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Abstract

Let R be a commutative ring with identity. For any integer £ > 1, an
element is a k-zero divisor if there are distinct k elements including the given
one, such that the product of all is zero but the product of fewer than all is
nonzero. Let Z(R, k) denote the set of the k-zero divisors of R. In this
paper we consider rings which are not a k integral domains (i. e. Z(R, k)
is nontrivial) with finite Z(R, k). We show that a uniform n exists such that
a™ = 0 for all elements a of the nil-radical N and deduce that a ring R which
is not a k-integral domain with more than & minimal prime ideals and whose
nil-radical is finitely generated is finite, if Z(R, k) is finite.
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divisors.
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1 Introduction

A simple graph is an ordered pair (V, E), where V is a vertex set
and F is an edge set with edges of the form {v;, vo} where vy, v,
are two distinct vertices. Zero divisor graph on a commutative ring
R is a simple graph I'( R) whose vertex set is the set of zero divisors
Z(R) = {a € R)| there exists b # 0 with ab = 0}. Two distinct zero

JCMCC 102 (2017), pp. 99-108



divisors form an edge if a - b = 0. The study of a zero divisor graph
on a commutative ring was first introduced in 1988 by Beck in [4].
Anderson and Livingston [1] modified this definition by removing
zero from the vertex set. We give one example that follows this
definition.

Example 1.1. Suppose R = Z;,. The vertex set is
Z(R)* = {2,3,4,6,8,9,10}

and I'(R) is given below, where the edges are the line joining pairs
of vertices.

More examples and classifications can be found in [1], [2], [6]
and the references cited there. It is clear that the graph is finite if
I'(R) has finitely many vertices. Ganesan proved in [8] that for a
ring R which is not an integral domain, I'( R) is a finite graph if and
only if R is finite.

Edges in a graph contain two vertices. If we drop this restriction
and assume that an edge can have any number of vertices, then we
get a hyper graph. Thus a hyper graph H is an order pair (V, F),
vertex set V and edge set E. Elements of E are called edges and they
are subsets of V. A k uniform hyper graph is a hyper graph in which
each edge contains precisely k vertices (see [S] for more details).
In 2007, Eslahchi and Rahimi (see [7]) used graphs to hyper-graphs
relationship to generalize the concept of zero divisors and introduced
k-zero divisors. This enables us to associate a k uniform hyper graph
Hi(R) to a commutative ring R. For R = Z;,, we have shown a
hyper-graph in the Example 2.1.

In the same paper, the authors posed a ‘finiteness’ question sim-
ilar to one appeared in [8]. In this note, we attempt to answer this
question. We follow language and notations from [3] without cita-
tion. Section 2 contains main definitions, notations and some basic
results. Section 2 ends with a result regarding the nil-radical which
is used in section 3 to prove the main results.
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2 Notations

All rings considered in this paper are commutative rings with iden-
tity. Let R be a commutative ring.

Definition 2.1. A non zero element a € R is called a nilpotent el-
ement if a” = 0 for some positive integer r. We define nilpotent
degree d.;(a) of a nilpotent element a to be the smallest positive
integer n for which o™ = 0. Nil radical, denoted by N is the set of
all the nilpotent elements of R. If N = 0 then R is called a reduced
ring.

The nil radical NV is an ideal and is equal to intersection of all
the prime ideals. If the ring has finitely many minimal prime ideals,
then we have a natural imbedding

0—+N=nP,— R—1I., (R/P)

where Py, ..., P, are all the distinct minimal prime ideals. In other
words, R/N is isomorphic to a subring of II;(R/P;). Further, if R
is a reduced ring (i.e. N=0), then R is a subring of finite product of
integral domains. The last statement is used in the following lemma.

Lemma 2.1. Suppose R is a reduced ring with finitely many minimal
prime ideals and f(z) € R|[z] is a monic polynomial. Then the set
of zeros {a € R | f(a) = 0} is finite.

Proof. Suppose R — IIZ_; R;, where R; are integral domains for

i =1,...,n. Consider the projection f;(z) of f(z) in R;[z]. Since
f(z) is monic, each f;(z) is also a monic polynomial with coeffi-
cients in an integral domain. Now if f(a) = 0 for some a € R, then
fi(a;) = 0in R; for all 4, where a = a; mod P,. Since each f;(z)
has finitely many zeros, f(z) also has finitely many zeros. O

We recall the following definition from [7]

Definition 2.2. Let R be a commutative ring and £ > 1 be a fixed
integer. Element a; € R is called a k-zero divisor if there exist
as, as, ..., a; in R such that (1) {a1, as, ..., ax} are all distinct
elements (2) IT¥a; = 0 and (3) IL;4;a; # O forany 1 < j < k. The
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set of all k-zero divisors is denoted by Z(R, k). A ring with empty
Z(R, k) is called k-integral domain.

Condition (3) implies that each a; is nonzero and nonunit. Fur-
ther, if {a}, a3, ..., a.} is a proper subset of {a1, as, ..., ax}, then
II7_,a} # 0. In fact, (3) is equivalent to the statement that the prod-
uct of fewer than all a; is nonzero. We will use this fact without

justification.
We define a k uniform hypergraph H(R) on a commutative ring
R as follows. The vertex set is Z(R, k). Elements a,, ao, ..., a

which appear in the definition 2.2 form an edge of the hypergraph.
Thus, the extension of the concept of zero divisors to that of k-zero
divisors in the above definition is purely a graph theoretic. We give
one example.

Example 2.1. For R = Z,, the vertex setis Z(R, 3) = {2, 3,9, 10}.
There are two edges, {2, 3, 10} and {2, 9, 10} which are enclosed by
an ellipse in the following hypergraph:

G Ge o> oD

Note that Z), is a 4-integral domain.

Subrings inherit hypergraph substructure. That is, if R is a sub-
ring of S, then Z(R, k) C Z(S, k). Further, any edge in H,(R) is an
edge in Hi(S). In this sense, Hi(R) is a subhypergraph of H(S).
The following proposition will be used in the proof of the main the-
orem. Since it is an independent result, we have given a status of
proposition rather than lemma.

Proposition 2.2. Let R be a commutative ring with Z(R, k) finite.
Then there exists a positive integer n such that a™ = 0 foralla € N.
Further, if N is finitely generated, then N is nilpotent (i.e. there
exists a positive integer n such that N* = {0} ).
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Proof. Setng = k(k +1)/2. If a™ = 0 for all a € N then we are
done. Suppose there exists a € N with d,;(a) > no. Now if for any
iand §, 1 <'i < j < dnu(a), @ = @', then a*(a’~* — 1) = 0. But
a’~* — 1 is a unit in R, which implies that a* = 0 contradicting the
definition of d,;;. Let m = d,q(a) — k(k — 1)/2. Thenm > k — 1.
Therefore, a, a?, ..., a*~!, a™ are all distinct elements. Further,
the product of these elements is a®(%) which is zero. Now for any
j€{1,2,...,k—1,m}, Mix;a* = a” with 7 < dyu(a). Therefore,
II;zja' # 0. Thus, we see that a € Z(R, k). Since Z(R, k) is
finite, A = {z € N | dna(z) > no} is a finite set. Let m =
mazzca{dni(z)}, then b* = 0forall b € N. If N is generated by r
elements, then it is easy to show that N™* = 0. O

Following the proof we can derive the following corollary.

Corollary. If there is an a € R such that d,y(a) > E(L;—Q, then R is
not a k integral domain.

Ganesan proved in [8] that a commutative ring with finitely many
zero divisors which is not integral domain is finite. Now, all zero
divisors are not necessarily 2-zero divisors. For example, 2 in Z,4 is
a zero divisor, but not 2-zero divisor. Still we can extend Ganesan’s
result for 2-zero divisors. The same proof works for a ring which is
not a 2-integral domain. We reproduce the proof here.

Proposition 2.3 (Ganesan). Let R be a commutative ring which is
not a 2-integral domain. If Z(R,?2) is finite, then R is finite. Fur-
thermore, if |Z(R,2)| = r then |R| < (r + 2)2.

Proof. For any edge {z, y} in Hx(R), we have a short exact se-

quence
0 —» ann(z) » R—>zR — 0.

Now z-ann(z) = 0 and y- (zR) = 0. Therefore, all the elements of
ann(z) other than 0 and z are 2-zero divisors and all the elements of
z R other than 0 and y are 2-zero divisors. Hence, |ann(z)| < r + 2
and |zR| < r + 2. This proves that R is finite and has less than
(r + 2)? elements. O

For any set S, let P(S) denote the set of subsets of S and S™
denote the Cartesian product S x S x ... x S of m copies of S.
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Proposition 2.4. Suppose R is not a 2-integral domain. Then R* is
not k + 1 integral domain. Further if Z(RF, k + 1) is finite, then R
is finite.

Proof. Both assertions can be proved together. Define a set theoretic
map ¢ : Z(R,2)* — P(RF) by

¢(($1, Zo, ..., xk)) = {jly i2 ey ik}1
where

521=(£L‘1,1,..., 1), :E2=(1,a:2, 1..., ].) cee
:fk=(1,1,...,1,:rk).

Clearly, ¢ is injection. Now let y; € ann(z;) be a nonzero element
and set Zry1 = (¥1,Y2,---,Yk). Then k + 1 elements Z; forms an
edge in Hiy1(R). Therefore, Im(¢) C P(Z(RF,k + 1)). This
shows that Z(R*, k + 1) is nontrivial, or R* is not a k + 1 integral
domain. Further, if Z(R*, k + 1) is finite, then one-to-one nature of
¢ implies that Z(R, 2) is finite. Hence by the Proposition 2.3, R is
finite. g

3 Main theorem

An r-coloring of a hypergraph H = (V, E) is a map ¢ from V to
{1,2,...,7} such that for every edge e of H, there exist at least two
vertices z and y in e with ¢(z) # c(y) (see [7]). The smallest integer
r such that H has an r-coloring is called the chromatic number of H
and is denoted by x(H). When R is a product of n integral domains,
[7, Theorem 2.11] gives an estimates for x(H;(R)). We state here
the precise statement.

Theorem 3.1. Let R = Ry X Ry X ... X R,,, where R; is an integral
domain for eachi = 1,2,...,n.

(1) If n = k, then x(Hy(R)) = 2.

(2)Ifn =k +1t, then x(Hk(R)) < 2+t forallt > 0.

Now when R is a subring of S, Hi(R) is a sub hypergraph of
H,(S). Therefore, x(Hi(R)) < x(Hk(S)) We use this observation
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in the following proposition to generalize Theorem 3.1 for a reduced
rings with finitely many minimal prime ideals. To prove this result
(and other results in this section), we will use two well known prop-
erties of a prime ideal. Suppose I, I5,..., I, are ideals in R. If a
prime ideal P contains NI;, then P must contain one of the I;. In
particular, if P and I; are all minimal prime ideals, then P = I; for
some ¢. For the second property which is known as the “prime avoid-
ance theorem”, we assume that all I; are also prime ideals. Then any
ideal I contained in UI; must be a subset of one of the I; (see propo-
sition 1.11 in [3]).

Proposition 3.2. Suppose R is a reduced ring with n minimal prime
ideals. Then

1. Ris a k-integral domain if and only if n < k.
2. If n =k, then x(Hr(R)) = 2.
3. Ifn=k+tforsomet >0, then x(Hi(R)) <t+2.

Proof. Suppose Py, P,, ..., P, are the minimal prime ideals of R.

To prove (1), assume that n < k and suppose zi, Z2, . .., Tr are
distinct elements with Ilz; = 0. Then Ilz; € P; for all j. Since
P; are prime ideals, each P; contains at least one z;, say z/;. Let
X = {z5|l5 = 1,...,n}. Then X is a subset of {.'z,'l,...,.'zckit with
at most n elements. Moreover, IL.;cxz; € NP; = {0}. Butn < k.
Therefore z;, x5, . . . 2 is not an edge in Hy(R) or R is a k integral
domain.

Now assume that n > k. Choose z,, s, ..., T, such that z; €
P —UjzPjfori=1,2,...,k—1and 7, € N} P; — U¥~1P,. Then
Z1,Z2,...,Z; forms an edge in Hi(R) showing that R is not a k

integral domain.
For (2) and (3), assume that n = &k + ¢ for some ¢ > 0. Note that

R is a subring of I17(R/ P;). Therefore,
X(Hk(R)) < x(He(II7™(R/PR)) St +2

For n = k, the above inequality implies that x(H(R)) < 2. But
by part (1) of the proposition, R contains at least one k-zero divisor.
Therefore, x(Hi(R)) = 2. O
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Lemma 3.3. Let R be a reduced ring with n minimal prime ideals.
Ifn > k, then R is not a k-integral domain. Further, if Z(R, k) is
finite then, R is finite.

Proof. The first assertion is included in the Proposition 3.2

Now suppose that Z(R, k) is finite. Consider the imbedding
R < IL;(R/P;). Suppose R is infinite, then R/P; must be infi-
nite for at least one value of ¢. Without loss of generality, we can
assume that R/ P, is infinite. Now pick a set of coset representatives
of P, in R, say T'. Then T is infinite.

Let {a1, az, ..., ax} be an edge in Hi(R). Since [I¥a; = 0,
IT¥a; € P, for all 7. In particular, there exist a; which belongs to
P,. By renaming if necessary, we can assume that a; € P;. We will
construct infinitely many edges to get a contradiction.

First we choose a nonzero element c in N5 P;. Since N¥ P; = {0},
cisnotin P,. Now foranya € Rand ry,7 € T, if both, a + ¢ry
and a + crq are in the same coset of Py, then ¢(r; — r3) € P;. As
c¢ Py, r1—7ry € Pyorr1+ P, = ro+ P,. Therefore, r; = 5. Thus
a + cr; belong to different cosets of P, for different values of :.

We now start our construction. Set a; = a; and choose 5 in T
such that a5, = ay + cry ¢ P;. Note that there are infinitely many
choices for rp. Next we choose 3 € T such that aj = a3 +cr; is not
in P, and is different from a5. Similarly we choose 7y, ..., 7% such
that {a; = a; + cr;} isnotin P, for 4 < ¢ < k and a),a},...,a}
are all distinct. Since a; is in P;, we constructed a set of & distinct
elements ai, a5, . . ., a;,. We will show that they form an edge. Since
ajc = 0, I¥a = a1115(a;+cr;) = T5a; = 0. To show that IT; ;a #
0, first observe that if j # 1, then Iliz;a) = II;x;a; # 0.

For j = 1, Il;x1a; = O implies that II;+;a] € P;. Since none of
the a; belong to Py, this can not be true. Hence, IT;4;a} # 0.

Thus there are infinitely many k-zero divisors, which is a contra-
diction. Therefore our assumption that R is infinite is incorrect. [

Theorem 3.4. Suppose R is not a k-integral domain such that (1)
the nilradical N is finitely generated and (2) R has finitely many
and more than k minimal prime ideals. If R has finitely many k-zero
divisors, then R is finite.
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Proof. Suppose Py, P, ..., P, are minimal prime ideals of R, then
R/N is areduced ring with n > k minimal prime ideals. Therefore,
by Lemma 3.3, R/N is not a k-integral domain. We will show now
that, Z(R/N, k) is finite. For any z € R, we will use the notation Z
for the image of z in R/N.

Suppose T, To, . . . , T is an edge in H(R/N). Then I1Z; = 0
and for any j, II;;Z; # 0 in R/N. Lifting this to R, we get that
Ilz; € N and IT;;z; ¢ N. By assumption, N is finitely generated
and therefore, nilpotent by the Proposition 2.2. Hence there exists a
uniform [ such that (IIz;)! = 0. Additionally, since IT;+;z; ¢ N, we
have that (IT;x;z;)™ # O for any m. We claim that, z},z5,..., z}
forms an edge in Hy(R). For that we only need to show that all z;
are distinct. To the contrary, suppose z.. = z', for some 7 < s. Then,

(Hi#axi)zl = (H,fzt)l : (Hi¢r,sxi)l =0

which shows that II;x,z; € N, which is a contradiction. Hence,
zi, x5, ..., 2} is an edge in Hi(R). Thus any k zero divisor in R/N
satisfies a monic polynomial of the form 7% — @ with a € Z(R, k).
Now since Z(R, k) is finite, there are only finitely many such poly-
nomials and each such polynomial has only finitely many zeros by
the Lemma 2.1. Therefore, Z(R/N, k) is finite and by the Lemma
3.3, R/N is finite.

Now N/N? is a finitely generated R/N module. Since R/N is
finite, N/N2 is also finite. Consider the following exact sequence,

N i R f R

where ¢ is inclusion and f is the canonical map induced from the
relation N2 C N. As both ends are finite, we conclude that R/N?
is finite. Inductively we can show that R/N™ is finite for all n > 0.
But N is nilpotent. This completed the proof. O

Corollary. Suppose R is a noetherian ring, which is not a k-integral
domain with at least k minimal prime ideals. If Z(R, k) is finite,
then R is finite.
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