Distance-Based Weighted
Prioritization for GUI Application
Testing

Dmitry Nurmuradov, Renée Bryce
University of North Texas, Denton, TX, 76203
dmitrynurmuradov@my.unt.edu
renee.bryce@unt.edu

Abstract

Recording actual user interactions with a system is often useful
for testing software applications. Users-session based test suites that
contain records of such interactions often finds a complementary set
of faults compared to test suites created by testers. This work uti-
lizes such test suites and presents a new prioritization method that
extends the existing combinatorial two-way inter-window prioritiza-
tion by introducing weights on the distance between windows. We
examine how a window distance between a pair of the parameter-
value tuples influences the fault detection effectiveness. We evaluate
several approaches used to calculate weights. Results show improve-
ment over the original two-way inter-window prioritization technique,
while the comparison of different weighting approaches reveals that
a negative linear weighting calculation generally performs better in
our experiments. The study demonstrates that the distance between
windows in a pair is an important factor to consider in test suite
prioritization, and that distinguishing windows by their order in a
test case also improves the fault detection rate compared to using
window labels that were utilized in previous methods. This work
provides motivation for future work to develop general n-way combi-
natorial distance-based prioritization methods that take into account
space and processing time requirements to address potential issues
with large test suites.

JCMCC 102 (2017), pp. 77-98

1 Introduction

Today, more than 3 billion people use the Internet according to the Inter-
national Telegraph Union [1]. Companies like Facebook have over a billion
active users [2]. The large and diverse user base, combined with the in-
creasing complexity of software, requires more rapid and rigorous software
testing. Previously collected or generated test suites become an important
part of the testing process. One technique to leverage existing test suites
is test suite prioritization. The goal of test suite prioritization is to reorder
test cases so that testers detect as many faults as possible as early as pos-
sible [3]. Bryce et al. [4] show that prioritizing test cases by the number
of parameter-values from large to small (PV-LtoS) or by the number
of interactions between a pair of parameter-values (two-way) generally
produces a faster rate of fault detection.

In this paper, we further improve the combinatorial two-way inter-
window prioritization technique by introducing weights on a pair of para-
meter-values with respect to the distance between windows. The intuition
is that parameter-values selected in closer consecutive order by windows
have stronger relationships. For instance, during the checkout process, a
shopping cart page and a checkout page have stronger connection than a
product page and a checkout page since a shopping cart page is usually
followed by a checkout page. In order to evaluate the efficiency of the im-
proved method, we use the average percentage of faults detected (APFD)
metric (5], which measures the rate of fault detection.

In Section 2, of this paper we discuss previous related work. Section 3
contains the algorithm for the two-way weighted prioritization. In Section 4,
we describe the experiment and provide the results. Section 5 provides the
conclusion and an outline of future work.

2 Background and Related Work

Test suite prioritization has been studied extensively over the years [3, 6, 7).
Recent studies propose a wide range of prioritization methods varying from
prioritization methods that use code coverage information [8] to techniques
that use genetic algorithms [9].

Zhang et al. [8] propose an extended model that unifies total and ad-
ditional prioritization strategies. The total prioritization strategy uses the
total number of found criteria to assign the rank of a test case. The ad-
ditional prioritization strategy uses the number of uncovered criteria for
ranking test cases. The authors examine 48 prioritization strategies that

78

include control total and additional strategies along with 46 hybrid strate-
gies using 19 versions of 4 subject programs. The results show that the large
number of hybrid strategies outperform total and additional strategies. The
authors, however, rely on the code coverage, whereas our proposed method
uses user-session based test suites.

Arafeen and Do [10] use a requirements-based clustering approach for
test suite prioritization. The authors apply two control prioritization meth-
ods: no prioritization and code coverage along with their clustering ap-
proach to two Java applications. The results show that their approach
could be beneficial, although efficiency varies depending on the application
and parameters set in the proposed method. Our proposed method, on
the other hand, uses window distance information instead of the software

requirements.

Thomas et al. [11] propose the use of topic models for test suite pri-
oritization. The authors use linguistic data of test cases and the topic
modeling algorithm in conjunction with the greedy algorithm that maxi-
mizes distance between test cases. They compare the proposed method to
other static black-box techniques such as random ordering, the call graph-
based technique and string-based technique. The results show that the
proposed topic-based technique performs better than other compared tech-
niques. Our proposed method differs in the way that it does not rely on
linguistic information of the test cases, instead using distance between win-
dows. In our future work, however, we intend to utilize a string-based
approach for pair comparison.

User-session based techniques capture and store a user’s interactions
with a system [12]. Multiple approaches to represent user-session based
test suites exist. For instance, a web application user-session based test
case is a sequence of HTTP requests that captured when users access a
web application [13]. Such a test case contains base requests along with
parameter-values at each step of a sequence. The user-session based
techniques record such user actions and convert recorded data into test
cases for testing purposes. Results of their approach show that a different
set of faults was found when user-session based test suites were used com-
pared to other test generation strategies. The authors suggest that user-
session based test suites could be used in conjunction with other methods
to complement the testing process.

Sampath et al. [14, 15] employ a mathematical approach of concept anal-
ysis to user-session based testing of web applications. The authors cluster
test cases and create a new reduced test suite by a selective incorporation of
test cases from the generated concept lattice. The results of the study show
that there is a trade-off between aggressive reduction techniques and the

79

number of faults found by the resulting test suite. Additionally, the authors
found that the use of 2-limited heuristic produces a test suite with a decent
balance between the test suite size and the number of faults detected.

Sampath et al. [13] explore the use of different prioritization methods on
user-session based test suites. The authors compare the following criteria
for test suite prioritization: test length based on number of base requests,
frequency-based prioritization, unique coverage of parameter-value tu-
ples, two-way parameter-value interaction coverage, test length based on
the number of parameter-value tuples, and random ordering. Their re-
sults show that, depending on the application and the testers goal, different
prioritization criteria produce better results. In general, however, two-way
prioritization should be considered if a tester wants to execute majority of
test cases in a test suite.

Sampath and Bryce [16] further explore prioritization and reduction
techniques by examining 40 hybrid reduction/prioritization approaches.
They also propose a new evaluation metric Mod_APFD_C that incorporates
a cost of generation and execution times and allows testers to compare test
suites of different sizes. The results of the study demonstrate that some
of the proposed methods produce better results than pure prioritization or
reduction techniques alone. For example, all accessed sequence (AAS) pri-
oritization criterion along with sequence-based (seq) reduction criterion are
recommended for use in hybrid test suite prioritization/reduction methods.
While the demonstrated techniques use user-session based test suites, they
do not utilize distance-based relationships between windows for test suite
prioritization.

Bryce and Colbourn [17] introduce biased covering arrays for combi-
natorial interaction testing. The authors propose assigning user-specified
weights to each of the factors. The proposed method could be used for
test case generation. Results show that the proposed algorithm provides
a straightforward and practical mechanism for generating prioritized test
suites. At the same time, the proposed approach is used for test case gen-
eration and does not prioritize already existing test suites.

Huang et al. [18] propose the weight-based GUI test-case prioritization
method (WGTCP). While their work demonstrates an improvement over
traditional methods, it relies on previously obtained correlation between
faults and events and requires manual weight assignment, whereas the two-
way weighted prioritization relies only on the information in a test suite
and assigns weights automatically.

Bryce et al. [19] propose a cost-based two-way prioritization algorithm,
where the authors incorporate the length of the test case as a cost factor.

80

While their results show that the algorithm is generally effective, their cost-
based two-way prioritization uses different criteria when compared to the
two-way weighted prioritization. Our future work might include a hybrid
algorithm that incorporates both techniques.

3 Two-Way Weighted Prioritization

Rothermel et al. [5] define test suite prioritization as following:

Given a test suite T, a set of all possible permutations of T as
Pr, and a function f that maps Pr to a real numbers, find 7"
in Pr |VI" in Pr, T" # T, f(T') 2 f(T")

The two-way weighted prioritization method improves upon the stan-
dard two-way inter-window prioritization method with the addition of the
weighting calculations. The t-way prioritization algorithm, which is a gen-

Shop
°change categor

cart
|_Shop Category 2 ecat2_iteml | 2
°ccat2_iteml | 2 °cat2_item3 | 1
oprice_c2il | 16 = °coupon | COUPON
°cat2_item3 | 1 °discount | §
°price c213 | 15 °total { 35
°login | Userl
opassword | Passl
°remember me | no
Checkout
°total | 30
°login | Userl
foname | First Last
°shipping_as_billing | yes
caddressl | 180 Some Street
caddress2 |
ocity | Someville
°state | TX
°zip | 77555
°payment { creditcard
°cc_num | 5555 5555 5555 5555
°CC_Cvv | 123
°cc_name | First Last
occ_zip | 77555
occ_charge +l 36
Confirmatlon
°no_input

Test Case 1: A typical scenario where a user does online shopping.

81

Login
°login | Userl
°password | Passl
°remember me

“Shop - canl
ocatl_iteml | 2 °catl_iteml | 2
apric;_cul : 10 &:cau_itenﬁ |1
ocatd_item3 | 1 coupon | COUPON
oprice c413 | 15| [*discount |5

— ototal | 35
Checkout
°total | 30
°login | Userl
°oname | First Last
°shipping_as_billing | yes
caddressl | 100 Some Street
°address2 |
ccity | Someville
ostate | X
°zip | 77555
opayment | creditcard
°cc_num | 5555 5555 5555 5555
°ecc_cvv | 123
°cc_name | First Last
°cc_zip | 77555
occ_charge | 38
2
Conflrmation
°no_input

Test Case 2: A user logs in to shop and makes a purchase.

eralized version of two-way prioritization, was explained in great detail by
Bryce and Memon (20]. Later in this section, we provide an example of
two-way inter-window prioritization.

The two-way inter-window interaction is defined by Bryce et al. [19] as
interactions of parameter-values on different pages or windows. The two-
way inter-window prioritization is the two-way prioritization that considers
only inter-window pairs, i.e. only pairs of parameter-values that have
different windows.

In order to demonstrate benefits of the new prioritization technique,
consider Test Cases 1 and 2. Test Case 1 shows an example scenario to

1. Select the second category on the front page of a shop

2. Add 2 items from the category to the cart

3. Use a coupon and his login credentials to proceed to checkout

4. Verify that the order details are correct and enter the credit card

82

information

5. Receive the confirmation of the order

The process in Test Case 2 differs as a user enters their credentials at
the beginning of the process and shops items on the front page.

Given the number of inter-window pairs of parameter-value tuples,
Test Case 1 contains 239 inter-window pair and Test Case 2 contains 227
pairs. Therefore, the standard two-way inter-window prioritization places
Test Case 1 above Test Case 2.

The proposed two-way weighted prioritization provides a flexibility that
allows testers to define the importance of pairs using the distance relation-
ship between windows in a pair. Consider a fault when an application resets
user credentials at the Cart window. In this case, testers prefer to run Test
Case 2 earlier than Test Case 1. Therefore, a tester may use a weighting
formula that increases importance of a pair as the distance between win-
dows increases. The use of such a formula will place Test Case 2 ahove Test
case 1.

The pseudo-code for the proposed algorithm is shown in Algorithm 1
and Algorithm 2.

Table 1 defines different weighting formulas that we use. The variable
dist is a distance between windows in a given pair, the variable maz_winis a
number of windows of the largest test case in a test suite, and constants ¢;
and cs are custom factors that have the following values: ¢; = 1.33, co = 2.
The values of the factors are explained in the following paragraph.

Data:
uSet « set of unordered test cases
Result:
orderedSet
orderedSet «+ 0
coveredPairs « 0
wFunc « weighting calculation function
while uSet # 0 do
bestTestCase = getLargestScoreTestCase (uSet, wFunc,
coveredPairs)
append bestTestCase to orderedSet
remove bestTestCase from uSet
append all pairs from bestTestCase to coveredPairs
end

Algorithm 1: The two-way weighted algorithm.

83

function getLargestScoreTestCase
Data:
uSet, wFunc, coveredPairs
Result:
bestTestCase
bestTestCase « tuple(first test case in uSet, 0)

for each test case testCase in uSet do
score « 0

for each pair Pair in testCase and not in coveredPairs do
// wFunc is a weighting calculation function
score + score + wFunc (Pair)

end

if score > bestTestCase[1] then

| bestTestCase « tuple(testCase, score)
end
end

Algorithm 2: Description of the getLargestScoreTestCase function
from Algorithm 1.

Description Formula

Linear linear = _dist=1
Negative Linear neglinear =1 — ;ﬁ;‘_—;;‘
Inverse Distance inv_distance = 33—35

Negative Inverse Distance | neg-inv_distance =1 — -ﬁ

. — l
Negative Sigmoid neg-sigmoid = TFeer@=s—n

Table 1: Weighting factors that were used for the function wFunc in Algo-
rithm 1 and Algorithm 2.

With the introduction of different weighting formulas, we anticipate
that window distance in different applications and test suites could have
different significance depending on the characteristics of applications and
test suites. Linear formula places more significance on more distant win-
dows, while negative linear formula weights windows with closer distance
as more important. Both formulas follow linear distribution. Inverse dis-
tance formula is similar to negative linear, while negative inverse distance
is similar to linear. The difference is that the formulas follow inverse dis-

84

Test Case | Windows Tuples

ty W1 — Wg — W3 W1pVi, W1PVa, WapVvy, W3pVvy,
W3pVa, W3pV3
to Wp — W3 = W) 2 W W1pVy, W1PV3, W3pVa, W3pVy,

W3pVs, W1PVy, Wa2DV1, Wopv2
Table 2: An example of user-session based test suite.

tribution. Negative sigmoid formula uses a negative sigmoid function with
constant factors. The intuition for using the specified factor values is that
the importance of pairs that have window distances more than 3 drops
significantly.

Table 2, Table 3, and Table 4 show an example of the test suite and
the results of the execution of 2 prioritization algorithms: the standard
two-way inter-window prioritization and two-way weighted prioritization.

Column 1 in Table 2 contains test case identification labels. Column
2 contains the order of windows as they appear in a test case. Column 3
contains parameter-value tuples with the prefix of the window.

[Test |Pairs # of Score
Case Pairs
1 |tg <W1pV1,W3pve>, <W1pVi,W3pvy>, 21 21

<W1DPV1,W3pVs>, <W1pV),Wapv>,
<W1pV,WapVve>, <W;pV3,W3pva>,
<W]pV3,W3pv4>, <WpV3,W3pV5>,
<W1pV3,WopVi>, <W1pV3,WapVva>,
<W3pVa,W1pV4>, <W3pV2,WapVy>,
<W3pV2,W2pVa>, <W3pV4,W1pvs>,
<W3pV4,WapV)>, <W3DV4,W2pPVa>,
<W3pVs,W1pV4s>, <W3pVs,W2pVvi>,
<W3pVs,WopVa>>, <W)pPV4,W2pV1>,
<W)PV4,WapVva>

2 {t <WP¥WeP¥r>>, <W1pv1,Wipv >, |11 8
<WP¥rWsp¥e>, <W1pV1,W3pv3>,
<W}pVs,W2pV1>, <W)1pV2,W3pVvy>,
<W)pV2,W3pva>, <W1pV2,W3pVv3>,
<W2pPV],W3pV]>, <WaP¥riwgp¥s>,
<W3ypVi,W3pvz>

Table 3: Demonstration of two-way inter-window prioritization for the test
suite from Table 2.

Column 1 in Table 3 contains ranking numbers of test cases in the

85

| Test
Case

Pairs

of

Pairs

Score

<Wj3pv1,W3pva>,
<wW1pV1,W3pvs>,
<W3ipVv),W2opvi>,
<W)pV3,W3pva>,
<W)1pV3,W3pVvs>,
<W1pVv3,W2pVi >y
<W3pVa,Wipv4>,
<W3pv2,W2pva>,
<W3PV4,WZPV1>’
<W3pV5,W1pVs>,
<W3pVs,W2pva>,
<W)PV4,WapVa>

<W1lesW3PV4>a
<W)pV),W1DPV4>,

<W)pV},W2pvae>,
<W1PV3 yW3PVy >,
<W1PV3,W1pVve>,

<W1pV3,W2pVva>,
<W3pVa,W2pV1>,
<W3pV4,W1pV4>,
<W3pV4,WopVvae>,
<W3pVs,WapVy1>,
<W1pV4,W2pVv1>,

23

19

<W1pV2,W2pV1>,
<w1pvz yW3pVa>,
<W2zpVy,W3pvi>,
<W2pV,W3pv3>

<W;pV1,W3pVi>,
<W1pV1,W3pVv3>,
<W)pV2,W3pVv1>,
<W}pVva,W3pVz>,
<W2pV1,W3pVva>,

1

7.33

Table 4: Demonstration of two-way weighted prioritization using the neg-
ative linear weighting formula for the test suite from Table 2.

prioritized test suite. Column 2 contains test case identification labels.
Column 3 contains the pairs generated from the tuples provided in Table
2. Overstriked tuples are already covered in the previous test cases. The
standard two-way prioritization technique does not consider the order of
windows. Column 4 contains the total number of pairs in a test case.
Column 5 contains the score of a test case that is computed by counting
the number of unique inter-window pairs in a test case.

Column 1 in Table 4 contains ranking numbers of test cases in the
prioritized test suite. Column 2 contains test case identification labels.
Column 3 contains the pairs generated from the tuples provided in Table 2.
Overstriked tuples are already covered in the previous test cases. The two-
way weighted prioritization takes into consideration not only identification
labels of the windows, but also the order of windows. Column 4 contains the
total number of pairs in a test case. Column 5 contains the score of a test
case that is computed by the negative linear formula shown in Algorithm
3.

86

linear = 2=1=1 _
= 1 =
2—-1-1
neglinear =1 — —7 = 1
, . 1
inv.distance = 51 1 1)
1
neg.inv._distance =1 — 1= 0

. . 1
neg.sigmoid = [Tl Ta1-1-7 = 0.9346

Equation 1 shows an example of weight calculations for the pair <wipu,
w3pve> that appears in the test case t; in Table 4. The order of window
w; and window w3 is 1 and 2 correspondingly.

4 Empirical Study

In this paper we examine the following research questions:

RQ1. How does the use of the proposed two-way weighted prioritization
method affect the fault detection process?

RQ2. Which weighting formula used in the new method generally produces
the fastest rate of fault detection?

RQ3. How do characteristics of applications and test suites influence results
produced by the new prioritization method?

4.1 Experimental Setup

In our experimental setup, we use four application test suites: three graph-
ical user interface (GUI) applications and one web application. The GUI
applications are a part of TERP Office suite that was developed at the Uni-
versity of Maryland. While there are four applications in the suite, TERP
Calc has only two windows, which makes it unsuitable for our experiments.
Therefore, only the following applications were used:

1. TERP Office Word
2. TERP Office Spreadsheet

87

Description Word | Ssheet | Paint | OJS
Lines of Code 4,893 12,791 |18,376|364,290
Number of Classes 104 125 219 1,557
Number of Methods 236 579 644 13,905
Number of test cases 105 268 274 109
Number of faults in a fault matrix 58 34 118 29
Number of test cases with at least 1 87 40 68 106
fault

Maximum number of non-unique 13 9 11 74
windows per test case

Average number of non-unique 4.03 |2.54 2.59 [16.75
windows per test case

Maximum number of faults found by a |9 7 17 5

test case

Average number of faults found by a |3.65 [0.24 1.18 |2.27
test case

Table 5: Test suite parameters of applications.

3. TERP Office Paint

TERP office development was done in Java. The source files for TERP Of-
fice are available at https://www.cs.und.edu/users/atif /TerpOffice/.
The detailed description of the GUI applications and their test suites is
available in [4].

In addition, we used the following web application test suite:
4. Open Journal Systems (OJS) [21]

Open Journal Systems was developed by the Public Knowledge Project.
The test suite for OJS was created by collecting user-session based test
cases. That is, we recorded actual user visits in a web log and then trans-
lated them to test cases for our tool to replay. The software metrics for
Open Journal Systems were retrieved using PHP Depend tool [22]. OJS
also contains third-party frameworks such as Codelgniter (23], Smarty [24],
Zend Search Lucene [25], and SimplePie [26], which creates additional chal-
lenges as such frameworks increased overall code complexity, compatibility
issues, or additional faults. Table 5 demonstrates characteristics of test
suites for the subject applications.

88

4.2 Evaluation Metrics

To evaluate the proposed approach, we have used a widely known fault
average percentage faults detected (APFD) metric [5]. The APFD metric

is defined as:
TR +TF+..TF, 1
+ —
mn 2n

APFD=1- 2)

In Equation 2, n is a number of test cases in test suite T'S that is ordered
by some criteria, m is a number of faults found by test suite TS, TF; is
the first test case in TS that finds fault . APFD metric can be viewed as
the rate of fault detection, i.e. the area under the curve on the axis where
z is the number of test cases executed and y is the total number of faults
found.

4.3 Results

To demonstrate the efficiency of the proposed method, we compared it to
random ordering, as well as the traditional two-way inter-window prioriti-
zation. The random ordering was performed 50 times, and the average of
results was used for comparison. For two-way weighted prioritization, neg-
ative linear weighting formula was used for all applications as comparison
of different weighting methods revealed that negative linear performs well
on all subject applications compared to other methods that performed bet-
ter in specific instances, but worse in general. The comparison of different
weighting methods is also included in the paper in Subsection 4.3.3.

4.3.1 GUI Applications

The results for TERP Office test suites show that two-way weighted pri-
oritization using negative linear weighting performs better than two-way
inter-window prioritization for 2 out of 3 test suites on 100% of test cases.
At the same time, for the first 5 and 20 test cases two-way weighted pri-
oritization performs equally well or better for all test suites compared to
two-way inter-window prioritization.

Random ordering was a baseline for comparison and showed noticeably
worse results for all test suites, with an exception of the first 5 test cases
in the TERP Word test suite. The reason for such performance could be a
high density of bugs per test case: 87 out of all 105 test cases found at least 1
fault with 58 faults total. In fact, the results of random ordering for TERP
Word test suite are very close to both two-way prioritization methods with

89

the exception.of the final score. Similar performance of random ordering
was found by Sampath et al. [13]. Figure 3 shows the variability of APFD
scores for each subject application when random ordering is used. Large
variance of results for random ordering indicates that mean values are not
indicative of one instance of random ordering. Test suite execution time is
often the longest process and executing test suites more than once could
be unfeasible. As a result, it is reasonable to conclude that mean values of
random ordering do not provide a complete picture for a tester to make a
decision regarding the choice of prioritization method.

4.3.2 Web Applications

The results of the Open Journal System test suite shows mixed results with
two-way weighted prioritization, finding fewer bugs in the first 5 test cases
and having a larger APFD score overall. Random ordering shows close
results for the first 20 test cases and on 50% of the test suite, which could
be explained by the fact that the test suite contains a subset of good test
cases and a larger subset of test cases with an average quality.

Description Random |2-way 2-way
weighted
TERP Office Paint
First 5 test cases (# of bugs) 4.54 13 26
First 20 test cases (# of bugs) 20.79 54 57
50% of test cases (# of bugs) 81.86 110 108
100% of test cases (APFD) 0.6407 0.8546 0.8471
TERP Office Word
First 5 test cases (# of bugs) 14.46 14 19
First 20 test cases (# of bugs) 34.38 38 38
50% of test cases (# of bugs) 47.64 50 49
100% of test cases (APFD) 0.7953 0.8310 0.8468
TERP Office Spreadsheet
First 5 test cases (# of bugs) 1.26 4 4
First 20 test cases (# of bugs) 38 5 13
50% of test cases (# of bugs) 21.26 29 31
100% of test cases (APFD) 0.6123 0.7664 0.8028

Table 6: Results of different prioritization methods for TERP Office appli-
cations.

90

Sprd - ° |»
Paint 4 ']
OJSJ Y ST
T T T T T]
0.40 0.50 0.60 0.70 0.80 0.90

Figure 3: The box plot shows the APFD distribution for random ordering
using 50 permutations as samples.

Description Random |2-way 2-way
weighted

First 5 test cases (# of bugs) 7.46 12 9

First 20 test cases (# of bugs) 16.92 17 19

50% of test cases (# of bugs) 24.06 25 25

100% of test cases (APFD) 0.7622 0.7964 0.8132

Table 7: Results of different prioritization methods for OJS application.

The results demonstrated in Tables 6 and 7 allow us to answer RQ1:
the proposed two-way weighted prioritization method generally produces
better results compared to random ordering or two-way inter-window pri-
oritization. The results also confirm our initial assumption that window
distance has an impact on fault detection rate.

4.3.3 Distance Weight Calculations

In order to answer RQ2, we examined different weight calculation ap-
proaches compared for test suites of the subject applications. We also
introduced a constant weight (wFunc = 1 at all times) in order to examine
how the order of windows affects effectiveness of the fault detection com-
pared to the use of window labels in the original implementation of two-way
inter-window prioritization.

91

(APFD)

Description Cons. |Lin. |Neg. (Inv. [Neg. |Neg.

Lin. |Dist. |Inv. |Sigm.
dist.

TERP Office Paint

First 5 test cases 19 20 26 26 30 26

(number of bugs)

First 20 test cases 63 51 57 48 51 59

(number of bugs)

50% of test cases 108 104 108 108 104 108

(number of bugs)

100% of test cases 0.8484 (0.8186 | 0.8471 { 0.8459 | 0.8216 | 0.8463

(APFD)

TERP Office Word

First 5 test cases 13 18 19 22 24 22

(number of bugs)

First 20 test cases 37 39 38 38 38 39

(number of bugs)

50% of test cases 50 49 49 49 49 49

(number of bugs)

100% of test cases 0.8413 10.8368 | 0.8468 | 0.8464 | 0.8406 | 0.8466

(APFD)

TERP Office Spreadsheet

First 5 test cases 3 2 4 3 5 3

(number of bugs)

First 20 test cases 12 12 13 15 12 15

(number of bugs)

50% of test cases 31 28 31 31 28 31

{number of bugs)

100% of test cases 0.8010{0.7687 | 0.8028 [0.8045 | 0.7713 | 0.8049

Table 8: Results for different distance weighting formulas for TERP Office

applications.

Tables 8 and 9 allow us to answer RQ2: the proposed weight calculation
approaches have a different effect on different applications. While two-way
weighted prioritization using negative linear formula generally outperforms
other weighting approaches, a specific application might benefit from a
different weighting formula. The results using constant weight demonstrate
that the use of the order of the windows instead of window labels has a

92

Description Cons. [Lin. |[Neg. |[Inv. [Neg. |Neg.

Lin. |Dist. (Inv. |Sigm.
dist.

Open Journal Systems

First 5 test cases 9 10 9 7 12 8

(number of bugs)

First 20 test cases 19 21 19 19 20 18

{number of bugs)

50% of test cases 25 24 25 25 24 24

(number of bugs)

100% of test cases 0.8135(0.8239 | 0.8132 | 0.8024 {1 0.8215 [0.8037

(APFD)

Table 9: Results for different distance weighting formulas for Open Journal
Systems.

positive impact on APFD, thus increasing effectiveness of fault detection.

Negative inverse distance formula demonstrates an interesting property:
it outperforms all other weighting formulas in the first 5 test cases. It
appears that a subset of faults in each application is caused by interactions
between distant windows. At the same time, gains that were produced
in the first 5 test cases vanish as more test cases are evaluated. By the
20th test case, the negative inverse distance formula shows results similar
to other weighting formulas.

Linear weighting formula demonstrated the least good performance in
general. However, it outperformed approaches that use decreasing window
importance in the Open Journal Systems test suite. Given the largest
average number of windows per test case and the fact that OJS has a large
and complex code, one could see how many fault interactions occur in pairs
with longer window distances.

4.3.4 Characteristics of Applications

The summary of the results gives us the answer to the RQ3: while two-
way weighted prioritization using the negative linear approach generally
produces better results, the choice of weighting formula depends on the
application characteristics. A different weight calculation approach may be
better suited for a specific application. For instance, the negative linear
formula did not perform well on the Open Journal Systems test suite. At
the same time, Table 9 shows that linear and negative inverse distance
formulas perform better than others. Therefore, interactions between pairs

93

with further distances are more important than interactions between pairs
with close distances. Considering that OJS has a significantly larger average
number of non-unique windows per test cases as well as a larger number of
classes, methods, and lines of code while maintaining the smallest number
of faults in the fault matrix among the tested applications as shown in
Table 5, it is reasonable to conclude that interactions that cause faults
would be further apart between windows, which is confirmed by the results.

4.3.5 Guidance to Testers

Our results demonstrate that the two-way weighting prioritization using
negative linear formula generally outperforms other weighting formulas. It
also outperforms two-way inter-window prioritization as well as random
ordering. Therefore, it is a good choice when a tester does not have a
specific knowledge of the subject application and plans to execute all or a
majority of test cases.

When testers possess information regarding the characteristics of the
subject application, especially fault matrices for previous versions of the
application, which could be the case for regression testing, a tester could
explore multiple weighting formulas in order to determine which formula
works better for their application. As developers tend to make similar mis-
takes if they do not adhere to disciplined personal practices such as Personal
Software Process (PSP) [27], the chosen weighting formula should have a
better fault detection rate for the subsequent versions of the application.

For short preliminary testing, the negative inverse distance weighting
formula is a good choice as it consistently produced the best results for the
first 5 test cases in our study.

Overall, the choice of weighting formula depends on the prior knowledge
that testers possess regarding applications as well as their goals. For in-
stance, testers should examine their use-cases and code to identify whether
interactions between windows may trigger faults or if the events on different
windows are highly independent.

4.4 'Threats to Validity

There are multiple factors that may reduce the applicability of the results to
other applications and test suites. One of the factors is the structure of the
test suites. While some test suites may have a uniform distribution of the
number of windows per test case, others may have a different distribution,
which may impact scores for test cases with fewer windows versus test cases

94

with a larger number of windows. In order to minimize this threat, we used
several different applications. Another factor is the distribution of faults in
the test suites. Given the fact that faults in the tested applications were
seeded manually, test suites with actual faults may demonstrate different
results. The small number of test suites in the study is also a factor.
Having only four subject applications can potentially produce bias by not
covering different styles of software development as well as different types of
applications. We minimize this threat by using GUI and Web applications.

5 Conclusions and Future Work

Overall, our experiments show that the proposed two-way weighted prioriti-
zation generally performs better than two-way inter-window prioritization
or random ordering of test cases. The use of a specific distance weight-
ing formula is application specific, while the negative linear calculation
approach could be used in a general case as it consistently demonstrates
better results compared to two-way inter-window prioritization.

In future work, we intend to examine the proposed approach on mo-
bile applications. Mobile applications have several distinct characteristics
that make them different from traditional GUI or Web applications. They
are often simpler, smaller, and mostly rely on a touchscreen as an input
source. On the other hand, mobile applications are arguably challenging
to test due to context changes that may happen such as screen orienta-
tion changes, network connection changes, and other context data. As the
number of mobile devices rapidly increases, software testing in the mobile
domain becomes more critical. We intend to adapt user-session based test
suite data for mobile applications and use different prioritization methods
and weighting formulas in the case of two-way weighting prioritization to
determine the method that has the largest fault detection rate, code cover-
age, and element coverage.

Moreover, we will develop higher order n-way distance-based combina-
torial prioritization algorithms. There are multiple ways to calculate the
distance for n-way method, such as a distance between two farthest win-
dows, an average distance, and more. Such a method will require optimiza-
tion for space and processing time as these requirements become crucial in
the case of large test suites. The algorithm proposed in this paper will also
benefit from optimization for very large test suites.

We plan to examine other distance-based weighting formulas and their
impact on fault detection rate. We also intend to investigate alternative
weighting approaches and hybrid methods, such as similarity-based ap-

95

proaches and cost-based techniques. In addition, we will examine cluster-
ing, genetic, and other search-based and machine learning approaches and
their applicability to user-session based test suite prioritization.

References

1]

2]

8]

[4)

[5]

(6]

7l

(8)

(9]

International Telegraph Union, “Statistics Confirm ICT Revolution
of the past 15 Years.” [Online]. Available: http://www.itu.int/net/
pressoffice/press_releases/2015/17.aspx [Accessed: Jan. 15, 2016].

Facebook, “Company Info | Facebook Newsroom.” [Onlinej. Available:
https://newsroom.fb.com/company-info/ [Accessed: Jan. 15, 2016].

S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case priori-
tization: A family of empirical studies,” Software Engineering, IEEE
Transactions on, vol. 28, no. 2, pp. 159-182, 2002.

R. C. Bryce, S. Sampath, and A. M. Memon, “Developing a sin-
gle model and test prioritization strategies for event-driven software,”
Software Engineering, IEEE Transactions on, vol. 37, no. 1, pp. 48-64,
2011.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
test cases for regression testing,” Software Engineering, IEEE Trans-
actions on, vol. 27, no. 10, pp. 929-948, 2001.

, “Test case prioritization: An empirical study,” in Software Main-
tenance, 1999.(ICSM’99) Proceedings. IEEE International Conference
on. IEEE, 1999, pp. 179-188.

S. Yoo and M. Harman, “Regression testing minimization, selection
and prioritization: a survey,” Software Testing, Verification and Reli-
ability, vol. 22, no. 2, pp. 67-120, 2012,

L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the
gap between the total and additional test-case prioritization strate-
gies,” in Software Engineering (ICSE), 2013 35th International Con-
ference on. IEEE, 2013, pp. 192-201.

W. Jun, Z. Yan, and J. Chen, “Test case prioritization technique based
on genetic algorithm,” in Internet Computing & Information Services
(ICICIS), 2011 International Conference on. IEEE, 2011, pp. 173-
175.

[10]

1]

[12]

[13]

(14]

[15)

(16]

17)

(18)

(19]

M. J. Arafeen and H. Do, “Test case prioritization using requirements-
based clustering,” in Software Testing, Verification and Validation
(ICST), 2013 IEEE Sizth International Conference on. IEEE, 2013,
pp. 312-321.

S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static
test case prioritization using topic models,” Empirical Software Engi-
neering, vol. 19, no. 1, pp. 182-212, 2014.

S. Elbaum, S. Karre, and G. Rothermel, “Improving web application
testing with user session data,” in Proceedings of the 25th International
Conference on Software Engineering. IEEE Computer Society, 2003,

pp. 49-59.

S. Sampath, R. C. Bryce, G. Viswanath, V. Kandimalla et al., “Pri-
oritizing user-session-based test cases for web applications testing,” in
Software Testing, Verification, and Validation, 2008 1st International
Conference on. IEEE, 2008, pp. 141-150.

S. Sampath, V. Mihaylov, A. Souter, and L. Pollock, “A scalable ap-
proach to user-session based testing of web applications through con-
cept analysis,” in Automated Software Engineering, 2004. Proceedings.
19th International Conference on. IEEE, 2004, pp. 132-141.

S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A. S. Greenwald,
“Applying concept analysis to user-session-based testing of web appli-
cations,” Software Engineering, IEEE Transactions on, vol. 33, no. 10,
pp. 643-658, 2007.

S. Sampath and R. C. Bryce, “Improving the effectiveness of test suite
reduction for user-session-based testing of web applications,” Informa-
tion and Software Technology, vol. 54, no. 7, pp. 724-738, 2012.

R. C. Bryce and C. J. Colbourn, “Test prioritization for pairwise in-
teraction coverage,” in ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 4. ACM, 2005, pp. 1-7.

C.-Y. Huang, J.-R. Chang, and Y.-H. Chang, “Design and analysis of
gui test-case prioritization using weight-based methods,” Journal of
Systems and Software, vol. 83, no. 4, pp. 646-659, 2010.

R. C. Bryce, S. Sampath, J. B. Pedersen, and S. Manchester, “Test
suite prioritization by cost-based combinatorial interaction coverage,”
International Journal of System Assurance Engineering and Manage-
ment, vol. 2, no. 2, pp. 126-134, 2011.

[20] R. C. Bryce and A. M. Memon, “Test suite prioritization by interaction
coverage,” in Workshop on Domain specific approaches to software test
automation: in conjunction with the 6th ESEC/FSE joint meeting.
ACM, 2007, pp. 1-7.

[21] S. P. Muir, M. Leggott, and J. Willinsky, “Open journal systems: An
example of open source software for journal management and publish-
ing,” Library hi tech, vol. 23, no. 4, pp. 504-519, 2005.

[22] M. Pichler, “PHP Depend - software metrics for PHP.” [Online].
Available: http://pdepend.org/ [Accessed: Jan. 15, 2016].

[23] A. Andreev, B. Edmunds, J. Parry, and L. Ezell, “Codeigniter web
framework.” [Online]. Available: https://codeigniter.com/ [Accessed:
Jan. 15, 2016].

(24] New Digital Group, Inc, “Smarty - PHP template engine.” [Online].
Available: www.smarty.net [Accessed: Jan. 15, 2016].

[25] Zend Technologies, “Zend Search Lucene.” (Online]. Avail-
able: http://framework.zend.com/manual/1.12 /en /zend.search.
lucene.overview.html [Accessed: Jan. 15, 2016].

[26] R. Parman, G. Sneddon, and R. McCue, “Simplepie - RSS and Atom
feed parsing in PHP.” [Online]. Available: http://simplepie.org/
[Accessed: Jan. 15, 2016).

(27] B. Boehm and V. R. Basili, Foundations of empirical software engi-
neering: the legacy of Victor R. Basili. Springer Science & Business
Media, 2005.

98

