the 5¢ base graphs [0, 3, 7],
[0,4,9],...,[0,5¢ + 2,10t + 5] if necessary. Hence, in this case,
LW(10t + 8, 5) exists.

If n = 10t + 9 (for ¢t > 0), we consider the set V as Zjoi+9. The
number of graphs required for LW (10t +9, 5) is w%)ﬁ'ﬂ = (5t+
4)(10t+9). Thus, we need 5t+4 base graphs (modulo 10¢+9). Then,
the differences we must achieve (modulo 10t + 9) are 1,2, ...,5t +4.
We use the base graphs [0, 1, 5t+5], [0,2,5t+5],..., [0, 5t+4, 5t+5].
Hence, in this case, LW(10t + 9, 5) exists. [ ]
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We now address the sufficiency of existence of LW(n, A).

THEOREM 3.3. Let n > 3 and A > 4. For LW(n, )), the nec-
essary condition for n is that n = 0,1,5,6 (mod 10) when A # 0,5
(mod 10). There is no condition for n when A =0,5 (mod 10).

PROOF. Similar to the proof of Theorem 3.1, but by cases on A
(mod 10). |

LEMMA 3.1. There exists an LW(n,4) for the necessary n > 3.

PROOF. From Theorem 3.3, the necessary conditionisn =0, 1, 5,
6 (mod 10). In these cases, LW(n, 4) exists from Theorem 3.2. H

LEMMA 3.2. There exists an LW(n,5) for any n > 3.

ProOF. From Theorem 3.3, there is no condition for n. We
consider cases when n > 3 is odd or even.

If n=2t+1 (for t > 1), we consider the set V as Zg;;1. The
number of graphs required for LW (2¢ + 1, 5) is ﬁz—t%m =t(2t+1).
Thus, we need t base graphs (modulo 2t + 1). The differences we
must achieve (modulo 2t + 1) are 1,2,...,t. We use the base graphs
[0,1,t+1],...,[0,¢,t+1]. Hence, in this case, LW(2t + 1,5) exists.

If n = 2t (for t > 2), we consider the set V as Zg_; U {c0}. The
number of graphs required for LW(2t, 5) is i@f%t-—l) = t(2t — 1).
Thus, we need t base graphs (modulo 2¢ — 1). The differences we
must achieve (modulo 2t — 1) are 1,2,...,t — 1. For the first two
base graphs, we use [t — 1,0, 00] and [00,0,t — 1]. We also use the
t — 2 base graphs {0,1,t —1],...,[0,t —2,¢ — 1] if necessary. Hence,
in this case, LW(2t, 5) exists. [ ]

LEMMA 3.3. There does not exist an LW(n, 6).

PRroOF. The only edge frequencies in an LW graph are 1 and
4. The only way to write A = 6 as a sum of 1s and 4s (both) is
as 6 =441+ 1. In an LW(n,6), the number of times each edge
needs to occur with frequency 4 is always less than the number of
times it needs to occur with frequency 1. However, as there are equal
numbers of single edges and quadruple edges in an LW graph, such
a decomposition is not possible. [ ]

LEMMA 3.4. There does not ezist an LW(n, 7).

ProoF. The only edge frequencies in an LW graph are 1 and
4. The only way to write A = 7 as a sum of 1s and 4s (both) is as
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=4+1+4+1+1. In an LW(n,7), the number of times each edge
needs to occur with frequency 4 is always less than the number of
times it needs to occur with frequency 1. However, as there are equal
numbers of single edges and quadruple edges in an LW graph, such
a decomposition is not possible. |

LEMMA 3.5. There does not exist an LW(n, 11).

PRrRoOOF. The only edge frequencies in an LW graph are 1 and 4.
The only ways to write A = 11 as a sum of 1s and 4s (both) are as
11=4+4+14+1+1and11=4+1+...+1. In an LW(n, 11), the
number of times each edge needs to occur with frequency 4 is always
less than the number of times it needs to occur with frequency 1.
However, as there are equal numbers of single edges and quadruple
edges in an LW graph, such a decomposition is not possible. |

THEOREM 3.4. An LW(n, ) ezists for all X > 4 except A = 6
(according to Lemma 3.3), A = 7 (according to Lemma 3.4) and
A = 11 (according to Lemma 3.5), for corresponding necessary n > 3.

PROOF. We proceed by cases on A (mod 5).

For A =0 (mod 5) (so that A = 5t for ¢t > 1), by taking ¢ copies
of an LW(n, 5) (given in Lemma 3.2), we have an LW(n, 5¢).

For A=1 (mod 5) (so that A =5t+1 = 5(¢t — 3) + 16 for t > 3),
we first take 4 copies of an LW(n,4) (given in Lemma 3.1). (This
gives us A = 16 thus far.) We then adjoin this to ¢ — 3 copies of
an LW(n,5) (given in Lemma 3.2) if necessary. Hence, we have an
LW(n,5t + 1).

For A = 2 (mod 5) (so that A =5t +2 = 5(t — 2) + 12 for ¢ > 2),
we first take 3 copies of an LW(n,4) (given in Lemma 3.1). (This
gives us A = 12 thus far.) We then adjoin this to ¢ — 2 copies of
an LW(n,5) (given in Lemma 3.2) if necessary. Hence, we have an
LW(n, 5t + 2).

For A = 3 (mod 5) (so that A = 5¢t+3 = 5(t—1)+8fort > 1), we
first take 2 copies of an LW(n, 4) (given in Lemma 3.1). (This gives
us A = 8 thus far.) We then adjoin this to ¢ — 1 copies of an LW(n, 5)
(given in Lemma 3.2) if necessary. Hence, we have an LW(n, 5¢ + 3).

For A = 4 (mod 5) (so that A = 5t + 4 for t > 0), we first take
an LW(n,4) (given in Lemma 3.1). (This gives us A = 4 thus far.)
We then adjoin this to ¢ copies of an LW(n, 5) (given in Lemma 3.2)
if necessary. Hence, we have an LW(n, 5t + 4). [ ]
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4. OW-Decompositions

We first address the minimum values of A in an OW(n, ). Recall
that X > 4.

THEOREM 4.1. Let n > 3. The minimum values of A for whz'ch
an OW(n, ) ezists are A = 4 when n = 0,1 (mod 3) and A =
when n =2 (mod 3).

PROOF. Since there are M‘Z—-_—Q edges in a AK},, and 6 edges in
an OW graph, we must have that An(n — 1) = 0 (mod 12) (where
n > 3 and A > 4) for OW-decompositions. The result follows from
cases on n (mod 12). [

We are now in a position to prove the main results of the paper.
We first remark that an OW graph has 3 vertices; that is, we consider
n > 3. Also, necessarily A > 4. We note that we use difference sets
to achieve our decompositions of AK,. In general, we exhibit the
base graphs, which can be developed (modulo either n or n — 1) to
obtain the decomposition. We also note that the frequency of the
edges is fixed by position, as per the OW graph.

THEOREM 4.2. The minimum number copies of K, (as given in
Theorem 4.1) can be decomposed into OW graphs.

PROOF. Let n > 3. We proceed by cases on n (mod 12).

If n = 12t (for t > 1), we consider the set V as Z1:—1 U{oo}. The

number of graphs required for OW(12t, 4) is M = 4t(12t-1).
Thus, we need 4t base graphs (modulo 12¢—1). Then the differences

we must achieve (modulo 12t — 1) are 1,2,...,6t — 1. We use the
base graphs [|1,0, oo, [0, 1, 6¢]l, [10,2, 6], 0,2, 6¢~ 1], |0,3, 6¢ 1],
10,3,6¢ —2|l,..., 10,2t — 1,4¢ + 3|, [|0, 2¢ — 1, 4¢ + 2]|, ||0, 2¢, 4t + 2|

and ||0,2¢,4t + 1||. Hence, in this case, OW(12t,4) exists.

If n =12t +1 (for t > 1), we consider the set V as Zjosy;.
The number of graphs required for OW(12t + 1,4) is im—*iém =
4t(12t 4+ 1). Thus, we need 4t base graphs (modulo 12¢ + 1). Then,
the differences we must achieve (modulo 12t +1) are 1,2,...,6t. We
use the base graphs ||0, 1,6t + 1]|, ||0, 1, 6tf|, ||0, 2, 6¢||, ||0, 2, 6t =1,
”073’6t - llla "0’3a 6t — 2”3 ERE) ”Oa 26—1,4t + 3”a ”0, 2t—-1,4t+ 2”)
10, 2¢, 4t + 2|| and ||0, 2¢, 4t + 1]|. Hence, in this case, OW (12t + 1, 4)
exists.

If n =12t + 2 (for t > 1), we consider the set V as Zjg;41 U {o0}.

The number of graphs required for OW (12t + 2, 6) is M%%M =
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(6t + 1)(12¢ + 1). Thus, we need 6t + 1 base graphs (modulo 12t +
1). Then, the differences we must achieve (modulo 12t + 1) are
1,2,...,6t. For the first seven base graphs, use ||1,0, 0[], ||oo,0, 1|,
llo,2,6t+2]|, ||0, 3, 6¢+ 2|, {|0, 4, 6t + 2|, ||0, 5, 6t + 2|| and ||0,6, 6t +
2||. We also use the 6t — 6 base graphs [|0,7,6t + 2|, [|0,8, 6t +
2||,-..,]|0,6t,6t+2|| if necessary. Hence, in this case, OW (12t +2, 6)
exists.

If n = 12t + 3 (for t > 0), we consider the set V' as Z;g;12 U {00}
The number of graphs required for OW (12t +3,4) is é(_lﬁi%l?i?l =
(4t + 1)(12t + 2). Thus, we need 4t + 1 base graphs (modulo 12¢ +
2). Then, the differences we must achieve (modulo 12¢ + 2) are
1,2,...,6t + 1. For the first base graph, use ||6t + 1,0, co||. We also
use the 4t base graphs ||0,1,6¢ + 1], ||0,1,6¢|, ||0,2, 6|, {|0,2, 6t —
1,...,]0,2t—1,4t+3||, ||0,2t—1,4t+2[|, |0, 2¢, 4t +2|}, ||0, 2¢, 4t +1||
if necessary. Hence, in this case, OW(12¢t + 3, 4) exists.

If n = 12t + 4 (for t > 0), we consider the set V as Zj3144. The
number of graphs required for OW(12¢ + 4,4) is QQH%M =
(4t + 1)(12t + 4). Thus, we need 4t + 1 base graphs (modulo 12t +
4). Then, the differences we must achieve (modulo 12t + 4) are
1,2,...,6t + 2. For the first base graph, use {|0,6t + 2,12t + 3]|.
We also use the 4t base graphs ||0,1,6t + 1], |0,1, 6¢]|, (0,2, 6%,
l0,2,6t—1|,...,]|0,2¢t — 1,4t + 3||, ]|0,2t — 1,4t + 2|, ||0, 2¢, 4t + 2|
and ||0,2¢, 4t + 1| if necessary. Hence, in this case, OW(12t + 4, 4)
exists.

If n =12t + 5 (for t > 0), we consider the set V as Zjg45. The
number of graphs required for OW(12t+5, 6) is 6—(—12t—"'512mwl = (6t+
2)(12t+5). Thus, we need 6¢+2 base graphs (modulo 12t +5). Then,
the differences we must achieve (modulo 12t + 5) are 1,2, ...,6¢t + 2.
We use the base graphs ||0, 1,6t + 3, ||0,2,6t+3]|,...,||0,6t+2,6t+
3]|. Hence, in this case, OW(12t + 5, 6) exists.

If n = 12¢ 46 (for t > 0), we consider the set V as Zja¢45U {00},
The number of graphs required for OW(12t+ 6, 4) is gl—zt-ﬁlgﬁis—) =
(4t +2)(12t + 5). Thus, we need 4t + 2 base graphs (modulo 12t +
5). Then, the differences we must achieve (modulo 12t + 5) are
1,2,...,6t+ 2. For the first two base graphs, we use |0, 0, 6t + 2||
and ||oo,0,6t + 1||. We also use the 4t base graphs ||0,1,6t + 1|,
"0) 1) 6t”a “O’ 2a 6t”a Iloa 2a 6t — 1“a R "0a 2t— 134t+3"a ”0’ 2t— 1) 4+
21I, |0, 2¢, 4t + 2|} and ||0, 2¢, 4t + 1|| if necessary. Hence, in this case,
OW(12t + 6, 4) exists.
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If n =12¢ + 7 (for ¢t > 0), we consider the set V as Zjoi4+7. The
number of graphs required for OW(12¢t+7,4) is “LH’%I—%-@ = (4t+
2)(12t+7). Thus, we need 4t+2 base graphs (modulo 12¢+7). Then,
the differences we must achieve (modulo 12t +7) are 1,2,...,6t+ 3.
We use the base graphs ||0, 1,6t + 4], ||0,1,6¢ + 3||, ||0,2,6t + 3|,
10,2,6t + 2||,...,]|0,2¢,4t + 5||, ||0,2¢,4¢t + 4], ||0,2¢ + 1,4t + 4],
10,2t + 1, 4t + 3||. Hence, in this case, OW(12t + 7,4) exists.

If n = 12t + 8 (for t > 0), we consider the set V' as Zjg+7U {o0}.
The number of graphs required for OW(12t+8, 6) is M‘%%M =
(6t + 4)(12t + 7). Thus, we need 6t + 4 base graphs (modulo 12t +
7). Then, the differences we must achieve (modulo 12t + 7) are
1,2,...,6t + 3. For the first four base graphs, use ||6t + 3,0, co|,
loo, 0,6t 43|, ]I0,1,6t+3|| and ||0,2,6t+ 3||. We also use the 6t base
graphs ||0, 3,6t + 3|, ||0,4, 6t + 3]|,...,]|0, 6t + 2, 6t + 3| if necessary.
Hence, in this case, OW(12t + 8, 6) exists.

If n =12t +9 (for t > 0), we consider the set V' as Zj948 U {o0}.
The number of graphs required for OW(12¢t+9,4) is ﬂpt—"‘%%ﬂ =
(4t + 3)(12t + 8). Thus, we need 4t + 3 base graphs (modulo 12t +
8). Then, the differences we must achieve (modulo 12t + 8) are
1,2,...,6t+4. For the first three base graphs, we use ||0, 6¢+4, 12¢+
7]|, |loo, 0, 6t + 2| and ||oo, 0, 6t + 1||. We also use the 4t base graphs
flo,1,6¢+ 1], ||0,1,6¢|, ||0,2, 6t], }|0,2,6t—1f,...,]|0,2¢t — 1,4t + 3|,
|0,2t—1,4¢t+2|, ||0, 2t, 4¢+2|| and ||0, 2¢,4¢+ 1|| if necessary. Hence,
in this case, OW (12t + 9,4) exists.

If n =12t +10 (for t > 0), we consider the set V as Zj5;410. The
number of graphs required for OW(12¢ + 10, 4) is ﬂm—"'lf%(m—"'g) =
(4t + 3)(12¢ + 10). Thus, we need 4t + 3 base graphs (modulo 12¢ +
10). Then, the differences we must achieve (modulo 12t + 10) are
1,2,...,6t+5. For the first three base graphs, we use ||0, 6¢+5, 12t +
9|| and ||0,1,6t + 4|, ||0, 1,6t + 3||. We also use the 4¢ base graphs
10,2, 6¢+3], 10, 2, 6¢+2[;, [10, 3, 6¢+2], 1|0, 3, 6¢+1]], ... ., [|0, 2¢, 4¢+5,
10, 2t, 4¢ + 4}}, [|0, 2t + 1,4¢ + 4] and ||0, 2t + 1, 4t + 3|| if necessary.
Hence, in this case, OW(12t + 10, 4) exists.

If n =12t +11 (for t > 0), we consider the set V as Zj9:411. The
number of graphs required for OW(12¢ + 11, 6) is J&il—lllé-w
(6t +5)(12¢t + 11). Thus, we need 6t + 5 base graphs (modulo 12¢ +
11). Then, the differences we must achieve (modulo 12t + 11) are
1,2,...,6t + 5. We use the base graphs ||0, 1,6t + 6||, ||0,2, 6t + 6],
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0, 3,6t +6],..., |0, 6t + 4,6t + 6|| and ||0, 6t + 5, 6¢ + 6||. Hence, in
this case, OW(12t 4- 11, 6) exists. |

We now address the sufficiency of existence of OW(n, A).

THEOREM 4.3. Let n > 3 and A > 4. For OW(n, )\) to exist, A
must be even.

ProOF. The only edge frequencies in an OW graph are 2 and 4.
There is no linear combination of 2 and 4 that will equal A (when A
is odd). Thus, in any OW(n, A), we must have that A is even. ]

THEOREM 4.4. Let n > 3 and A > 4. For OW(n, ) to ezist,
the necessary conditions for n are that n = 0,1,3,4 (mod 6) when
A= 2,10 (mod 12) and n = 0,1 (mod 3) when A = 4,8 (mod 12).
There is no condition for n when A = 0,6 (mod 12).

PROOF. Similar to the proof of Theorem 4.1, but by cases on
even A (mod 12) (by Theorem 4.3). [ |

LEMMA 4.1. There exists an OW(n,4) for the necessary n > 3.

PRrROOF. From Theorem 4.4, the necessary conditionisn =0, 1, 5,
6 (mod 10). In these cases, OW(n,4) exists from Theorem 4.2. W

LEMMA 4.2. There ezists an OW(n,6) for any n > 3.

PrOOF. From Theorem 4.4, there is no condition for n. We
consider cases when n > 3 is odd or even.

If n=2t+1 (for t > 1), we consider the set V' as Zat4+1. The
number of graphs required for OW(2t + 1,6) is ﬂ&t%&l = t(2t +
1). Thus, we need ¢t base graphs (modulo 2¢ + 1). The differences
we must achieve (modulo 2t + 1) are 1,2,...,t. We use the base
graphs |[0,1,¢+1||, ||0,2,¢ + 1]|,...,||0,¢,¢ + 1||. Hence, in this case,
OW(2t + 1, 6) exists.

If n = 2t (for ¢ > 2), we consider the set V as Zy;—1 U {oo}. The
number of graphs required for OW(2t, 6) is i(glgt—_ll = t(2t — 1).
Thus, we need t base graphs (modulo 2t — 1). The differences we

must achieve (modulo 2t — 1) are 1,2,...,¢t — 1. For the first two
base graphs, we use ||t — 1,0, 00| and }joo,0,¢ — 1||. We also use the
t — 2 base graphs ||0,1,t—1||,..., ||0,t ~ 2, — 1|| if necessary. Hence,
in this case, OW(2t, 6) exists. n

THEOREM 4.5. An OW(n, ) ezists for all even (according to
Theorem 4.3) A > 4, for corresponding necessary n > 3.
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PROOF. We proceed by cases on even A (mod 6).

For A =0 (mod 6) (so that A = 6¢ for ¢ > 1), by taking ¢ copies
of an OW(n, 6) (given in Lemma 4.2), we have an OW(n, 6t).

For A =2 (mod 6) (sothat A = 6t+2 =6(t—1)+8fort > 1), we
first take 2 copies of an OW(n, 4) (given in Lemma 4.1). (This gives
us A = 8 thus far.) We then adjoin this to t—1 copies of an OW(n, 6)
(given in Lemma 4.2) if necessary. Hence, we have an OW(n, 6t +2).

For A = 4 (mod 6) (so that A = 6t + 4 for t > 0), we first take
an OW(n,4) (given in Lemma 4.1). (This gives us A = 4 thus far.)
We then adjoin this to ¢ copies of an OW(n, 6) (given in Lemma 4.2)
if necessary. Hence, we have an OW(n, 6t + 4). [ ]

5. Conclusion

We have identified LW and OW graphs, found the minimum A
for decomposition of AK,, into these graphs, and showed that for all
viable values of A, the necessary conditions are sufficient for LW-
and OW-decompositions.

We leave it as an open problem to find cyclic decompositions of

AK, into so—called EW graphs ec=sc=»
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