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Abstract

The concept of the skew energy o of a digraph was introduced by Adiga,
Balakrishnan and So in 2010. Let G be an oriented graph of order n and
Al, A2,...,An denote all the elgenvalues of the skew-adjacency matnx of
C. The skew energy e,(G )= E |A:l. Hou, Shen and Zhang determined

the minimal and the second mmlmal skew energy of the oriented unicyclic
graphs. In this paper, the oriented unicyclic graphs with the third, fourth and
fifth minimal skew energy are characterized, respectively.
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1 Introduction

An important quantum-chemical characteristic of a conjugated molecule is
its total m-electron energy. The energy of a graph has closed links to chemistry.
Since the concept of the energy of simple undirected graphs was introduced by
Gutman in {5}, there have been lots of research papers on this topic. For the
extremal energy of unicyclic graph, Hou [7] showed that S2 is the graph with
minimal energy in all unicyclic graphs; In [6], Huo and Li showed that P is the

*Supported by the National Science Foundation of China (No. 11161037) and the Science Found
of Qinghai Province (No. 2014-ZJ-907).
Corresponding author

JCMCC 103 (2017), pp. 3-14



graph with maximal energy in all unicyclic graphs. For the energy of graphs, Li,
Shi and Gutman published a paper on this subject; see [11].

The concept of the skew energy of a digraph was introduced by Adlga Bal-
akrishnan and So in [1]. Let e} be a dlgraph of order n with vertex set V(G)
{v1,v2,--* ,vn} and arc set I‘(G) C V(G) X V(G) Throughout this paper,
we assume that G does not have loop and multiple arcs, ie., (vi,v) ¢ I(G) of
all 7 and (v;,v;) € I‘(G) implies that (vj,v;) ¢ I‘(G ). Hence the underlymg
undirected graph G of 5 is a simple graph. The skew-adjacency matrix of [l
is the n X n matrix S(G) = [sij], where s;; = 1 whenever (v;,v;) € I‘(G)
s;j = —1 whenever (vj,v;) € T'(G), and s;; = 0 otherwise. If we denote the

— — n
skew energy of G by €,(G ), then,(G) = 3 |As|, where Ay, Az, -+ , An be the
i=1

all eigenvalues of S(a) For more detail on the skew energy of oriented graphs,
we refer to the survey paper by Li and Lian [12].

Let P(G1,z) = Z a2:(G1)z"~% and P(Ga,z) = Z a2:(Ga)z"™~% be

the skew-charactenstlc polynomlals of two oriented graphs Gl and Gg _of order
n, respectively. If ag,(Gl) < az.(Gl) forall1 <4 < |%],thendenote Gy = G2
lmplles that es(@) )<es (5;) If 51’ =< Ev‘; and there exists at Ieast onesuchz i th that
ag,(Gl) < agi(G1), then denote G1 < Gg, which implies that es(Gl) < ss(Gg)

An unicyclic graph is the connected graph with the same number of vertices
and edges. In [7], Hou, Shen and Zhang determined the orientations of unicyclic
graphs with extremal skew energy. Let G(n, ¢) be the set of all connected uni-
cyclic graphs on n vertices with girth £. Denote, as usual, the n-vertex path and
cycle by P, and C,, respectively. Let Pt be the unicyclic graph obtained by
connecting a vertex of C; with a terminal vertex of P,_¢. Let S be the graph
obtained by connecting n — £ pendant vertices to a vertex u; of the cycle C; (see
Figure 1). We call the vertex u; a bonding vertex of SE.

Theorem 1.1 Among all orientations of unicyclic graphs on n vertices, 5;“‘: has
the minimal skew energy and 5’3_ has the second minimal skew energy forn > 6;
Both 3’§ and .-575‘5_ have the minimal skew energy, 5‘5‘” has the second minimal
skew energy for n = 5; 53_ has the minimal skew energy, §4§_ has the second

minimal skew energy for n = 4.

Energy sequencing problem is important. For example, the authors [3] inves-
tigated the unicyclic graphs with maximal energy. Later, Gutman et al. [6] studied
the unicyclic graphs with studied the unicyclic graphs with the second-maximal
and third-maximal energy.



In this paper, we are interested in studying the orientations of unicyclic graphs
with third, fourth and fifth minimal skew energy. Let H%! be a graph obtained
from the graph S’ _, and a new vertex v, by adding an edge uzv, such that u;, uz
has a common vertex on the cycle Ce, where u; is the bonding vertex of S%_,
(see Figure 1). Let H%2 be a graph obtained from the graph S%_, and two new
vertices vz, v3 by adding two edges ujvs, ugvs such that ul, ug has a common
vertex on the cycle C¢, where u, is the bonding vertex of S;,_, (see Figure 1).
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Figure 1. Graphs S¢, H%! and HS2.

Theorem 1.2 Among all orientations of unicyclic graphs on n vertices, we have
the following results.

e Forn > 10, .?,3: has the minimal skew energy, 5;": " has the second minimal
skew energy, I{_"’i has the third minimal skew energy, §2+ has the fourth minimal
skew energy and H3 H32 o H} Hi1 ™ ha the fifth minimal skew energy;

eFor7<n <09, S3 has the minimal skew energy, S4 has the second

-
minimal skew energy, H, 2" has the third minimal skew energy, and H;'f’3 or HM
has the fourth minimal skew energy;

e Forn = 6, 3; has the minimal skew energy, 5;5‘) " has the second minimal

skew energy, and Hé - 6 2or H has the third minimal skew energy;
—_—
e For n = 5, both .57"5 and Sg‘ have the minimal skew energy, H3'' has the

+
second minimal skew energy, 174' has the third minimal skew energy, and 5‘75 has
the fourth minimal skew energy;

- —_—
e forn = 4, C_"; has the minimal skew energy, and S5 has the second
minimal skew energy.

2 Preliminary

Let G be a graph. A linear subgraph L of G is a disjoint union of some edges
and some cycles in G. A k-matching of G is a disjoint union of k-edges. If 2k



is the order of G, then k-matching of G is called a perfect matching of G. The
number of k-matching is denoted by m(G, k).

Let G be an oriented unicyclic graph and C be an undirected even cycle of

5
a graph G. Then C is said to be evenly oriented relative to G if it has an even
number of edges oriented in clockwise direction (and now it also has an even
number of edges oriented in anticlockwise direction, since C is an even cycle);

otherwise C is oddly oriented. Denote by G (6+, resp.) the orientation of G in
first (second, resp) case above.

We call a linear subgraph L of G evenly linear if L contains no odd cycle and
denote by L € eL;(G) (or L € L; for short) the set of all evenly linear subgraph

of G with ¢ vertices. For a linear subgraph L € €L; denote by ng)(resp., po(L))
—

the number of evenly (resp., odcll_y) oriented cycles in L relative to G . Denote the

characteristic polynomial of S(G) by

P,(C,z) = det(zI - 5(C) = }_aiz"™"
i=1

Then (i)bo = 1, (i2)bz is the number of edges of G, (i) all b; > 0 and (iv)b; = 0
for all odd ¢ since the determinant of every real skew symmetric matrix is non-
negative and is O if its order is odd.

Lemma 2.1 [13] Let G be a graph of order n and uv be an edge of G. Then

m(G, k) = m(G — uv, k) + m(G —v —u,k—1) (1 <k< [gJ)

Lemma22 [14]Leta+b=c+dwith0<a<b0<c<danda<ec.

(1) Ifais even, thenm(P, U P,,1) > m(P. U Py,1). Furthermore, there exists
at least one index i such that the above inequality is strict.

(2) Ifais odd, then m(P, U Py,1) < m(P, U Py,1). Furthermore, there exists
at least one index i such that the above inequality is strict.

Lemma 2.3 [9)] If H is a subgraph of G. Then m(H,k) < m(G,k),k > 1.
Moreover, if H is a proper subgraph of G, then the inequality is strict.

Lemma 2.4 (8] Let G be an orientation of a graph G. Then

ai(G) = Z (—2)Pe(L)gpo(L)
LeeL;

Where pe(L) is the number of evenly oriented cycles of L and po(L) is the number
-_
of oddly oriented cycles of L relative to G .



Lemma 2.5 [8] Let G € G(n,l) and G be an orientation of G. Then we have:
(1) Iflis odd, the a5:(G) = m(G, 1)

(2) Iflis even and Cy is oddly oriented, then ag,(G ) = m(G,1i) + 2m(G -
Ce,t — 2)

(3) Iflis even and Cy is evenly oriented, then azi(G) m(G,i) — 2m(G —
Cg,l - '2')

Let Py (a, b, c) be a tree of order n obtained by attaching three pendent paths
of length a, b and ¢ to an isolated vertex « where a + b + ¢ = n — 1 (see Figure
2).

Ly
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Figure 2. Graphs P,(a,b, é) and B, a.

Lemma 2.6 [16] Let P,(a,b, c) be a tree with diameter n — 2. Then
m(Pn(1,1,n - 3),k) < m(Pn(i,1,n — i —2),k)

The broom B, a is a tree consisting of a star Sa+; and a path of length
n — A — 1 attached to an arbitrary pendent vertex of the star (see Figure 2).

Lemma 2.7 [16] Let d be a positive integer more than one, and let T be a tree
with n vertices having diameter at least d. Then m(Bp n—a+1,k) < m(T, k).

Lemma 2.8 [9] Let le] be an orientation of a unicyclic graph G € G(n £),G #
SE. If unique cycle Cy in G and S¢ is the same orientation, then G > St.

Lemma29 [9]Letn>£¢>60rn> L= 5.thenS;‘,_ < S,‘; < S,{— < S,‘;+
Lemma 2.10 [9] Let e = uv be an edge of G that is on no even cycle of G. Then
bak(G) = bk (G — €) + bok—2(CG — u — v).

Furthermore, if e = uv is a pendant edge with the pendant vertex v. Then

bzk(G) =b2k( ——v)+b2k..2(G —u—v)



Lemma 2.11 [2] The skew-adjacency matrices of a graph G are all cospectral if
and only if G has no even cycles.

3 Proof of Theorem 1.2

We are now in a position to prove Theorem 1.2.

Lemma 3.1 Let G be an orientation of an unicyclic graph G € G(n, ), and let
—
G # St and G # HE'. If the unique cycle Cy is in G, and S¢ and HE! is the
—
same orientation, then G = H%.

Proof. We prove this statement by induction on . Since G # S, it follows that
n > £+ 2. Suppose n = £ + 2. One can see that G = Ppyp or G = Hj (see
Figure 3). By Lemma 2.1, we have

O v
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Figure 3. Graphs for Lemma 3.1

2 3 =~
bar(Pry2) = ba(Pyyy) + bok—2(Ce)
_— —’e —_—
bor(Hy) = bor(Pyyy) +bor—2(Pe(i, 1,6 — i~ 2))
Observe that

2,1 ot TR
bak(Hylg) = bor(Peyq) + bak—2(Pe(1,1,£ - 3)).

If k < 5, then it follows from Lemma 2.1 that

bzk-z(a) = m(Ce,k—1)

m(Pp, k — 1) + m(Pe—2,k — 2)
m(Pa(1,1,£— 3), k — 1)

= m(Pry, k1) + m(Pe_s, k —2)

1l

—y
bZk—2(Pl(1$ l’e - 3))

For k > £, one can see that box_2(Pe(1,1,£~ 3)) = 0.



By Lemmas 2.1 and 2.6, we have
m(Py(1,1,£—-3),k=1) <m(T,k-1)
m(Pe(1,1,£-3),k —1) < m(Ce,k — 1)
The result holds immediately forn = £ + 2.
Suppose that for G € G(n',£), G > H,, foralln’ < n. Since G is a

—
unicyclic digraph, there is at least a pendant edge uv with pendant vertex v in G .

First, we consider the case G — v # S._,. Let u; be the vertex of H%! with
degree n — £ + 1, and let v; be a pendent vertex adjacent to u;. By Lemma 2.10,
we have

— — —
bgk(G) = bzk(G - v) + bzk..g(G —-U - u)
el o1 W
bax(Hp') = baw(H,_; —v1) +bak—2(F(1,1,€ - 3))
By induction assumption, it suffices to prove that
bor—2(C — v —u) > bora(P(1,1,£-3)), (1<k<|n/2))

— _—

Observe that bax_o(G — v — u) > bok—a(Pe(1,1,£ - 3)) = 0fork > [ £].
Soweassume that0 < k < [-%J. Note that G — v # S¢_,. Then the order of the
graph G —v — uis n; (n; > £),and the size of the graph G — v — u is at least £,
and G — v — u contains a path of length £ — 2. By Lemmas 2.3 and 2.6, we have

bok—2(G — v — ) > bok—2(Pe(1, 1,2 3)).

Next, we consider the case G —v = S4_,. Then G = H; or G = Hj (see
Figure 4).

H,
Figure 4. Graphs for Lemma 3.1.

If G = Hs, then Hy — v — u = S%_,, as desired. Furthermore, by Lemma
2.6, we have

box(Hz) = bak(SE_y) +ba(SE_p)
14 »
ba(HE') = bar(Sio1) + bor(Bn-2,n—t41)



Because Bp,_3,,—¢ is a subgraph of S%_,, P,_3 is a subgraph of B4 n—¢.

By Lemma 2.3, we have
m(Bn—-2,n—€: k) = m(B —-3n-8 k) + m(Bn—tl,n—-B; k— 1)
m(Bn—Z,n—£+ls k) = m(Bn-—a,n——fa k) + m(PZ-3y k— 1)

Then 172’ - I?l’ .

If G = Hj, then the order of the graph G — v —u isn; (n; > £), and the size
of the graph G —v — u is at least £, and G — v — u contains a path of length £ — 2.

By Lemmas 2.3 and 2.6, we have

— —y
bzk_g(G -V - u) > bzk_z(Pg(l, 1,¢ - 3))
]

— —_—— — —+
Lemma 32 Let n be an integer withn > 6. Then S5 < Si < H3! <S4 <
5.

st alsof .54 Mt st &
Proof. By Lemma 2.4, the characteristic polynomialsof S;, S; , Hy'', Sp .S,

are shown as follows.

—
P(S3,z) = " Yz*+nx’4+n-3)
—_—
P(S: ,x) = z"%(z! +nz?+2n-38)
—_—
PH3z) = 2" Yz*+n2x?+2n-17)
+
P(.—S'_z;l ) = 24zt + nz? 4+ 2n - 4)

P(gng,x) = z""%=2® + nz* + (3n — 10)22 + n - 5)

: AL S O A
One can easily see that S3 <S4 < H31 <83 <S5, |

-3+

—_ ———
Lemma 33 Let n be an integer with6 <n < 9. Then H3!' < H3¥! <81 <
—
S5,

L. . _— ———- —3+ -—5>
Proof. By Lemma 2.4, the characteristic polynomials of H3!, N3l g4 S5
are shown as follows.

PH3.2) = x4z + nz? 4 2n —17)
—
PHM 1) = " 4(z? + nz? 4 3n - 13)
+
P(.?;‘, ) = x4zt +nz?+2n—4)
pa—
P(S2,z) = 2" %z®+nzt 4+ (3n—10)z% 4+ n —5)

10



—_— —— —+ R
One can see that H31 < H»! <S4 as desired. ]

g)mllary 3.4 Let n be an integer withn > 10. Then I—‘—Ig’—f ~< 5—':‘:+ ~< I?'f— <
SE.

In [9], Hou, Shen and Zhang studied the oriented unicyclic graphs with ex-
tremal skew energy,and claimed to show both S—ﬁs and 5_'3 have the minimal skew
energy, a and S“ has the second minimal skew energy for n = 5. But, we prove
that H;’ B3 has the second minimal skew energy.

— —= b ¢ —
Lemma 3.5 Let n be an integer withn = 5. Then S§ = S3 < H3 < H; <

—+

Sé .

- . R gl @t
Proof. By Lemma 2.4, the characteristic polynomials of S3, S§ , Hy'', Hy, S3
are shown as follows.

—
P(S3,z) = z" 4z +522+2)

P(.Eg‘)_,x) = 2" (2% + 522 +2)
—

PHM z) = z" %z +52% +3)

P(Hy,z) = z"%a%+522+4)

+
P(S3 ,2) = 2" (ct +522 +6)
- — +
One can see that S? = .5_'4) < H3 < IT; = gé , as desired. |
Lemma 3.6 Let G be an orientation of a unicyclic graph G € G(n,3), where
n>6,G# 5% G#H G # H2, 83 £ H2 Then G » H3% » N3

Proof. We prove the statement by induction on n. Since G # S3,83 £ H32, it
follows that » > 6. Forn = 6, by Lemma 2.8, the result holds immediately for

n = 6. Suppose that G - H forall n’ < n. Since G 1s a unicyclic digraph,

there is at least a pendant edge uv with pendant vertex v in G.
First, we consider the case G — v # S3_,,G — v # H>!'. Let u be the

—
vertex of HE? with degree n — £, and v, is a pendent vertex adjacent to «;. From
Lemma 2.10, we get

bak(G) = ba(G ~v) +baka(C —v - w)
bzk(Hﬁ‘2) = b2k(He’31 - ‘U1) + b2k_2(§;)

11



By induction assumption, it suffices to prove that
bak—a(C —v—u) 2 bue—2(52), (1< k< [n/2)).

For k > 1, one can see that bgk_g(a —v—u)> bzk..z(g‘-;) = 0. So we now
suppose 0 < k < 1.Notethat G —v # S3_,,G —v # H3L.

Then the order of the graph G — v — u is ny (ny > 4), and the size of the
graph G — v — u is at least 3. By Lemmas 2.6, Lemma 2.3, we have

— —
bak—2(G — v — u) > bax—2(S4).

Since G —v = 83_, or G — v = H3!, it follows that G € {Hs, He, H7, Hg}
(see Figure 5).

:”.: 5; : n- 5:
H- Hs

Figure 5. Graphs for Lemma 3.6.

By Lemma 2.4, the characteristic polynomials of Hs, Hg, H7 and Hg are
shown as follows.

P(H_,".f'{, z) = z" '+ nz?+2n-7)
P(I?E—'a, z) = z" %z +nz®+3n-13)
P(F;, x) :1:"'6(:176 +nzt + (2n — (S)ar:2 +n—25)
P(I_:’_e;,x) :1:"'6(:166 +nzt + (8n — ll)ar:2 +2n-11)
P(E, z) = az:""ﬁ(:z:6 +nzt + (83n — 12):1:2 +n—5)
———
P(Hg,z) = z" %(a®+nz'+ (3n—-11)2% +n -5)

Thus
- _5 -1
Hs = H3* » H3

H > H3? > B3
B > H3? > B

For G = Hsg, we have

—
P(H3? z) = z"%z!+nz®+3n-13) 1)
P(I?;, ) = 2" %@ +nzt +(2n-6)22 +n-5) (2)

12



For (1), we let 22 = y; for (2), we let z2 = z. Then f(y) = y® + ny + 3n — 13
andg(z) =23 +nz2 + (2n - 6)z2+n—-5=(z+1)(z2+(n— 1)z +n —5).
Observe that

Nty = -n
yy2 = 3n-13;
21420423 = —n
2120 + 2223+ 2123 = 2n—6;
Z12023 = -n+5.

Set h(z) =

Without loss of generality, let 2; < z3 < 2z3. Clearly, n > 6.
0,h(-n+1) <0

(224 (n — 1)z +n —5). One can see that h(—1) < 0, h(0) >
and h(—n+2)>0
By Hilbert’s Nullstellensatz, we have —n 4+ 1 < z) < —n+ 2,23 = -1

and —1 < z3 < 0. Therefore, /—z1 + V—22 + /—23 > /—21 > Vn -2 >

n—>5,

(VZ122 + V7123 + V7273)”

(2122 + 2123 + 2223) + 2211/2223 + 224/Z123 + 23V/Z122
= 2n-642V-zznun(V-u+V-22+vV-2)
> 2n—6+2Vn—5vVn—5=4n-16> (5152)’

From the above, we have /z12; + /2123 + /2223 > /Y1¥2-

Therefore,
(VEL+ Va2 + VE)/i)' = (—21— 22— 23) + 2(VZ122 + V7123 + V/7273)

= n+2(Vz122 + V2123 + /2223)
> 1+ 2010 = (Vi1 + v32)/i)?

Therefore, ( \/_+\/—+\/_/z>(\/—+\/ﬁ)/zandhencee,(H5)—
(VZ + vz + VZ3) /i > (VU1 + V2) /i = €,(HD?

By Lemmas 3.1 and 3.6, one can see that Theorem 1.2 holds.
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