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Abstract

In a red-blue coloring of a graph G, every edge of G is colored
red or blue. For two graphs F' and H, the Ramsey number
R(F, H) of F and H is the smallest positive integer n such that
every red-blue coloring of the complete graph K, of order n
results in either a subgraph isomorphic to F' all of whose edges
are colored red or a subgraph isomorphic to H all of whose edges
are colored blue. While the study of Ramsey numbers has been
a popular area of research in graph theory, over the years a
number of variations of Ramsey numbers have been introduced.
We look at several of these, with special emphasis on some of
those introduced more recently.
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1 Introduction

The famous mathematician Ronald Graham has stated that Ramsey theory
is a branch of mathematics dedicated to the proposition that complete dis-
order is impossible (a statement attributed to the mathematician Theodore
S. Motzkin) in the sense that within any sufficiently large system, some
regularity must occur. Ramsey theory has also been described as the study
of unavoidable regularity in large structures, where the primary question is:
When is it the case that whenever the elements of some sufficiently large
structure are partitioned into a finite number of classes, there is always at
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least one class within which a prescribed regular structure occurs? When
the structures in question are graphs whose edges are colored with a finite
number of colors, resulting in a decomposition, and the desired class is a
subgraph whose edges are colored the same, then the Ramsey theory being
discussed is that in graph theory.

In a red-blue coloring of a graph G, every edge of G is colored red or
blue. For two graphs F and H, the Ramsey number R(F, H) of F and H is
the smallest positive integer n such that for every red-blue coloring of the
complete graph K,, of order 7, there is either a subgraph isomorphic to F’
all of whose edges are colored red (a red F') or a subgraph isomorphic to H
all of whose edges are colored blue (a blue H). A graph all of whose edges
are colored the same is called a monochromatic graph. The investigation of
Ramsey numbers is one of the best known topics of study within Extremal
Graph Theory. A book by Graham, Rothschild and Spencer (31] is devoted
to this area of study. In addition, a chapter on Ramsey numbers by Faudree
in the Handbook of Graph Theory (33, pp. 1002-1025] is devoted, as well,
to Ramsey numbers.

Ramsey numbers are named for Frank Ramsey (1903-1930), a British
philosopher, economist and mathematician. The theorem for which Ramsey
is known was proved only as a minor lemma in a famous paper [43] by
Ramsey. This lemma became the basis of the area of graph theory called
Ramsey theory.

While the study of Ramsey numbers has been a popular area of re-
search in graph theory, over the years a number of variations of Ramsey
numbers have been introduced. We describe several of these here, with
special emphasis on some of those introduced more recently. We present
several results and open questions in this area of research. While many
results obtained on Ramsey numbers and their variations involve bounds,
our primary emphasis here is describing some of the exact results obtained.
We refer to the book [10] for graph theory notation and terminology not
described in this paper.

2 Ramsey Numbers

When F and H are both complete graphs, the Ramsey numbers R(F, H)
are often referred to as classical Ramsey numbers. For integers s,t > 3,
only a handful of classical Ramsey numbers R(K,, K;) are known. The
complete list of known classical Ramsey numbers R(K,,K;) for 3<s <t
is given below.

R(K3,K3) =6  R(Ks,K¢)=18 R(Ks, Ko) =36
R(K3,Ki) =9  R(Ka, K:)=23 R(K4 Ky =18
R(K3,Ks) =14 R(Ks,Ks)=28 R(K4, Ks) = 25.
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In particular, the exact value of R(Ks, Ks) is not known. It is only known
that 44 < R(K5,Ks) < 49. The best known of the Ramsey numbers
listed above is R(K3, K3) = 6. One interpretation of this number is that
in any group of six people every two of which are either acquaintances or
strangers, there is always three among them who are mutual acquaintances
or mutual strangers. Since the red-blue coloring of Ky whose red and blue
subgraphs are both Cs does not produce a monochromatic K3, it follows
that R(K3, K3) > 6. To verify that R(Kj3,K3) < 6, it remains to show
that every red-blue coloring of K¢ produces a monochromatic K3. Let
V(Ks) = {u,v,w,z,y, z} and let there be given a red-blue coloring of K.
We may assume that zu,zv,zw are colored the same, say red. If one of
the edges uv, vw, uw is red, then there is a red Kj3; while if all three edges
uv, vw, uw are blue, then there is a blue K3. Therefore, R(K3, K3) = 6.

It is a consequence of a theorem of Ramsey [43] that R(F, H) exists for
every pair F, H of graphs. Furthermore, it is a result of Erdés and Szekeres
[22] that if F is a graph of order s and H is a graph of order ¢, then

s+t—2)

R(F,H) < R(K,, K:) < ( s—1

The exact values of R(F, H) have been determined only for pairs F, H of
graphs belonging to relatively few classes. Some of these are listed below
(also see (39, 41, 42]).

Theorem 2.1 [13] Let T be a tree of order p > 2. For every integern > 2,
R(T,K,)=(p—-1)(n-1)+1.
Theorem 2.2 [28] For integersn and m with2 <m < n,
R(P,,Pn)=n—-1+4+|m/2].
Theorem 2.3 {25] Let m and n be integers with 3 < m < n.
(1) If m is odd, where (m,n) # (3,3), then
R(Cp,Cpn) =2n—1.
(2) If m and n are even, where (m,n) # (4,4), then
R(Cm,Cr)=n+m/2 —1.
(3) If m is even and n is odd,

R(Cp,,C,) =max{n+m/2 -1, 2m —1}.
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(4) R(C3,C3) = R(C4,Cy) =6.
Theorem 2.4 (15, 16] For integers s and t with2 < s <t,
R(sK2,tKa) =s+2t—1.

More generally, for every k > 2 graphs Fy, F, . .., Fi, there exists a least
positive integer n such that for every edge coloring of K, with the colors
1,2,...,k, there exists a subgraph of K, isomorphic to F; for some ¢ with
1 € i < k such that every edge of this subgraph is colored i. This integer
n is the Ramsey number R(Fy, Fa, ..., F}) of Fy, Fs,..., F, which always
exists. The only classical Ramsey numbers whose value is known when &k >
3 and where all complete graphs have order at least 3 is R(K3, K3, K3) = 17
(see [32]) and, reportedly, R(K3, K3, K4) = 30 (see [17]).

To see that R(K3,K3,K3) < 17, let there be given a red-blue-green
coloring of the edges of G = K7 and let v be a vertex of G. Therefore,
degv = 16. At least six edges incident with v are colored the same. Hence,
we may assume that vvy,vve,...,vvs are six edges of G, all colored green.
If any two vertices of U = {v;,vs,...,v6} are joined by a green edge, then
G contains a green K3. Otherwise, every edge of the induced subgraph
H = G[U] is colored red or blue. Since H = K¢ and R(K3,K3) = 6,
it follows that H, and G as well, contains either a red K3 or a blue Kj.
Therefore, R(K3, K3,K3) < 17. Since the complete graph K¢ has an
isomorphic factorization into three factors, each of which is the 5-regular
triangle-free graph (called the Clebsch graph [14]) shown in Figure 1, it
follows that R(K3, K3, K3) > 16 and so R(K3, K3, K3) = 17.

This more general Ramsey number has also been determined when all
graphs F; are stars.

Theorem 2.5 (7] Let sy,52,...,8k be k > 2 positive integers, t of which
are even, and let s = Z:f:l(s,' —1). Then

s+ 1 ift is positive and even

R(Kl,.S[,Kl,SQ!"'!KI,Sk)={ S+2 othemu’ise.

If F and H are graphs such that F = H, then
R(F,H)=R(H,F)=R(F,F)

is the smallest positive integer n such that if each edge of K, is colored
with one of two colors, then a monochromatic F results. This leads to the
following definition. For two graphs F' and H, the monochromatic Ram-
sey number M R(F, H) is the smallest positive integer n such that if each
edge of K, is colored with one of two colors, then a monochromatic F or
a monochromatic H results. Certainly, MR(F, H) = MR(H, F) for every
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Figure 1: The Clebsch graph

two graphs F' and H. Also, MR(F,H) < R(F, H). Furthermore, if F = H,
then MR(F,H) = R(F,H) and if F C H, then MR(F,H) = R(F, F) (see
[11, pp. 315-320]). By Theorem 2.3, R(Cs,Cy4) = 7. Next, we show that
MR(Cs,C,) = 6. Since the red-blue coloring of K in which both red and
blue subgraphs are Cs avoids both a monochromatic C3 and a monochro-
matic Cy, it follows that M R(C3,C4) > 6. Since R(K3, K3) = 6, it follows
that MR(C3,C4) < 6 and so MR(C3,C4) = 6. Thus, MR(C5,C4) <
R(C3,Cy).

3 Arrowing and Size Ramsey Numbers

While the definitions of the Ramsey number R(F,H) of two graphs F
and H and that of the more general R(F,Fs,...,Fi) of k > 3 graphs
F\, F,,..., F; concern edge colorings of complete graphs, with two colors
in the first instance and k colors in the second instance, there has been
research dealing with graphs that are not necessarily complete. In this
case, different terminology and notation are used.
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Let F and H be two graphs. A graph G is said to arrow the graphs F
and H, written G — (F, H), if every red-blue coloring of G results in ared F’
or a blue H. In this case, the primary problem concerns either determining
graphs G or properties of graphs G for which G — (F, H). Obviously,
one such graph G with this property is K, where r = R(F, H). Indeed,
any graph G with clique number w(G) > r has this property. Among the
results obtained dealing with this concept are the following (see [9, 26, 38],
for example).

Proposition 3.1 If G is a graph for which G = (Km, K;,), where m,n >
2, then w(G) > max{m,n}.

Theorem 3.2 If G is a graph for which G — (K, K,), where m,n > 2,
then x(G) > R(Km, K»).

Theorem 3.3 If G is a connected graph and n is a positive integer, then
G — (K, K1,n) if and only if (i) A(G) > 2n —1 or (ii) n is even and G
is a (2n — 2)-regular graph of odd order.

For two graphs F and H, the size Ramsey number R(F, H) of F and H
is the smallest size of a graph G such that G — (F, H). Bounds on the size
Ramsey numbers of paths, cycles or trees have been established in terms of
the order and maximum degree of the graphs (see {3, 4, 8, 20], for example).

Proposition 3.4 [20] For two graphs F and H,
|E(F)| + |E(H)| — 1 < R(F,H) < (RGH),
Theorem 3.5 [20] For positive integers m, n, s and t,
() R(Km, Kn) = (U35
(i) R(sKym,tK1n) = (m+n—1)(s+t—1).

4 Bipartite Ramsey Numbers

For two bipartite graphs F' and H, the bipartite Ramsey number BR(F, H)
is defined as the smallest positive integer r such that every red-blue coloring
of the r-regular complete bipartite graph K., results in either ared F or a
blue H. Consequently, if BR(F, H) = r for bipartite graphs F and H, then
every red-blue coloring of K., results in a red F or a blue H, while there
exists a red-blue coloring of K,._1,-1 for which there is neither a red F
nor a blue H. To illustrate these concepts, we show that BR(Cy4,Cy4) = 5.
Since the red-blue coloring of K4 4, both of whose red and blue subgraph
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Figure 2: A red-blue coloring of K 4

are Cs shown in Figure 2(a) and (b) avoids both a red Cy and a blue Cy,
it follows that BR(C,,Cy) > 5.

To verify that BR(Cy,C4) < 5, it remains to show that every red-
blue coloring of K35 results in a monochromatic Cy. Let there be given
a red-blue coloring of G = Kjs5 where U = {uj,us,...,us} and W =
{v1,v2,...,vs} are the partite sets of K55. We may assume that the red
subgraph Gr of G contains at least 13 edges and so A(Gr) > 3. If thereisa
vertex v € U such that degg, v = 5, then degg, u < 1 for each u € U — {v}
and so the size of GRr is at most 9. If there is a vertex v € U such that
degg, v = 4, then degg, u < 2 for each u € U—{v} and so the size of Gr is
at most 12. Thus, A(Gg) = 3 and at least three vertices in U have degree
3 in Gp, say uj,us,u3. Furthermore, we may assume that u w; € E(GR)
for i =1,2,3 and uow; € E(Gp) for i = 3,4,5. However then, no matter
how the red edges incident with uz are located in Kj s, there is a red Cjy.
Therefore, BR(Cjy,Cy4) = 5.

It is known that BR(F, H) exists for every two bipartite graphs F and H
(see [5]). Indeed, if F is a bipartite graph whose largest partite set contains
s vertices and H is a bipartite graph whose largest partite set contains ¢
vertices, then F C K, ; and H C K, resulting in the following result of
Hattingh and Henning.

Theorem 4.1 [34] If F and H are bipartite graphs such that F C K, ,
and H C K, then

BR(F, H) < BR(K,.,, Kus) < (s:t) _1

The following results and a conjecture were obtained on bipartite Ram-
sey numbers.

Theorem 4.2 [12] For integers s and t with 2 < s <t,

BR(sKy,tKy) = s+t —1.
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Theorem 4.3 [5] For positive integer t,
BR(Ki4, K1) =2t - 1.
Conjecture 4.4 [5] For integers s and t with 1 < s <t,

BR(Ky 4, Kop) =2°(t—1) +1

5 k-Ramsey Numbers

We have seen that if BR(F, H) = r for bipartite graphs F' and H, then
every red-blue coloring of K, results in a red F or a blue H, while there
exists a red-blue coloring of K,_; -—1 for which there is neither a red F' nor
a blue H. This brings up the question of what might occur for red-blue
colorings of the intermediate graph K,._;,. This led to a more general
concept.

For bipartite graphs F' and H, the 2-Ramsey number Ry(F,H) of F
and H is the smallest positive integer n such that every red-blue coloring of
the complete bipartite graph K| 2 n/21 of order n results in a red F' or a
blue H. If the bipartite Ramsey number BR(F, H) of two bipartite graphs
F and H is r, then every red-blue coloring of K, , produces a red F or a
blue H, while there exists a red-blue coloring of K,_;,—; that produces
neither. Which of these two situations occurs for the graph K,_,; , depends
on the graphs F' and H. That is, either

Ry(F, H) = 2BR(F, H) or Ry(F, H) = 2BR(F, H) — 1. )

To illustrate this concept, we show that Ry(Cy4,Cy) = 10. We saw that
BR(Cq,C4) = 5. Hence, R2(04,C4) = 10 or R2(C4,C4) =9 In fact,
there is a red-blue coloring of K45 that results in neither a red C4 nor a
blue C4. To see this, consider the red-blue coloring of K45 in which both
the red subgraph shown in Figure 3(a) and the blue subgraph shown in
Figure 3(b) are isomorphic to the graph in Figure 3(c). Since the graph
in Figure 3(c) does not contain Cy as a subgraph, this red-blue coloring of
K45 avoids both a red Cy and a blue Cy. Therefore, Ry(Cy4,Cy) > 10 and
fle] R2(C4, C4) =10.

The concept of the 2-Ramsey number of two bipartite graphs is a special
case of a more general concept. For an integer k > 2, a balanced complete
k-partite graph of order n > k is the complete k-partite graph in which
every partite set has either [n/k} or [n/k] vertices. So if n = kg +r where
g>1and 0 £ 7 £k —1, then the balanced complete k-partite graph G
of order n has r partite sets with g + 1 vertices and the remaining k — r
partite sets have g vertices. For bipartite graphs F and H and an integer
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Figure 3: A red-blue coloring of K45

k with 2 < k < R(F, H), the k-Ramsey number Ry(F, H) is defined as the
smallest positive integer n such that every red-blue coloring of a balanced
complete k-partite graph of order n results in a red F or a blue H.

If F and H are two bipartite graphs for which R(F,H) =n > 3, then
every red-blue coloring of K., produces either a red F or a blue H. However,
such is not the case for the smaller complete graphs K, Ka, ..., Kn—1.
Equivalently, for every red-blue coloring of the complete n-partite graph
K, where each partite set consists of a single vertex, there is either a red
F or a blue H. However, for each complete k-partite graph K}, where
2 < k < n — 1 such that every partite set consists of a single vertex, there
exists a red-blue coloring that produces neither a red F' nor a blue H. On
the other hand, for each of the graphs K5, Kj, ..., K,,_1, we can continue to
add vertices to each partite set, resulting in a balanced complete k-partite
graph at each step where 2 < k£ < n — 1 until eventually arriving at the
balanced complete k-partite graph of smallest order Ry (F, H) having the
property that every red-blue coloring of this graph produces a red F or a
blue H. Consequently, for every two bipartite graphs F and H and every
integer k with 2 < k < R(F, H), the k-Ramsey number Ry (F, H) exists.

For example, it is known that R(C4,C4) = 6. Furthermore, we saw
that BR(C,,C4) = 5 and R2(C4,C4) = 10. In fact, R¢(Cy,Cy) = 12 — k
for 2 < k < 6 = R(C4,Cy) (see [1]). As an illustration, we show that
R3(C4,C4) = 9. Let H be a balanced complete 3-partite graph of order 8.
Then H = K3 33. Figure 4 shows a red-blue coloring of H having neither
a red Cy4 nor a blue Cy, where the bold edges represent edges colored red.
Thus R3(04, Cq) > 9.

Figure 4: A red-blue coloring of K333
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To show that R3(Cy,Cy) = 9, it remains to show that every red-blue
coloring of G = K333 results in a monochromatic C4. Assume, to the
contrary, that there is a red-blue coloring of G that produces neither a red
Cy4 nor a blue Cy. Let Gr and Gg denote the red and blue subgraphs of
G, respectively, of sizes mp and mp. We may assume that mg > mp.
Since mg + mp = 27, it follows that mg > 14. Let V1,V; and V3 be the
three partite sets of G and, for 1 < i < j < 3, let [V;, V;] denote the nine
edges of G joining V; and V;. Let G; denote the subgraph of size m’p in
GRr with vertex set V] U V; such that E(G%) C [V4,V2]. The subgraphs

'z and G with vertex sets V, U V3 and V; U V3 and sizes m}p and mfp,

respectively, are defined similarly. We may assume that mz > m% > m%
and so my +m} > 10. Let Vi = {u;,ug,u3}, Va = {v1,v2,v3} and V3 =
{w1, w2, ws}. Observe that if any of w1, us and usz has degree 3 in G, say
uy, then uy and u3 have degree at most 1 in G’; and each of w;,wy and ws
has degree at most 1 in G, for otherwise, a red Cy4 is produced. However
then, my + m} < 8, a contradiction. Consequently, each of u;,u2 and u3
has degree at most 2 in G'z. Therefore, m% = 6 or my = 5. In either case,
it can be shown that there is a red Cj, producing a contradiction.

The following three results on k-Ramsey numbers were obtained in [2].

Proposition 5.1 Let F and H be two bipartite graphs. If k is an integer
with 2 < k < R(F, H), then R(F,H) < Ri(F, H).

Proposition 5.2 Let F and H be two bipartite graphs. If k and £ are
positive integers with k > 2, then Ry (F,H) < Ry(F, H).

Proposition 5.3 Let F and H be two bipartite graphs. If k is an integer
with k < R(F, H) for which Ri(F, H) = R(F,H) and 2EH=1 < 9 then

Rl(FaH) = Rk(F’H)
for each integer £ with k < £ < R(F, H).
By Theorem 2.5, for two integers s,t > 2,

s+t—1 if s andtare both even @)

R(K1,s, K1) = { s+t otherwise.

Thus, if kK = R(K1,5,K1,¢), then Ri(Ky 4, K1) is expressed in (2). The
k-Ramsey number of stars have been determined for all possible values of &

in [1].

Theorem 5.4 For each integert > 2, Ry(K12, K1) =2t + 1.
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Theorem 5.5 Let k,s and t be integers with 3 < k < R(K,,,K,,:) and
s+t>5.

(a) If s+t —2=(k—1)q for some positive integer q, then

kq if k and q are odd and s and t are even

Ri(Ky,5, K1) =
t(Koer o) { kg +1 otherwise.

() If s+t —2 = (k—1)g +r for integers q and r where ¢ > 1 and
1<r<k-2, then

kq+r if (k —r)q is odd and s and t
Ri(K1,, K1) = are of opposite parity
kg+7r+1 otherwise.

Consequently, when 3 < k < R(K},5, K1) and s+t 2 5, it follows that
Ri(Ki,s, K1) is either s+t —2+ | 552 | or s+t -1+ I_-’kii"l—zj, depending
on the values of &, s and ¢ in Theorem 5.5.

The bipartite Ramsey number of two stripes was determined in [12].
Theorem 5.6 [12] For integers s and t with2 < s <t,

BR(sK,,tKy) =s+t—1.

In (2], the k-Ramsey numbers were determined for certain stripes F' and
H and for certain values of k. By Theorem 2.4 and Proposition 5.1, for
integers k, s and t with 2 < s <t and 2 £ k < R(sKj3, tK>), it follows that

Rk(us, th) >s+2t-1. (3)

By (1), if the bipartite Ramsey number BR(F, H) of two bipartite
graphs F and H is r, then Ro(F,H) = 2r or Ry(F,H) = 2r - 1. In
the case of stripes, Ra(sKs,tK2) = 2BR(sK3,tK3), which provides the
following result [2].

Proposition 5.7 For integers s andt with2 < s < ¢,
Ry(sK3,tKp) =25+ 2t - 2.

The k-Ramsey numbers of Ry (sK3,tK>) are determined in [2] for (i) all
s=2,3and t > 2 and (ii}) k = 3,4 and ¢ > s > 2. We state these results
next.
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Theorem 5.8 For integers k and t with 2 < k < R(2K,,tK3) and t > 2,

%+2 ifk=2

R (2K,,tK3) =
«(2K: 2) {2t+1 otherwise.

Theorem 5.9 For integers k and t with 2 < k < R(3K3,tK3) andt > 3,

A+4 ifk=2

Ri.(3K5,tK3) =
£(3K: 2) {2t+2 otherwise.

Theorem 5.10 For integers s, t and k with2 < s <t and k € {3,4},
Rk(SKg,tKQ) =s+2t—1.
In fact, there is a conjecture on the k-Ramsey number of stripes [2].

Conjecture 5.11 For integers k, s andt with2 < s <t, if5 <k <
R(sK;,tK,), then
R (sK2,tKo) =s+2t — 1.

We have seen in (3) that Ri(sK2,tK;) > s+ 2t — 1 for all integers &k
with 3 < k € R(sK3,tK3). Thus, by Proposition 5.2 and Theorem 5.10,
to verify Conjecture 5.11, it suffices to establish the conjecture for primes
k with k > 5.

While the k-Ramsey number R (F,H) exists for every two bipartite
graphs F' and H when 2 < k < R(F, H), such is not the case when F and
H are not bipartite. For graphs F' and H that are not bipartite, it was
observed in [36] that not only does Ry(F, H) fail to exist but R3(F, H) and
R(F, H) also do not exist. To see this, let G be any balanced complete
3-partite graph with partite sets V;, Vo and V3. Assigning the color red to
every edge of [V, V5] and blue to all other edges of G results in Gg and Gg
both being bipartite. Similarly, if G is a balanced complete 4-partite graph
with partite sets V4, V,, V3 and V4 and the color red is assigned to every
edge of [V1, V5]U[Va, V3] U[Va, V4] and blue to all other edges of G, then G
and Gg are both bipartite. Indeed, even if x(F) = x(H) = 3, Rs(F, H)
need not exist. For example, Rs(K3, K3) does not exist. To see this, let G
be a balanced complete 5-partite graph with partite sets V; for 1 < ¢ < 5. If
the edges in [V}, Vo]U[Va, V3]U[Va, ViU [ Vs, Vs)U[Vs, V1] are colored red and
all other edges are colored blue, then G does not contain a monochromatic
K3. Consequently, R(K3, K3) exists only when k = R(K3,K3) = 6. On
the other hand, Rs(F, H) can exist when x(F) = x(H) = 3 as the following
result shows (see [36]).
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Theorem 5.12 Ifk and ¢ are integers with k, € > 2, then R5(Cagy1, Cak+1)
exists.

The k-Ramsey numbers of some well-known class of non-bipartite graphs
has been investigated (see [36, 35]).

We have seen that Ramsey numbers are defined for three or more
graphs. In particular, for three graphs Fi, F; and F3, the Ramsey number
R(F,, F, F3) of F1, F; and F; is the smallest positive integer n for which
every red-blue-green coloring of the complete graph K, of order n results
in a red Fi, a blue F; or a green F3. This gives rise to the concept of
k-Ramsey number of three (or more) graphs. For three graphs Fy, F3 and
Fy and an integer k with 2 < k < R(F}, F;, F3), the k-Ramsey number
Ry (Fy, Fy, F3) of Fi, F, and Fj, if it exists, is the smallest order of a bal-
anced complete k-partite graph G for which every red-blue-green coloring
of the edges of G results in a red F}, a blue F; or a green Fj3. In particular,
if k =2 and F; & F for some graph F where ¢ = 1,2, 3, then the 2-Ramsey
number Ry(F, F, F) is the smallest order of a balanced complete bipartite
graph G for which every red-blue-green coloring of the edges of G results in
a monochromatic F' (all of whose edges are colored the same). For example,
it was shown in [29] that BR(C4, C4,C4) = 11. Furthermore, it was shown
in [37] that R2(04,C4,C4) < 21. Therefore, Rg(C4,C4,C4) =21.

6 Rainbow Ramsey Numbers

A subgraph F of an edge-colored graph G is said to be a reinbow F if
no two edges of F are colored the same. For a graph G, Bialostocki and
Voxman [6] defined the rainbow Ramsey number RR(G) of G as the smallest
positive integer n such that if each edge of the complete graph K, is colored
from any number of colors, then either a monochromatic G or a rainbow
G results. The rainbow Ramsey number RR(G) does not exist for all
graphs G. While the Ramsey number R(Kj3, K3) = 6, the rainbow Ramsey
number RR(K3) does not exist. To see this, let n be an arbitrary positive
integer and let V(K,) = {vo,v1,...,Vn—1}. Consider the edge coloring
¢ : E(K,) — [n — 1] defined by c(viv;) = j if i < j. Let T be any
triangle of K, with V(T) = {v;,v;,v} and ¢ < j < k. Since c(viv;) = j
and c(v;ux) = c(v;vx) = k, the triangle T is neither monochromatic nor
rainbow. Consequently, RR(K3) does not exist.

Bialostocki and Voxman [6] characterized those graphs G for which
RR(G) exists.

Theorem 6.1 The rainbow Ramsey number RR(G) of a graph G is de-
fined if and only if G is acyclic.

171



The proof of this result follows from a theorem due to Erdés and Rado.
In order to state this theorem, some additional definitions are needed. Let
¢ be an edge coloring of a graph G with vertex set {v;,vs,...,vn} such
that the colors are positive integers. In a minimum coloring of G, each
edge v;v; of G is colored min{z, j}; in a mazimum coloring of G, each edge
v;v; is colored max{i,j}. An edge coloring of G that is either minimum,
maximum, monochromatic or rainbow is called a canonical coloring. Erdés
and Rado [21] proved the following result.

Theorem 6.2 For every positive integer k, there exists a positive integern
such that every edge coloring of K, contains a canonically colored complete
subgraph of order k.

Bialostocki and Voxman (6] obtained the following result.

Theorem 6.3 For every positive integer n,
RR(nK;) =n(n—1)+2.

Eroh [23, 24] extended the rainbow Ramsey number from one graph to
two graphs. For graphs F' and H, the rainbow Ramsey number RR(F, H) is
the smallest positive integer n such that if the edges of K, are colored with
an arbitrary number of colors, either a monochromatic F' or a rainbow H
results. As expected, RR(F, H) exists only under certain conditions. The
following theorem is a consequence of Theorem 6.2.

Theorem 6.4 The rainbow Ramsey number RR(F, H) of two graphs F
and H ezists if and only if F is a star or H is a forest.

_ Among the exact values of RR(F, H) obtained by Eroh [23, 24] are the
following.

Theorem 6.5 For positive integers s and t,
RR(K, 5, K1) =(s—1)(t-1)+2.
Theorem 6.6 For integers s andt with2 <t <s,

RR(sK,, tKy) =t(s—1)+2.

There is another type of rainbow Ramsey number of graphs. Let F
and H be two graphs, where H has size m. For a fixed integer k > m,
the k-rainbow Ramsey number RRy(F, H) is the smallest positive integer
n such that every k-edge coloring of K, results in either a monochromatic
F or a rainbow H (see [11, pp. 319-320]). Unlike the rainbow Ramsey
number RR(F, H), the number RR(F, H) always exists. For example,
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while RR(K3, K3) does not exist, RR3(K3, K3) = 11. The red-blue-green
coloring of Ko, where the green subgraph is K55 and the red and blue
subgraphs are two disjoint copies of Cs produces neither a monochromatic
nor arainbow K3. Thus, RR3(K3, K3) > 11. Showing that RR3(K3, K3) <
11 is more complicated. There is a dynamic survey on this topic by Fujita,
Magnant and Ozeki [27].

7 Edge-Chromatic Ramsey Numbers and
Proper Ramsey Numbers

While edge colorings of a graph that result in certain monochromatic or
rainbow subgraphs have been the subject of much research, the edge color-
ings receiving the most attention are proper edge colorings, in which every
two adjacent edges are assigned different colors. The minimum number of
colors required of a proper edge coloring of a graph G is the chromatic in-
dez of G, denoted by x/(G). It is an immediate observation that for every
nonempty graph G, the chromatic index of G is at least as large as the
maximum degree A(G) of G. The best known and most useful result on
edge colorings was obtained by Vizing [44].

Theorem 7.1 (Vizing's Theorem) For every nonempty graph G,
X'(G) < A(G) + 1.

Thus, by Vizing’s theorem, for every nonempty graph G with maximum
degree A, either x/(G) = A or x'(G) = A+ 1. A graph G is said to be of
Class 1 if x'(G) = A(G) and of Class 2 if x'(G) = A(G) + 1. In particular,
a regular graph G is of Class 1 if and only if G is 1-factorable. Determining
which graphs belong to which class is a major problem of study in this area.

An edge-colored graph G is properly colored if every two adjacent edges
of G are colored differently. The edge-chromatic Ramsey number CR(F, H)
of two graphs F and H is the minimum positive integer n such that if the
edges of K, are colored with an arbitrary number of colors, then there is
either a monochromatic F or a properly colored H. The edge-chromatic
Ramsey number CR(F, H) exists for exactly the same pairs F, H of graphs
for which rainbow Ramsey numbers exist (see Theorem 6.4). The following

result is due to Eroh [23].

Theorem 7.2 The edge-chromatic Ramsey number CR(F, H) of two graphs
F and H exzists if and only if F is a star or H is a forest.

As is usually the case for results for Ramey numbers and its varia-
tions, most results are bounds. Among the exact results obtained on edge-
chromatic Ramsey numbers are the following.
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Theorem 7.3 (23] For integers m > 2 andn > 2,
CR(C,,P;) =n and CR(Cs,P,)=m.
Theorem 7.4 (23] For every integer n > 3,
CR(Kin,Ps)=n+1 and CR(P,,Py)=n+1.

We now consider a related Ramsey number where the number of colors
assigned to edges is prescribed. Let F' and H be two nonempty graphs
such that x'(H) = t. The proper Ramsey number PR(F,H) of F and H is
the smallest positive integer n such that every t-edge coloring of K,, results
in either a monochromatic F or a properly colored H. Since the Ramsey
number R(F\,Fy,...,F;), where F;, = F for all 1 < i < t, exists and
PR(F\H) £ R(F1, F3, ..., F), it follows that the proper Ramsey number
PR(F, H) exists for every two graphs F and H. Here, we investigate the
proper Ramsey number PR(F, H) for several pairs F, H of connected graphs
of order at least 3 where x/(H) = 2. For each such pair then,

[V(F)| < PR(F,H) < R(F, F). (4)

To illustrate these concepts, we show that PR(Ps, Ps) = 6. First, the
red-blue coloring of K in which the red subgraph is K, 4 and the blue
subgraph is K4 avoids both a monochromatic Ps and a properly colored Ps.
Hence, PR(Ps, Ps) > 6. Next, we show that PR(Ps, Ps) < 6. Assume, to
the contrary, that there is a red-blue coloring of G = Kj that avoids both a
monochromatic Ps and a properly colored Ps. Let V(Kg) = {v1,v2,...,vs}.
First, show that G contains a properly colored P;. It is immediate that
there is a properly colored P3, say (v, v2,v3) where v v; red and vous
blue. If v; is joined to a vertex in {vs4,vs,v6} by a blue edge or v; is
joined to a vertex in {v4,vs,v6} by a red edge, then there is a properly
colored P4. Thus, we may assume that v;v is red and v3v is blue for each
v € {v4,v5,v6}. Since there are at least two edges in G[{vq,vs, v6}} of the
same color, we may assume that vqus and vsvg are red. However then,
(ve,v1,v4,v5,v6) is a red Ps, which contradicts our assumption. Thus, G
contains a properly colored P, say (v;,v2,vs,v4) is a properly colored P;,
where vv; and v3v4 red and vovs blue. Let z and y be the remaining two
vertices of G. If zv; and xv,4 are both red, then (v, v1,7,v4,v3) is a red
P;, which is impossible. Thus, at least one of zv; and zv, is blue, say zv,
is blue. Hence, (z,v1,v2,vs3,v4) is a properly colored Ps. We may assume,
without loss of generality, that zv, is red. If zy is red or v4y is blue, then
G contains a properly colored Ps. Thus, zy is blue and v,y is red.

* If vy is red, then (vq,v),y,vs,v3) is a red Ps; so vyy is blue.

* If voy is blue, then (v, z,y,vs,v3) is a blue Ps; so vyy is red.
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However then, (vq,v2,y,v4,v3) is a red Ps, a contradiction. Therefore,
PR(Ps,Pe) S 6 and PR(Ps, Ps) =6.

In general, for integers n and m with n > m > 2, the proper Ramsey
number of PR(P,,P») can be determined with the aid of (4) and the
Ramsey number R(P,, P,,) for 2 < m < n. In fact, more can be said. By
Theorem 2.2, if n and m are integers with 2 < m < n, then R(P,, Py) =
n—1+|%]. In particular, if n =m > 2, then

R(Pa Pa)=n—1+ [g] : (5)

The following result {18] is a consequence of (4) and (5).

Theorem 7.5 If P is a path of order 5 or more and C is an even cycle,
then
PR(P,,P) = PR(P,,C)=n—1+ [gJ :
Proof. Let N = n —1+ |2]. It follows by (4) that PR(P,,P) < N
and PR(P,,C) < N. On the other hand, consider the red-blue coloring of
K that assigns the color red to each edge of a subgraph K,_; and the
color blue to the remaining edges of Ky_;. Since there is no monochro-
matic P,, no properly colored P and no properly colored C, it follows that
PR(P,,P) > N and PR(P,,C) > N, producing the desired results. -

In [19] the proper Ramsey number PR(F, H) was investigated for cer-
tain pairs F, H of connected graphs when ¢t = 2, namely when F is a
complete graph, star or path and when H is a path or even cycle of small
order. In particular, PR(F, H) is determined when (1) F is a complete
graph and H is a path of order 6 or less, (2) F is a complete graph and H
is a 4-cycle, (3) F is a star and H is a 4-cycle or a 6-cycle and (4) F is a
star and H is a path of order 8 or less. We state these results as follows
(see [19]).

Theorem 7.6 For each integer n > 3,

n ifk=3

n+1 ifk=4
ifn=3and k € {5,6}

2n—2 ifn>4andk € {56}

PR(K,,P) =

Theorem 7.7 For each integer n > 3, PR(K,,C;) =2n — 2.
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Theorem 7.8 For every integer n > 3,

(1) PR(K1n,Cs) =n+1,

(2) PR(K,3,C6) =6 and PR(K1,,,Cs) =2n—1ifn > 4.
Theorem 7.9 For each integer n > 3,

(1) ifk € {3,4}, then PR(Kyn, P) =n+1;

(2) ifn >4, then PR(Kyn,Ps) =n+1;

(3) ifke {6,7,8} and n > k — 1, then PR(K,n,P;) =n+k—5.

It can be shown for integers m and n withm >4 and n > [%] +1 that

PR(K1,, Py) 21+ [m—4'—3J + [-”‘7131 .

In fact, the results obtained in [19] suggest the following conjecture.
Conjecture 7.10 For integers m and n withm >4 and n > [%] +1,

PR(Kyn, Pr) =n + [’"—4‘—3J + ["‘7‘3] .

8 Closing Comments

There is a general setting for Ramsey numbers. Let S={G,, G2, G3, ...}
be an infinite set of graphs with the property that G; is a proper induced
subgraph of G;4; for i =1,2,3,.... Let F and H be two graphs with the
property that ' C Gy and H C Gy for some k € N. Therefore, F C G,
and H C G, for every n > k.

* If G; = K; for each i € N, then for every two graphs F and H,
there exist positive integers n such that for every red-blue coloring
of G, there is either a red F' in G,, or a blue H in G,,. Of course,
the smallest such positive integer n with this property is the Ramsey
number R(F, H).

* If G; = K;; for each i € N, then for every two bipartite graphs I and
H, there exist positive integers r such that for every red-blue coloring
of G, there is either a red F in G, or a blue H in G,. The smallest
such positive integer r with this property is the bipartite Ramsey
number BR(F, H).
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*x If Gy = K1,,,G3 = K12,G4 = K33,Gs = K23,Gs = Kag,...,
that is, if G; = K 1,141 for each integer ¢ > 2, then for every
two bipartite graphs F' and H, there exist positive integers n such
that for every red-blue coloring of Gy, there is either a red F in G,
or a blue H in G,. The smallest such positive integer n with this
property is the 2-Ramsey number Ry(F, H). In a similar way, the
k-Ramsey number Ry(F,H) of two bipartite graphs F' and H can
be defined for every integer k£ > 2. For example, if k£ = 3, then let
Gz = Ki11,1,Gs = K11,2,Gs = K1,22,Gs = K222,G7 = Kp,2,3,- -
and so on.

This suggests looking at other collections S of graphs G; and pairs F, H
of graphs that are subgraphs of G; € S for some ¢ € N and study the
S-Ramsey number Rg(F,H) of F and H defined as the smallest positive
integer n such that for every red-blue coloring of G,,, there is either a red
F in G, or a blue H in G,. Furthermore, there are also corresponding
concepts of monochromatic .S-Ramsey number, rainbow S-Ramsey number
and proper S-Ramsey number of graphs.
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