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Abstract

For a connected graph G of order at least 3, let ¢ : E(G) —
{1,2,...,k} be an edge coloring of G where adjacent edges may
be colored the same. Then ¢ induces a vertex coloring ¢’ of G
by assigning to each vertex v of G the set of colors of the edges
incident with v. The edge coloring ¢ is called a majestic k-edge
coloring of G if the induced vertex coloring ¢’ is a proper ver-
tex coloring of G. The minimum positive integer & for which
a graph G has a majestic k-edge coloring is the majestic chro-
matic index of G and denoted by x.,.(G). For a graph G with
Xm(G) = k, the minimum number of distinct vertex colors in-
duced by a majestic k-edge coloring is called the majestic chro-
matic number of G and denoted by ¥(G). Thus, ¥(G) is at least
as large as the chromatic number x(G) of a graph G. Majestic
chromatic indexes and numbers are determined for several well-
known classes of graphs. Furthermore, relationships among the
three chromatic parameters xm(G), ¥(G) and x(G) of a graph
G are investigated.

Key Words: vertex and edge coloring, majestic edge coloring, majestic
chromatic index, majestic number.
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1 Introduction

During the past several decades, there have been a number of research
projects dealing with edge colorings of a graph that give rise to vertex
colorings of the graph (see [2, 4, 5], for example). Typically, an edge coloring
c of a graph G is a function c : E(G) — [k] = {1,2,...,k} for some positive
integer k. Thus, such a coloring c is a k-edge coloring. Among the vertex
colorings ¢’ of G obtained from c, the most studied are those for which the
color ¢'(v) of a vertex v of G is either (1) the set of colors of those edges
incident with v, (2) the multiset of colors of the edges incident with v or (3)
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the sum of the colors of the edges incident with v. Here, we consider edge
colorings where the vertex colorings are those in (1). In this case then, for
a nontrivial connected graph G on which has been defined an edge coloring
c¢: E(G) — [k], the associated vertex coloring ¢’ : V(G) — P([k]) — {0} is
defined by ¢/(v) = {c(e) : e € E,}, where E, is the set of edges incident
with v and P([k]) is the power set of the set [k].

An edge (vertex) coloring is called unrestricted if no condition is placed
on how edges (vertices) may be colored. In particular, in an unrestricted
edge coloring, adjacent edges may be colored the same. In a proper vertex
coloring, adjacent vertices must be colored differently. A vertex coloring is
vertez-distinguishing if distinct vertices are assigned distinct colors.

An early example of such an edge coloring was introduced by Harary and
Plantholt [3] in 1985. If ¢ is an unrestricted edge coloring of a nontrivial
connected graph G and ¢ is vertex-distinguishing, then c is called a set
irregular edge coloring of G. The minimum positive integer k for which
a graph G has a set irregular edge coloring is the set irregular chromatic
indez of G and is denoted by si{G). (This parameter was referred to as the
point-distinguishing chromatic index by Harary and Plantholt.) The set
irregular chromatic index does not exist for K,. Since every two vertices
in a connected graph G of order n > 3 and size m > 2 are incident with
different sets of edges, any edge coloring that assigns distinct colors of
[m] to the edges of G is a set irregular edge coloring. Hence, si(G) exists
and si(G) < m.

In 2002, Zhang, Liu and Wang [6] introduced an edge coloring ¢ :
E(G) — [k] of a graph G for which both ¢ and the induced set vertex
coloring ¢’ are proper. They referred to such a coloring ¢ as an adjacent
strong edge coloring. The minimum positive integer k for which G has
an adjacent strong k-edge coloring is called the adjacent strong chromatic
indez of G.

Inspired by set irregular edge colorings and adjacent strong edge col-
orings described above, we study in this paper unrestricted edge colorings
that induce proper vertex colorings. We refer to the book [2] for graph
theory notation and terminology not described in this paper.

2 The Majestic Index of a Graph

Here, we consider unrestricted edge colorings ¢ : E(G) — [k| of a graph G
for which the induced vertex coloring ¢’ (where the color of a vertex v is
the set of colors of the edges incident with v) is proper. Such a coloring
c is called a majestic k-edge coloring (or simply a majestic edge coloring).
The minimum positive integer k for which a graph G has a majestic k-edge
coloring is called the majestic chromatic index of G or, more simply, the
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magestic index of G and is denoted by x/,(G). Since there is no majestic
edge coloring of K, the majestic chromatic index does not exist for Kj.
Thus, we consider only connected graphs of order at least 3. Because si(G)
exists for each such graph G, so too does x/,(G). If every edge of a con-
nected graph G is assigned the same color, say 1, then ¢/(v) = {1} for every
vertex v of G. Since ¢/(z) = ¢/(y) for adjacent vertices z and y of G, there is
no majestic 1-edge coloring of G. Thus, we have the following observation.

Observation 2.1 If G is a connected graph of size m > 2, then xi,(G)
ezists and 2 < x1.(G) <si(G) £ m.

For complete graphs, an unrestricted edge coloring is majestic if and
only if it is vertex-distinguishing. Therefore, every majestic edge coloring
of a complete graph is a set irregular coloring. From this observation, the
result below follows from a theorem of Harary and Plantholt.

Theorem 2.2 [3] For every integer n > 3,
X (Kpn) =si(Ky) = [logan] + 1.

This leads to a lower bound for the majestic index of a graph G in terms
of its clique number w(G) (the largest order of a complete subgraph in G).

Proposition 2.3 If G is a nonirivial connected graph, then
Xm(G) 2 [loga w(G)] +1.

Proof. Let w(G) = p and let K, be a clique of order pin G with V(K,) =
{u1,u2,...,up}. Suppose that x/,(G) = k and let ¢ : E(G) — [k] be a
majestic k-edge coloring of G. Since u; is adjacent to u; for each integer
J # i where 1 < j < p, it follows that c(u;u;) € ¢/(u;)Ne’(u;) and so ¢/(u;)N
c’(u;) # 0. Consequently, the complement ¢/(u;) of ¢/(u;) (1 < i < n) is not
a color for any vertex of K, and so there are at most 4(2*) = 2%=1 choices
for the colors of the vertices of K,. Hence, p < 2%-1 and so log,p < k — 1.
Thus, x,,(G) = [log, p] + 1. [

We now consider the majestic indexes of some graphs belonging to cer-
tain well-known classes of graphs, beginning with cycles.

Proposition 2.4 For each integer n > 3,

' 2  ifn=0 (mod 4)
Xm(C")“_‘{ 3 ifn 20 (mod 4).
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Proof. First, it is immediate that x/,,(C3) = x/,(Cs) = 3 and x/,,(Cy4) =
2. So, we may assume that n > 6. Suppose that there exists a majestic
2-edge coloring c of Cp, = (v1,%2,...,Vn,Unt1 = v1). Necessarily, there are
two adjacent edges of C,, that are colored differently, say c(v,v;) =1 and
c(vivz) = 2. Thus, ¢/(v1) = {1,2}. Therefore, we must have c(vav3) = 2,
c(vavg) = 1 and c(vqvs) = 1. More generally, ¢(viv;41) = 2 when i = 1,2
(mod 4) and c(v;vi4+1) = 1 when i = 3,0 (mod 4). If n =0 (mod 4), then
c'(v;) = {1,2} if i is odd, ¢'(v;) = {1} if ¢ = 0 (mod 4) and ¢'(v;) = {2}
if i = 2 (mod 4). Hence, c is a majestic 2-edge coloring of C, and so
Xm(Cn) =2 if n =0 (mod 4).

Next, suppose that n is odd. Thus, ¢/(v;) = ¢/(vp-1) = {1} ifn =1
(mod 4) and ¢/(v,) = ¢/(v1) = {1,2} if n = 3 (mod 4). Hence, c is not a
majestic 2-edge coloring of C,, and so x,,(Cr) > 3. If n =1 (mod 4), by
changing the color of v,v; from 1 to 3, we have ¢'(v1) = {2,3}, c/(vn) =
{1,3} and ¢/(va-1) = {1}. If n = 3 (mod 4), by changing the color of v;v2
from 2 to 3, we have ¢/(v;) = {1,3}, ¢/(v2) = {2,3} and '(vn) = {1,2}.
This is a majestic 3-edge coloring and so x/,(C») = 3 if n is odd.

Finally, suppose that n = 2 (mod 4). Hence, ¢/(vh—1) = c(vn) =
c'(v1) = {1,2} and so ¢ is not a majestic 2-edge coloring of C,,. Therefore,
Xim(Cr) = 3. In this case, changing the colors of both v,_v, and v,v; to 3
results in ¢/(vn—1) = {1,3}, ¢/(vn) = {3} and /(v2) = {2,3}. Since this is
a majestic 3-edge coloring, it follows that x},.(C,) =3 ifn=2 (mod 4). m

We now turn our attention to bipartite graphs. First, we determine the
majestic index of complete bipartite graphs.

Proposition 2.5 For positive integers r and s where max{r,s} = s > 2,
X (Kr,s) = 2.

Proof. By Observation 2.1, it suffices to show that K, has a majestic
2-edge coloring. Let U and W be the partite sets of K, ;, where |U| = r
and W = {w;,ws,...,ws}. Assign the color 1 to each edge incident with
w; for 1 < i< s—1 and the color 2 to each edge incident with w,. Then
d(w;)) ={1} for 1 < i < s-1, ¢(ws) = {2} and ¢/(u) = {1,2} for each
u € U. Thus, c is a majestic 2-edge coloring of K. ; and so x/,,(Krs) =2.m

It is well known that if H C G, then x(H) < x(G). This, however, is
not the case for the majestic index. For example, C¢ C K3 3; nevertheless,
X (Ce) = 3 and x/,(K3,3) = 2 by Propositions 2.4 and 2.5. Moreover, for
a connected graph G of order at least 3, it is possible that x(G) < x!.(G),
x(G) = x1.(G) and x(G) > xi.(G). For example, if n = 2 (mod 4) and
n > 6, then x(Cr) = 2 and x},(Cn) = 3 by Proposition 2.4; while if n =0
(mod 4) and n > 4, then x(Cn) = x),(Cn) = 2. Furthermore, if & > 4,
then x(Kx) = k and x,(K) = {log, k] + 1 by Theorem 2.2.
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We saw in Proposition 2.5 that the majestic index of every complete
bipartite graph of order at least 3 is 2 and in Proposition 2.4 that the
majestic chromatic index of every even cycle is 2 or 3. We now show that
the majestic chromatic index of every connected bipartite graph of order 3
or more is either 2 or 3. To verify this, it is convenient to introduce some
additional terminology that was introduced and studied in [1].

Let u be a vertex in a nontrivial connected graph G. A vertex v distinct
from u is called a boundary vertex of u if d(u,v) = k for some positive
integer k and no u — w geodesic of length greater than k contains v. In
particular, every end-vertex of G different from u is a boundary vertex of «.

Theorem 2.6 IfG is a connected bipartite graph of order 3 or more, then
Xm(G) <3.

Proof. Let U and W be the partite sets of G, where U contains at least
two vertices. For a vertex u of U, let

U, = {veV(G): d(u,v) =0 (mod 4)} and
Uy = {veV(G): d(u,v) =2 (mod 4)}.

Thus, U = Uy UU; and W = {v € V(G) : d(u,v) is odd}. Assign the
color 1 to each edge of G incident with a vertex of U; and the color 2 to
each edge of G incident with a vertex of U;. Denote this edge coloring by
¢ and the induced vertex coloring by ¢’. If no vertex of W is a boundary
vertex of u, then every vertex of W has the color {1,2}. Since each vertex
of U has the color {1} or {2}, the coloring c is a majestic 2-edge coloring
of G and so x,(G) = 2.

On the other hand, suppose that one or more vertices of W are boundary
vertices of u. Let w € W be a boundary vertex of u. Then ¢/(w) = {1}
or /(w) = {2}, say the former. For each neighbor z of w on a v —w
geodesic, change the color of zw from 1 to 3. Then ¢'(w) = {3} and
c(z) = {1,3}. This new edge coloring is a majestic 3-edge coloring of G
and so x,,(G) < 3. .

The following result describes those bipartite graphs having majestic
chromatic index 2.

Theorem 2.7 Let G be a connected bipartite graph of order 3 or more.
Then x.,,(G) = 2 if and only if there exists a partition {Uy, Uz, W} of V(G)
such that U = Uy U Uy and W are the partite sets of G and each vertex
w € W has a neighbor in both Uy and Us.

Proof. First, suppose that U and W are the partite sets of G such that U
can be partitioned into two sets U, and U for which every vertex in W has
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a neighbor in each of U; and U,. Define the edge coloring ¢ : E(G) — {1, 2}
by c(e) =i if e is incident with a vertex in U; for ¢ = 1,2. Then ¢/(u) = {3}
ifueU; fori=1,2and ¢(w) = {1,2} for each w € W. Hence, c is a
majestic 2-edge coloring of G and so x,,(G) = 2.

For the converse, suppose that G is a connected bipartite graph of or-
der 3 or more such that x/,(G) = 2. Let U and W be partite sets of G
and let c: E(G) — {1,2} be a majestic 2-coloring of G. Then U is divided
into three sets Uy, U,, and U2, where U; is the set of vertices u with
d(u) = {i} for i = 1,2 and U, 5 is the set of vertices v with ¢/(u) = {1,2}.
Similarly, W is divided into three sets W;, Wy and W; 3. Observe that
the vertices in U; U U, can only be adjacent to vertices in Wi 2 and the
vertices in W) U W, can only be adjacent to vertices in Uy 2. Since G is
connected and no vertex in U 2 can be adjacent to any vertex in Wy g, it
follows that either Uy UU; UW; 2 = 0 or Wy UWoUU, 2 = B; for otherwise,
G would not be connected. We may assume that W, UWo U U2 = 0.
Then {U;,Us, Wy 2} is the desired partition of the vertex set of G since
each vertex w € W, = W must be adjacent to some u; € U; and some
uy € U; to guarantee that ¢'(w) = {1, 2}. »

The following is a consequence of the proof of Theorem 2.6.

Corollary 2.8 Let G be a connected bipartite graph that is not a tree. If
G contains a vertez u such that all boundary vertices of u belong to the
same partite set of u, then x..(G) =2.

The converse of Corollary 2.8 is not true, however. For example, Fig-
ure 1 shows a majestic 2-edge coloring of the 3-cube Q3 (where ¢'(v) = {a}
is denoted by a and ¢/(v) = {a, b} is denoted by ab); so x/,,(Q3) = 2. (We'll
soon say more about the majestic index of the k-cube Qj, in general.) For
each vertex u of @3, there is a unique boundary vertex v of u such that
d(u,v) = 3. Thus, u and v do not belong to the same partite set. Therefore,
there is no vertex u in @3 all of whose boundary vertices belong to the same
partite set as u. In fact, if v and v are boundary vertices of each other,
then u and v belong to different partite sets of @3. Next, we consider the
bipartite graph G of Figure 1 that is is not regular. Since G has a majestic
2-edge coloring shown in Figure 1 (where a solid edge is colored 1 and a
dashed edge is colored 2), it follows that x.,(G) = 2. On the other hand,
for ¢ = 1,2, the vertex v; is a boundary vertex of u;; while d(u;,v;) = 3 and
so v; and u; do not belong to the same partite set. Hence, by symmetry, G
has no vertex u all of whose boundary vertices belong to the same partite
set as u. For trees, the converse of Corollary 2.8 is true, however, as we
show next.
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Figure 1: A bipartite graph G with x..(G) =2

Theorem 2.9 Let T be a tree of order 3 or more. Then x,,(T) = 2 if and
only if the distance between every two end-vertices is even. FEguivalently,
Xm(T) = 2 if and only if all end-vertices of T belong to the same partite
set of T.

Proof. Suppose that T is a tree of order 3 or more such that the distance
between every two end-vertices is even. Let uv be a pendant edge of T,
where u is an end-vertex of T. Assign the color 1 to uv. Let w be any
vertex of T' such that d(u, w) is even. If d(u,w) = 2 (mod 4), then color all
edges incident with w the color 2; while if d(u,w) =0 (mod 4), then color
all edges incident with w the color 1. This is a2 majestic 2-edge coloring and
so Xi,(T) = 2. Note that for any majestic 2-edge coloring of T', the color
of every vertex in one partite set of T is {1,2}, while the color of a vertex
in the other partite set is {1} or {2}.

Next, we verify the converse. Assume to the contrary, that there exists
a tree T of order 3 or more such that x,(T) = 2 but T contains a pair
u, v of end-vertices for which d(u,v) is odd, say d(u,v) = 2k + 1 for some
positive integer k. Let P = (u = uj,u2,...,Ugk42 = v) be the u — v path
in T and let ¢ be a majestic 2-edge coloring of T'. Since u and v are end-
vertices, the colors of u and v are either {1} or {2}. Because u; is adjacent
to u;, the color of u; must be a proper subset of the color of us. So, the
color of ug is {1,2}. Since ug is adjacent to uy, the color of uz must be
a singleton. Continuing this process, we obtain that ¢(us;) = {1,2} and
¢/(uz:—1) is either {1} or {2}. In particular, ¢/(uzk42) = ¢'(v) = {1,2},
which is a contradiction. L

By Theorem 2.9, for each integer n > 3,

; _f 2 ifnisodd
Xm(Fn) = { 3 ifniseven.

129



We saw that the 3-cube Q3 has majestic index 2. In fact, every k-cube,
k > 2, has majestic index 2. Since Qx = Qx—~1 [ K> (the Cartesian product
of Q1 and K3) for k > 3, this fact is a consequence of the following result.
For two disjoint subsets X and Y of vertices of a graph G, let [X, Y] denote
the set of edges joining a vertex of X and a vertex of Y in G.

Theorem 2.10 If G is a nontrivial connected bipartite graph, then
X (G O Kj) =2.

Proof. Let G; and G2 be two copies of G where G, has partite sets Uj
and W, and G; has corresponding partite sets Uz and W,. Then G O K,
has partite sets Uy UW; and U UW,. Let ¢: E(G) — {1,2} be defined by

1 ifee [Ul,W1]U[U1,U2]
=12 ifecUs Wi uWo Wil
Since the induced vertex coloring ¢’ of G 0J K satisfies that

{1} ifvelh
dw)=¢ {2} ifveW,
{1,2} ifveUyUuWs,

it follows that ¢’ is a proper coloring of GO K3 and so x,,(GO K3) =2. =
Corollary 2.11 For each integer k > 2, x},(Qx) = 2.

We have seen that there are connected bipartite graphs G having §(G) €
{1,2} and x/,(G) = 3. This leads to the following problem concerning
connected bipartite graphs having minimum degree at least 3.

Problem 2.12 If G is a connected bipartite graph with §(G) > 3, does it
follow that x.(G) = 27?

According to Theorem 2.6, if G is a connected bipartite graph of order 3
or more, then x/,(G) is either 2 or 3. We next show for graphs G with
x(G) = 3, it is impossible that x!,(G) = 2.

Theorem 2.13 If G is a connected graph with x(G) > 3, then
Xm(G) 2 3.

Proof. Assume, to the contrary, that there exists a graph G with x(G) >
3 such that x,,(G) = 2. Thus, there exists a majestic 2-edge color-
ing ¢ of G, where ¢ is the induced proper vertex coloring of G. Since
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each edge of G is colored 1 or 2, each vertex of G is colored {1}, {2}
or {1,2}. Since x(G) = 3, it follows that G contains an odd cycle C, say
C = (v1,v2,...,V2k+1,V2k+2 = V1), Where k is a positive integer. First,
observe that for each integer ¢ (1 < i < 2k + 1), c(vivi4+1) € ¢/(v;) and
c(vivig1) € ¢/(vig1). Since ¢/(v;) # ¢/(viy1), it follows that exactly one of
d(v;) and ¢’(v;41) is {1,2}, say ¢/(v1) = {1,2}. Then ¢(v;) = {1,2} for ev-
ery integer i € {1,3,...,2k-+1}. However then, ¢’(v1) = ¢/(var+1) = {1, 2},
which is a contradiction. L]

3 The Majestic Number of a Graph

Typically, the graph coloring problems of greatest interest have been those
of determining the minimum positive integer k for which it is possible to
assign colors from the set [k] to the vertices of a graph G in such a way that
adjacent vertices are colored differently. For majestic edge colorings of a
graph G, here too the goal is to determine the minimum positive integer k
but, in this case, we are to assign colors from the set [k] to the edges of G
so that two adjacent vertices of G receive distinct induced colors. While
the vertex colors are selected from the set P([k]) — {0} of nonempty subsets
of [k], it is of interest here as well to determine the minimum number of
vertex colors satisfying these conditions. This leads us to our next topic.

Suppose that G is a connected graph with x/ (G) = k > 2. Then
there exists a majestic k-edge coloring of G where the vertices of G are
then colored with the nonempty subsets of [k]. Among all majestic k-edge
colorings of G, the minimum number of nonempty subsets of [k] needed
to color the vertices of G so that two adjacent vertices of G are colored
differently is called the majestic chromatic number of G or, more simply,
the majestic number of G and is denoted by ¥(G). First, we present a lower
bound for the majestic number of G.

Proposition 3.1 If G is a connected graph of order at least 3, then
¥(G) 2 max{3, x(G)}. (1)

Proof. Since the induced vertex coloring of a majestic edge coloring of G
is a proper vertex coloring, it follows that ¥(G) > x(G). It remains to
show that ¥(G) > 3. This is certainly the case if x(G) > 3. Hence, we
may assume that G is a bipartite graph with x/ ,(G) =k > 2. Let cbe a
majestic k-edge coloring of G for which 9(G) is minimum. Then the edges
of G are colored with at least two colors and there exist two adjacent edges
uv and vw that are assigned distinct colors, say 1 and 2, respectively. Thus,
{1,2} C ¢ (v). Now c'(u) # ¢'(v) # ¢/ (w). If ¢/(u) # ¢'(w), then ¥(G) = 3.
If ¢’'(u) = ¢/(w), then {1,2} C ¢/(u) Nc/(w). Therefore, there is an edge
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incident with one of u and w that is assigned a color different from 1 or
2; say uz is colored 3 but no edge incident with v is colored 3. Therefore,
{1,2,3} C ¢/(u), {1,2,3} € ¢(v) and {3} C c/(z) but c/(z) # ¢/(u). Hence,
d'(z), ¢'(u) and ¢’(v) are three distinct colors and %(G) > 3. ]

Since every majestic 2-edge coloring of a graph gives rise to only three
distinct vertex colors, we have the following;:

Observation 3.2 If G is a connected graph with x,(G) = 2, then
$(@) =3.

Next, we determine the majestic index and majestic number of the
Petersen graph. The following lemma will be useful for this purpose.

Lemma 3.3 Let G be a nonbipartite connected graph such that x,,(G) =
Y(G) = 3. If ¢ is a magestic 3-edge coloring whose induced vertex coloring
uses exactly three vertez colors, then there is no vertex v of G for which
c/(v) is a singleton set.

Proof. Assume, to the contrary, that there is a majestic 3-edge coloring
¢ : E(G) — (3] of G such that the induced vertex coloring ¢’ of G uses
exactly three colors where ¢/(u) is a singleton for some vertex u of G. We
may assume that ¢/(uv) = {1}.

Observe that if e = zy is an edge of G, then c(e) € ¢(z) N ¢/(y). Since
Xm (G) = 3, each of the colors 1, 2, 3 is used to color the edges of G and so
each element in {1, 2,3} belongs to at least two vertex colors. Thus, there
is only one possibility for these three vertex colors of ¢/, namely {1}, {2, 3}
and {1,2,3}. For each i with 0 < i < e(u), let

Vi={zeV(G): d(u,z)=i}.
Observe that
¢(v) = { {1,2,3} if v € V; for odd integers i with 1 < i < e(u)
{1} or {2,3} if v € V; for even integers i with 1 < < e(u).

Since ¢’ is a proper vertex coloring and {1} N {2,3} = 9, it follows that
each set V; is independent. Let U be the union of those sets V; where
0 <i < e(u) and i is even and let W be the union of those sets V; where
1 <i<e(u)and i is odd. Then G is a bipartite graph with partite sets U
and W, which is impossible. "

Proposition 3.4 For the Petersen graph P, x..(P) =3 and ¥(P) = 4.
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Figure 2: A majestic 3-edge colorings of the Petersen graph
with an induced proper 4-vertex coloring

Proof. Since x(P) = 3, it follows by Theorem 2.13 that x,,(P) > 3.
The majestic 3-edge coloring of P in Figure 2 shows that x/,,(P) = 3 and
$(P) < 4.

In order to verify that ¥(P) = 4, we need to show that it is impossible
that ¥(P) = 3. Assume, to the contrary, that there is a majestic 3-edge
coloring ¢ of P with an induced proper 3-vertex coloring ¢/. By Lemma 3.3,
no vertex color is a singleton. Thus, the vertex colors are three of {1, 2},
{1,3}, {2,3} and {1,2,3}. There is essentially only one proper 3-vertex
coloring of the Petersen graph, namely that is shown in Figure 3(a), where
the three vertex colors are denoted by p, g, 7. Since the vertex vs is adjacent
to three vertices that are assigned the same color r, the color r cannot be a
2-element set. Consequently, we may assume that p = {1,2}, ¢ = {1,3} and
r = {1,2,3}. Thus, the color of each edge of P joining vertices colored p
and ¢ is 1 (see Figure 3(b)). Since c(usus) = c(uqvs) = 1, it follows that
c(uqus) = 3. Since c(ujuz) = c(uiv) = 1, it follows that c(ujus) =
2. Hence, c(usvs) = 1. Similarly, c(vaus) = c(vsvs) = 1, contradicting
the assumption that ¢/(vs) = p = {1,2}. Therefore, ¥(P) # 3 and so
P(P) = 4. =

The majestic numbers of paths and cycles have been determined. Since
the proofs of these two formulas are relatively lengthy, we state these for-
mulas without proofs.

Theorem 3.5 For each integer n 2 3,

3 ifnisodd
Y(Pa)=1< 4 ifnisevenandn#6
5 ifn=86.
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Figure 3: A step in the proof of Proposition 3.4

Theorem 3.6 For each integer n > 4,

_ [ 3 i n=0(mod4) orn=0(mod 3)
¥(Cn) = { 4  otherwise.

We saw in Proposition 2.5 that if G is a complete bipartite graph of order
at least 3, then x(G) = x!,(G) = 2. Thus, ¥(G) = 3 by Observation 3.2
and so ¥(G) > x(G). This is not the case for complete multipartite graphs
that are not bipartite, however.

Proposition 3.7 If G is a complete £-partite graph with £ > 3, then
Y(G) = x(G).

Proof. Suppose that G is a complete ¢-partite graph, where £ > 3 and
Vi, Va, ..., Ve are the partite sets of G. By (1), it follows that ¥(G) > x(G).
Thus, it remains to show that ¥(G) < x(G). To show this, it suffices to
show that there is a majestic x(G)-edge coloring of G whose induced vertex
coloring uses x(G) colors.

For ¢ = 3, assign the color 1 to each edge of [V;, V3], the color 2 to each
edge of [V3, V3] and the color 3 to each edge of [V2, Va3]. Thus, ¢(v) = {1,2}
ifveW,dw) ={1,3}ifveV,and ¢/(v) = {2,3} if v € V5. Hence,
%(G) = 3. Suppose next that £ > 4. Color the edges in G[V}; UV, U V3] as
above. For 4 < j < ¢, assign the color j to each edge in [V}, U,?;ll Vil If
v € Vi, then ¢'(v) = [€] - {3}; if v € V5, then ¢/ (v) = [€]—{2}; if v € V3, then
d()=[f]—-{1};andifv € V;for4 < j < ¢ thend(v) = {j,j+1,...,£}. In
particular, ¢/(v) = {¢} for each v € V. Since ¢ is a proper vertex coloring
using £ colors, it follows that x(G) = ¢(G) = ¢. =
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By Proposition 3.7, if G is a complete graph of order n > 3, then
¥(G) =x(G) =n.

4 Comparing the Majestic and Chromatic
Numbers

We have seen for every connected graph G of order n > 3 that ¥(G) 2> x(G)
and have looked at a number of results involving these two parameters
when G has small chromatic number. In the case where G is a complete ¢-
partite graph where ¢ > 3, and so x(G) = ¢, we saw in Proposition 3.7 that
P(G) = x(G). We now consider additional results dealing with majestic
and chromatic numbers of graphs where x(G) is large. For two graphs G
and H, the composition G[H| is obtained by replacing each vertex z of G
by a copy H of H such that every vertex of H,, is adjacent to every vertex
of H, in G[H] if wv € E(G); that is, E(G[H]) = {zy: z € V(H;),y €
V(H,) and zy € E(G)}. The graph C3{K3] is shown in Figure 4.

Figure 4: The graph Cs[Kj]

The majestic number of C,[K3] has been determined for each integer
n > 4. Since the proof of this result is relatively lengthy, we state the result
without proof.

Theorem 4.1 For an integer n > 4, let G = Cp[K3].
* Ifn >4 is even, then x,(G) =3 and ¥(G) = 4.
* If n > 5 is odd, then x.,(G) = 4 and ¥(G) = 5.

It is not difficult to see that there are infinite classes of graphs G with
arbitrarily large chromatic number for which ¥(G) = x(G) and for which
¥(G) = x(G) + 1. We next show the existence of such an infinite class of
graphs G for which ¢(G) = x(G) + 2.

135



For a given graph G, the corona cor(G) of G is obtained from G by
adding a pendant edge to each vertex of G. For each integer n > 3, let G,
be the graph obtained from the corona cor(K,) of the complete graph K,
by subdividing each pendant edge exactly once. Thus, G, has order 3n and
exactly n vertices of degree i for each ¢ € {1, 2,n}. Suppose that the vertices
of the subgraph K, in G, are w;,ws,...,Wn, the vertices of degree 2 in
G, are v1,vs,...,v, and the end-vertices of G,, are uj,us,...,u,, where
(us,vi,w;) is a path of order 3 in G, for 1 < i £ n. The graph G4 is shown
in Figure 5.

u4 O Quy
e /{1
o
4 wy
w3

v3 Q V2
us O/O \o u2

Figure 5: The graph G4

Theorem 4.2 For each integer n > 3,
Xm(Gr) = [logy n] + 1 and ¥(Gp) = x(Gy) + 2.

Proof. For a fixed integer n > 3, let k = [log, n] +1. By Proposition 2.3,

Xm(Gn) 2 k. First, we show that ¥(G,) < x(Gn) + 2. To do this, we

show that there is a majestic k-edge coloring ¢ : E(G,) — [k| of G, such

that the induced vertex coloring ¢’ uses exactly x(Gn) + 2 = n + 2 colors

in P*([k]). If n = 3 or n = 4, then k¥ = 3. Majestic 3-edge colorings are

shown in Figure 6 for G3 and G4. Hence, we may assume that n > 5.
Thus, 2572 +1<n < 2F1 For0<i <k, let

So = {k}, Si = {i,k} for 1 <i <k —1and Si = [K].

For k+1 < i < n —1, choose the sets S; C [k] so that Sy, S1,...,Sn—) are
distinct and k& € S;. Now, we assign each vertex w; (1 < i < n) the set
Si—1. We next define an edge coloring ¢y : E(K,) — [k] of K,, as follows:
For each integer ¢ with 1 < ¢ < k — 1, assign the color ¢ to each edge
Wiy Weyy if ¢ € Sy where £ <t < n—1 and assign the color & to all other
edges of K,,. Figure 7 shows such a 4-edge coloring of Kg, where dashed
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Figure 6: Majestic 3-edge colorings of G3 and G4

edges (and edges that are not drawn) are colored 4. Thus cp(wjt1) = S;
for all j (0 € j £ n—1) and ¢ is a majestic k-edge coloring of K, such
that k € ¢j(v) for each vertex v of Ky.

Figure 7: A majestic 4-edge coloring of Kg
where dashed edges and undrawn edges are colored 4

Next, we construct a majestic k-edge coloring ¢ : E(Gr) — [k] of Gn
from the coloring ¢y of K,, as follows:

* c(e) = cole) if e € E(Ky);
* c(wiv;)) =k forl1 <i<n;
* c(vpug) =2 and e(v;u;) =1for 1 <7< nandiz#?2

Figure 8 shows such a 4-edge coloring of Gg, where dashed edges are col-
ored 4. The induced vertex coloring ¢’ then satisfies the following:
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o /(w) = cp(w) for each w € V(K,),
o c'(v2) = {2,k} # {1,k} = ¢'(w2) and c'(vi) = {1, k} # c’(w;) for
1<i<nandi#2,
o d(uz) ={1} and ¢/(u;) = {2} for 1 < i< nand i #2.
Thus, ¢’ is proper and so ¢ is a majestic k-edge coloring of Gy,. Therefore,
Xm(Gr) = k = [logy n] +1. Furthermore, ¢’ uses exactly n+2 colors (where

{1} and {2} are the only two new colors added to the vertex coloring ¢ of
K,) and so ¥(G,) <n+2.

Figure 8: A majestic 4-edge coloring of Gg

It remains to show that ¥(Gr) > x(Gr) + 2 =n +2. Since x(G,) = n,
it follows that ¥(Gr) > x(Gr) = n. Suppose that x/.(G,) = k. First, we
show that ¥/(Gn) > n + 1. Assume, to the contrary, that ¥(G,) = n. Let
c: E(G,) — [k] be a majestic k-edge coloring of G, such that the induced
vertex coloring ¢’ uses exactly n colors in P*([k]). We may assume that
c(u1v1) = 1 and c(vyw;) = 2. Hence, ¢/(v;) = {1} and /(v1) = {1,2}.
Since 9¥(G,) = n and no two vertices of K,, can be colored the same, there
are two distinct vertices w; and wj, 1 < i < j < m, such that /(w;) =
{1} and ¢'(w;) = {1,2}. This implies that no ¢'(w;) (1 < i < n)is a
singleton different from {1}; for otherwise, suppose that ¢/(w;) = {¢} for
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some t,£ € [n] and £ # 1. Since ¢/(w;) = {1}, there is no appropriate color
available for w;w,, a contradiction. Now either c(vjw;) = 1 or e(vjw;) = 2.
If e(vjw;) = 1, then c(u;v;) ¢ {1,2} and so ¢(u;v;) = 3. This implies that
c/(u;) = {3}. However then, the color of some vertex w; (1 <t < n) must
be {3}, which is a contradiction. If c(v;w;) = 2, then c(v;v;) ¢ {1,2},
which again is a contradiction. Therefore, ¥(G,) >n +1.

Next, we show that ¥(G,) = n 4+ 2. Assume, to the contrary, that
¥(Gp) = n+1. Let c: E(Gn) — [k] be a majestic k-edge coloring of G,
such that the induced vertex coloring ¢’ uses exactly n+1 colors in P*([k]).
Again, we may assume that c(ujv1) =1 and c(viw,) = 2. Hence, ¢'(u1) =
{1} and ¢/(v1) = {1,2}. Since no two vertices of K, can be colored the
same, there is at least one vertex w; (1 < i < n) such that ¢/(w;) = {1} or
c'(w;) = {1,2}.

First, suppose that ¢/(w;) = {1} for some ¢ with 1 < ¢ < n. Since
c(viw;) = 2, it follows that i # 1. We may assume that ¢/(wq) = {1}.
Thus, c(vawe) = 1 and c(ugvy) # 1. Assume that c(u2vz) = a # 1.
Then ¢'(uz) = {a} and ¢/(v2) = {1,a}. Since ¢'(w2) = {1} and a # 1,
it follows that ¢’(w;) # {a} for all i with 1 < i < n and so {a} is the
(n + 1)th color. Observe that ¢/(v2) = {1,a} must be used for some w;
where 4 < i < n, say ¢(wg) = {1,a}. Thus, c(vqwq) € {1,a}, which
implies that c(vqus) = £ # a. Hence, ¢/(u4) = {€} and so there is a vertex
w, such that ¢/(w,) = {€¢}. However then, there is no appropriate color
available for wyw,, which is a contradiction.

Thus, ¢/(w;) # {1} for all i with 1 < i < n and so {1} is the (n +
1)th color. Therefore, ¢/(w;) = {1,2} for some i with 1 < i < n. Since
c(vywy) = 2 and c'(v1) = {1,2}, it follows that ¢ # 1. We may assume
that ¢/(wz) = {1,2}. Thus, c(wpvz) € {1,2} and so c(vous) = a ¢ {1,2}.
Hence, ¢(uz) = {a} and {a} must be the color of some vertex w;. Because
c(wz) = {1,2} and a ¢ {1,2}, it follows that ¢/(w;) # {a} for all i with
1 < i < n, which is impossible. Therefore, ¥(G,) > n + 2 and so ¥(G,) =
n+ 2. (]

Next, we describe an infinite class of graphs G with arbitrarily large
chromatic number for which ¥(G) = x(G) + 3. A double corona of G is
obtained from G by adding two pendant edges to each vertex of G. Thus,
if the order of G is n, then the order of cor(G) is 2n and the order of the
double corona of G is 3n. For each integer n > 3, let H, be the graph
constructed from the double corona of the complete graph K, as follows.
For each pair of pendant edges at a vertex of K, subdivide one pendant
edge exactly once and the other pendant edge exactly twice. Thus, H,, has
order 6n, exactly n vertices of degree i for each ¢ € {1,n} and exactly 3n
vertices of degree 2. The proof of the next theorem is similar to but more
complex than the proof of Theorem 4.2, and, thus, we omit it.
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Theorem 4.3 For each integer n > 3,
Xon(Hr) = [logan] + 1 and ¥(Hy) = x(Hn) + 3.

We have now seen that there infinitely many connected graphs G satis-
fying each of the following:

(i) ¥(G) = x(G);
(i) ¥(G) =x(G) +1;
(iii) ¥(G) = x(G) +2;
(iv) ¥(G) = x(G) +3.
This brings up the following two related questions:

Problem 4.4 For a given positive integer k, does there exist a connected
graph Fy, such that ¥(Fy) = x(Fx) + k?

Problem 4.5 Does there ezist a positive integer K such that $(F) <
x(F) + K for every connected graph F?

We conclude with an additional question.

Problem 4.6 Does there exist a connected graph G having a majestic k-
edge coloring with k > x},(G) such that the number of vertez colors is p
where p < ¥(G)?
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